1
|
Han A, Qamar AY, Bang S, Kim H, Kang H, Kim JH, Choi K, Yun SH, Kim SI, Saadeldin IM, Lee S, Cho J. Effect of extracellular vesicles derived from oviductal and uterine fluid on the development of porcine preimplantation embryos. Theriogenology 2025; 234:216-224. [PMID: 39742720 DOI: 10.1016/j.theriogenology.2024.12.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 12/12/2024] [Accepted: 12/23/2024] [Indexed: 01/04/2025]
Abstract
To improve the efficiency of in-vitro-produced (IVP) porcine embryos, we focused on the events that usually occur during in-vivo embryonic transit from the oviduct to the uterus. Extracellular vesicles (EVs) are released by different mammalian cells and are imperative for intercellular communication and reflect the cell's physiological state. Based on these characteristics, EVs were isolated from oviductal and uterine fluid to imitate the in vivo environment and improve the efficiency of IVP embryos. Parthenogenesis (PA) and somatic cell nuclear transfer (SCNT) embryos were divided into four groups based on treatment methods designed to mimic the in vivo migration pathways of porcine embryos. (Group 1) control group; (Group 2) a group treated with EVs from oviduct-derived fluid for 0-3 days (Ov-EVs), (Group 3) a group treated with EVs from uterus-derived fluid for 3-7 days (Ut-EVs); (Group 4) and a group treated with both (Ov, Ut-EVs). The EVs were characterized using various techniques, and their uptake into oocytes was confirmed using PKH67. The results demonstrated an increase in mitochondrial activity of PA embryos in Groups 2 and 4 at the 4-cell stage. Furthermore, compared with Group 1, the total number of cells in PA blastocysts was higher in the Group 2, 3 and 4, and the number of apoptotic cells was significantly lower. In SCNT experiments, the blastocyst development rate was increased in the EV-treated groups compared to the Group 1. Therefore, Ov-EVs and Ut-EVs can improve the embryonic development rate of IVP embryos, increase cell numbers and mitochondrial activity, and reduce apoptosis, thereby improving embryonic quality. Thus, integrating EV-based support into IVP embryos may advance swine reproductive technology and improve its practical applications.
Collapse
Affiliation(s)
- Ayeong Han
- College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, 08826, Republic of Korea; College of Veterinary Medicine, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Ahmad Yar Qamar
- College of Veterinary and Animal Sciences, Jhang Sub-campus of University of Veterinary and Animal Sciences, Lahore, 54000, Pakistan
| | - Seonggyu Bang
- College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, 08826, Republic of Korea; College of Veterinary Medicine, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Heyyoung Kim
- College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, 08826, Republic of Korea; Department. of Plastic and Reconstructive Surgery, Vascularized Composite Allotransplantation (VCA) Laboratory, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA
| | - Heejae Kang
- College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, 08826, Republic of Korea; College of Veterinary Medicine, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Jun-Hyeong Kim
- Department of Transgenic Animal Research, Optipharm, Inc., Chungcheongbuk-do, Cheongju-si, 28158, Republic of Korea
| | - Kimyung Choi
- Department of Transgenic Animal Research, Optipharm, Inc., Chungcheongbuk-do, Cheongju-si, 28158, Republic of Korea
| | - Sung Ho Yun
- Korea Basic Science Institute (KBSI), Ochang, 28119, Republic of Korea
| | - Seung Il Kim
- Korea Basic Science Institute (KBSI), Ochang, 28119, Republic of Korea
| | - Islam M Saadeldin
- College of Veterinary Medicine, Chungnam National University, Daejeon, 34134, Republic of Korea; Comparative Medicine Department, King Faisal Specialist Hospital & Research Centre, Riyadh, 11211, Saudi Arabia
| | - Sanghoon Lee
- College of Veterinary Medicine, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Jongki Cho
- College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
2
|
El Cury-Silva T, Dela Cruz C, Nunes MG, Casalechi M, Caldeira-Brant AL, Rodrigues JK, Reis FM. Addition of synthetic polymers to a conventional cryoprotectant solution in the vitrification of bovine ovarian tissue. Cryobiology 2024; 116:104911. [PMID: 38782296 DOI: 10.1016/j.cryobiol.2024.104911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 05/16/2024] [Accepted: 05/20/2024] [Indexed: 05/25/2024]
Abstract
Some synthetic polymers can be used at low concentrations to reduce the toxicity of conventional cryoprotectant agents. In this study we investigated whether the addition of synthetic polymers to a conventional cryoprotectant solution would improve the cryopreservation of bovine ovarian tissue. Freshly collected ovaries from ten adult crossbred cows were incised using a scalpel in the frontal section. From each cow, ovarian cortical slices of 1 mm thickness were divided into 30 fragments of 3 × 3 mm, of which 10 served as fresh controls, 10 were vitrified with conventional cryoprotectant agents (2.93 M glycerol, 27 % w/v; 4.35 M ethylene glycol, 27 % w/v), and 10 were vitrified using the same cryoprotectant agents in addition to synthetic polymers (0.2 % PVP K-12, 0.2 % SuperCool X-1000 ™ w/v and 0.4 % SuperCool Z-1000 ™ w/v). After warming, histology was used to assess follicular quantity and integrity, while in vitro culture of mechanically isolated follicles encapsulated in an alginate matrix was performed for 15 days to assess their growth and hormonal production. Vitrified ovarian tissues presented abnormal morphology, a higher percentage of atretic follicles, and their isolated follicles had lower survival rates and lower frequency of antrum formation during in vitro culture compared to those from fresh tissue. At the end of culture, the follicles that had been cryopreserved produced less estradiol and progesterone than the fresh ones. The addition of synthetic polymers during tissue vitrification did not modify any of these parameters. We conclude that, under the conditions of this study, the use of this combination of synthetic polymers for tissue vitrification did not enhance the preservation of the morphological or functional integrity of bovine ovarian follicles.
Collapse
Affiliation(s)
- Taynná El Cury-Silva
- Division of Human Reproduction, Department of Obstetrics and Gynecology, Universidade Federal de Minas Gerais, MG, Brazil
| | - Cynthia Dela Cruz
- Division of Human Reproduction, Department of Obstetrics and Gynecology, Universidade Federal de Minas Gerais, MG, Brazil
| | - Monique G Nunes
- Division of Human Reproduction, Department of Obstetrics and Gynecology, Universidade Federal de Minas Gerais, MG, Brazil
| | - Maíra Casalechi
- Division of Human Reproduction, Department of Obstetrics and Gynecology, Universidade Federal de Minas Gerais, MG, Brazil
| | - André L Caldeira-Brant
- Division of Human Reproduction, Department of Obstetrics and Gynecology, Universidade Federal de Minas Gerais, MG, Brazil
| | - Jhenifer K Rodrigues
- Division of Human Reproduction, Department of Obstetrics and Gynecology, Universidade Federal de Minas Gerais, MG, Brazil
| | - Fernando M Reis
- Division of Human Reproduction, Department of Obstetrics and Gynecology, Universidade Federal de Minas Gerais, MG, Brazil.
| |
Collapse
|
3
|
Zhang T, Wang L, Pan Y, He H, Wang J, Zhao T, Ding T, Wang Y, Zhao L, Han X, Fan J, Xu G, Cui Y, Yu S. Effect of rapamycin treatment on oocyte in vitro maturation and embryonic development after parthenogenesis in yaks. Theriogenology 2022; 193:128-135. [PMID: 36162289 DOI: 10.1016/j.theriogenology.2022.09.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 09/13/2022] [Accepted: 09/14/2022] [Indexed: 11/15/2022]
Abstract
Autophagy plays an important role in mammalian oocyte maturation and early embryonic development and rapamycin is well known for inducing autophagy. Although previous studies have reported the effects of rapamycin on oocytes in vitro maturation (IVM) in different species, few studies have been reported on the role of rapamycin in yak oocytes IVM and embryonic development. Therefore, the objective of this study was to examine the effect of rapamycin treatment on yak oocytes IVM and early embryonic development. Specifically, immature yak oocytes during IVM or parthenogenetic (PA) embryos were treated with different rapamycin concentrations to select an optimal dose. Then evaluated its effect on maturation rates, cleavage, and blastocyst formation rates, mitochondrial membrane potential, ROS levels. Related genes and proteins expression in matured oocytes and blastocysts were also evaluated. The results show that 10 nM rapamycin treatment during IVM significantly improved oocyte maturation rates of oocytes and blastocyst formation rates. Treatment with 10 nM rapamycin reduced ROS level but increased mitochondrial membrane potential. Correspondingly, mRNA and protein expressions of LC3, Beclin-1, and Bcl-2 up-regulated while Bax down-regulated in matured yak COCs. When parthenogenetic embryos were treated with different rapamycin concentrations, 10 nM rapamycin treatment showed higher 8-cell and blastocyst formation rates. Also, CDX2, POU5F1, SOX2, and Nanog levels in blastocysts were upregulated. In summary, our findings demonstrate that rapamycin treatment improves oocytes maturation probably by increasing mitochondrial membrane potential, reducing ROS levels, and regulating the apoptosis in mature yak oocytes. Rapamycin treatment also improves embryonic developmental competence in the yak.
Collapse
Affiliation(s)
- Tongxiang Zhang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Libin Wang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China; Gansu Province Livestock Embryo Engineering Research Center, China
| | - Yangyang Pan
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China; Gansu Province Livestock Embryo Engineering Research Center, China
| | - Honghong He
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Jinglei Wang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Tian Zhao
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Tianyi Ding
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Yaying Wang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Ling Zhao
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Xiaohong Han
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Jiangfeng Fan
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China; Gansu Province Livestock Embryo Engineering Research Center, China
| | - Gengquan Xu
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China; Gansu Province Livestock Embryo Engineering Research Center, China
| | - Yan Cui
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China; Gansu Province Livestock Embryo Engineering Research Center, China
| | - Sijiu Yu
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China; Gansu Province Livestock Embryo Engineering Research Center, China.
| |
Collapse
|
4
|
He H, Zhang H, Pan Y, Zhang T, Yang S, Liu M, Robert N, Wang J, Zhao T, Zhao L, Fan J, Cui Y, Yu S. Low oxygen concentration improves yak oocyte maturation and inhibits apoptosis through HIF-1 and VEGF. Reprod Domest Anim 2021; 57:381-392. [PMID: 34967955 DOI: 10.1111/rda.14076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 12/28/2021] [Indexed: 11/29/2022]
Abstract
The gas-phase environment of in vitro culture system plays an important role in the development of oocytes, and oxygen concentration is one of the important factors. In the present study, we aimed to explore the effect of different oxygen concentrations (20%, 10%, 5% or 1% O2 ) in yak oocyte maturation and to detect the expression of HIF-1α, VEGF and cell apoptosis in yak COCs. First, the maturation rate of oocytes, cleavage rate and blastocysts rate following parthenogenetic activation in the group with 5% oxygen concentration were significantly higher (p < 0.05) than the other groups. Then, TUNEL analysis showed that the 5% oxygen concentration group significantly inhibited apoptosis of cumulus-oocyte complexes (COCs) compared to the other group, and the transcription and protein levels of pro-apoptotic factor Bax, HIF-1α and VEGF in yak COCs significantly reduced, while anti-apoptotic factor Bcl-2 significantly increased. Furthermore, immunohistochemical staining results indicated that HIF-1α protein was mainly located in theca follicle interna, mural follicular stratum granulosum, corona radiata and ovarian stroma in the follicular ovarian tissue; while VEGF protein was mainly located in the granulosa and theca cell layers. In summary, our findings demonstrate that 5% oxygen concentration may promote maturation and inhibit apoptosis of oocytes through HIF-1α-mediated VEGF expression.
Collapse
Affiliation(s)
- Honghong He
- Gansu Province Livestock Embryo Engineering Research Center, College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China.,College of Animal Husbandry and Verterinary Medicine, Southwest Minzu University, Chengdu, 610041, China
| | - Huizhu Zhang
- Gansu Province Livestock Embryo Engineering Research Center, College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Yangyang Pan
- Gansu Province Livestock Embryo Engineering Research Center, College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Tongxiang Zhang
- Gansu Province Livestock Embryo Engineering Research Center, College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Shanshan Yang
- Gansu Province Livestock Embryo Engineering Research Center, College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Minqing Liu
- Gansu Province Livestock Embryo Engineering Research Center, College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Niayale Robert
- Gansu Province Livestock Embryo Engineering Research Center, College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Jinglei Wang
- Gansu Province Livestock Embryo Engineering Research Center, College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Tian Zhao
- Gansu Province Livestock Embryo Engineering Research Center, College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Ling Zhao
- Gansu Province Livestock Embryo Engineering Research Center, College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Jiangfeng Fan
- Gansu Province Livestock Embryo Engineering Research Center, College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Yan Cui
- Gansu Province Livestock Embryo Engineering Research Center, College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Sijiu Yu
- Gansu Province Livestock Embryo Engineering Research Center, College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| |
Collapse
|
5
|
Wang L, Liu L, Wang Y, Li N, Zhu H, Chen M, Bai J, Pang Y, Zhang Y, Zhang H. Aberrant Epigenetic Reprogramming in the First Cell Cycle of Bovine Somatic Cell Nuclear Transfer Embryos. Cell Reprogram 2021; 23:99-107. [PMID: 33861636 DOI: 10.1089/cell.2020.0079] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Zygotic epigenetic reprogramming is the major initial event in embryo development to acquire a totipotent potential. However, the patterns of epigenetic modifications in bovine zygote were not well clarified, especially in the first cell cycle of bovine somatic cell nuclear transfer (SCNT) embryos. This study was conducted to examine the patterns of DNA methylation (5-methylcytosine [5mc] and 5-hydroxymethylcytosine [5hmc]) and histone H3 lysine 9 methylation (H3K9m2 and H3K9m3) in the first cell cycle of bovine in vitro fertilization (IVF) and SCNT embryos. In bovine zygotic development, the 5mc in the paternal pronucleus (pPN) undergoes partial demethylation from PN1 to PN3, and remethylation from PN4 to PN5, while 5hmc exhibits absolutely different patterns. The 5mc in SCNT embryos underwent much more dramatic demethylation and much earlier de novo methylation compared with their IVF counterparts, while 5hmc stayed stable from PN1 to PN4, and significantly increased at PN5, which made significantly higher level of 5mc and 5hmc at the end of the first cell cycle in SCNT embryos. Different H3K9m2 and H3K9m3 patterns were also observed between IVF and SCNT embryos. H3K9m2 and H3K9m3 asymmetrically distributed in parental genomes in IVF zygote, highly present in the maternal pronucleus, whereas faintly stained in the pPN. H3K9m2 and H3K9m3 in the somatic cell genome were gradually demethylated from PN1-PN4, and significantly increased at the end of the first cell cycle. TET3 dioxygenase was highly present in the first cell cycle of embryos compared with TET1 and TET2. Our results showed that SCNT embryos underwent aberrant epigenetic reprogramming in the first cell cycle; much more dramatic demethylation and significant higher remethylation were observed compared with IVF counterparts.
Collapse
Affiliation(s)
- LiJun Wang
- Affiliated Hospital of Shaanxi University of Chinese Medicine, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, China
| | - LiXiu Liu
- Affiliated Hospital of Shaanxi University of Chinese Medicine, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, China
| | - YongSheng Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Nan Li
- Affiliated Hospital of Shaanxi University of Chinese Medicine, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, China
| | - HongLi Zhu
- Affiliated Hospital of Shaanxi University of Chinese Medicine, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, China
| | - Mei Chen
- Affiliated Hospital of Shaanxi University of Chinese Medicine, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, China
| | - Jun Bai
- Affiliated Hospital of Shaanxi University of Chinese Medicine, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, China
| | - Yuan Pang
- Affiliated Hospital of Shaanxi University of Chinese Medicine, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, China
| | - Yong Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Hui Zhang
- Affiliated Hospital of Shaanxi University of Chinese Medicine, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, China
| |
Collapse
|
6
|
Hajian M, Jafarpour F, Aghamiri SM, Rouhollahi Varnosfaderani S, Nasr Esfahani MH. Effects of ovary storage temperature and embryo vitrification on somatic cell nuclear transfer outcomes in goats. Reprod Fertil Dev 2021; 32:419-424. [PMID: 31816272 DOI: 10.1071/rd18529] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 07/19/2019] [Indexed: 01/21/2023] Open
Abstract
Improving the genetic potential of farm animals is one of the primary aims in the field of assisted reproduction. In this regard, somatic cell nuclear transfer (SCNT) can be used to produce a large number of embryos from genetically elite animals. The aims of the present study were to assess the effects of: (1) ovary storage conditions on preimplantation development of recovered oocytes and the freezability of the derived blastocysts; and (2) vitrification of goat SCNT-derived blastocysts on postimplantation development. Goat oocytes were recovered from ovaries and stored under warm (25°C-27°C) or cold (11°C-12°C) conditions before being used to produce SCNT embryos. There were no differences in oocytes recovered from ovaries kept under cold versus warm storage conditions in terms of cleavage (mean (±s.d.) 95.68±1.67% vs 95.91±2.93% respectively) and blastocyst formation (10.69±1.17% vs 10.94±0.9% respectively) rates. The re-expansion rate of vitrified blastocysts was significantly lower for cold- than warm-stored ovaries (66.3±8.7% vs 90±11% respectively). To assess the effects of vitrification on postimplantation development, blastocysts from cold-stored ovaries only were transferred from fresh and vitrified-warmed groups. The pregnancy rate was comparable between the fresh and vitrified-warmed groups (41.65% and 45.45% respectively). In addition, established pregnancy in Day 28-38 and full-term pregnancy rates were similar between the two groups. In conclusion, this study shows similar invitro preimplantation developmental potential of warm- and cold-stored ovaries. This study introduces the vitrification technique as an appropriate approach to preserve embryos produced by SCNT for transfer to recipient goats at a suitable time.
Collapse
Affiliation(s)
- Mehdi Hajian
- Department of Reproductive Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, Academic Center for Education, Culture and Research, Salman Street, Royan Street, 81593-58686, Isfahan, Iran; and Corresponding authors. ;
| | - Farnoosh Jafarpour
- Department of Reproductive Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, Academic Center for Education, Culture and Research, Salman Street, Royan Street, 81593-58686, Isfahan, Iran
| | - Sayed Morteza Aghamiri
- Department of Clinical Studies, School of Veterinary Medicine, Shahid Bahonar University of Kerman, 22th Bahman Street, 76169-14111, Kerman, Iran
| | - Shiva Rouhollahi Varnosfaderani
- Department of Reproductive Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, Academic Center for Education, Culture and Research, Salman Street, Royan Street, 81593-58686, Isfahan, Iran
| | - Mohammad Hossein Nasr Esfahani
- Department of Reproductive Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, Academic Center for Education, Culture and Research, Salman Street, Royan Street, 81593-58686, Isfahan, Iran; and Corresponding authors. ;
| |
Collapse
|
7
|
Vilela JDMV, Dolmans MM, Amorim CA. Ovarian tissue transportation: a systematic review. Reprod Biomed Online 2020; 42:351-365. [PMID: 33288476 DOI: 10.1016/j.rbmo.2020.11.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 11/06/2020] [Accepted: 11/06/2020] [Indexed: 12/20/2022]
Abstract
In recent years, some countries and fertility preservation networks have started adopting 24 h transportation for ovarian tissue, a practice that has the potential to spread very quickly due to the high costs and bureaucracy involved in the establishment of ovarian tissue cryobanks. While pregnancies and live births have been reported after such long periods of transportation, this, however, remains an empirical procedure. This review aims to prompt reflection on ovarian tissue transport, highlighting the lack of knowledge in humans by providing a counterpoint looking into more than 40 studies published in different animal models. By discussing these studies in animals, the findings of various models can be deciphered, and light shed on the patterns identified. Like the development of different assisted reproductive technology procedures, this is an important step in creating guidelines for future studies on human ovarian tissue transportation.
Collapse
Affiliation(s)
| | - Marie-Madeleine Dolmans
- Pôle de Recherche en Gynécologie, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium; Gynecology Department, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Christiani Andrade Amorim
- Pôle de Recherche en Gynécologie, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium.
| |
Collapse
|
8
|
Vilela JDMV, Dolmans MM, Maruhashi E, Blackman MCNM, Sonveaux P, Miranda-Vilela AL, Amorim CA. Evidence of metabolic activity during low-temperature ovarian tissue preservation in different media. J Assist Reprod Genet 2020; 37:2477-2486. [PMID: 32885380 PMCID: PMC7550475 DOI: 10.1007/s10815-020-01935-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 08/25/2020] [Indexed: 12/17/2022] Open
Abstract
PURPOSE Although ovarian tissue transportation has been validated for up to 24 h, there is no standard protocol to date. We aimed to elucidate how existing media currently used for ovarian tissue transportation affect ovarian tissue metabolism and cell viability. METHODS Cow ovarian fragments were immersed in 0.9% NaCl solution, IVF medium, Leibovitz 15 medium (L-15), or PBS for 1, 4, or 24 h at 4 °C. Media were analyzed for pH, lactate dehydrogenase (LDH) activity, and glucose, pyruvate, and lactate concentrations, while apoptosis was assessed by TUNEL assays in fixed fragments. Viability rates were assessed by flow cytometry (FACS). RESULTS There were lower pH levels in NaCl at all time points compared with other media. LDH activity increased with time and was lowest in NaCl at 1 and 4 h. There was no significant difference in glucose levels, but a significant pyruvate decrease in L-15 and a significant lactate increase in all media. TUNEL showed apoptosis rates ranging from 0 to 5%. FACS showed a mean of 4% necrotic cells and 15-19% apoptotic cells after 1 h of incubation, but less than 1% necrotic cells and 2-6% apoptotic cells after 24 h in all media. CONCLUSION Our results indicate marked metabolic activity in ovarian tissue at 4 °C and suggest that cells use internal sources of energy, which may influence transplantation outcomes. This highlights the importance of better understanding whole tissue dynamics to develop a standard protocol for ovarian tissue transportation. Graphical abstract.
Collapse
Affiliation(s)
- Janice de M V Vilela
- Pôle de Recherche en Gynécologie, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Avenue Mounier 52, bte B1.52.02, 1200, Brussels, Belgium
| | - Marie-Madeleine Dolmans
- Pôle de Recherche en Gynécologie, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Avenue Mounier 52, bte B1.52.02, 1200, Brussels, Belgium
- Gynecology Department, Cliniques Universitaires Saint Luc, 1200, Brussels, Belgium
| | - Emi Maruhashi
- Pôle de Recherche en Gynécologie, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Avenue Mounier 52, bte B1.52.02, 1200, Brussels, Belgium
| | - Marine C N M Blackman
- Pôle de Pharmacologie et Thérapeutique, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, 1200, Brussels, Belgium
| | - Pierre Sonveaux
- Pôle de Pharmacologie et Thérapeutique, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, 1200, Brussels, Belgium
| | | | - Christiani A Amorim
- Pôle de Recherche en Gynécologie, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Avenue Mounier 52, bte B1.52.02, 1200, Brussels, Belgium.
| |
Collapse
|
9
|
He H, Zhang H, Li Q, Fan J, Pan Y, Zhang T, Robert N, Zhao L, Hu X, Han X, Yang S, Cui Y, Yu S. Low oxygen concentrations improve yak oocyte maturation and enhance the developmental competence of preimplantation embryos. Theriogenology 2020; 156:46-58. [PMID: 32673901 DOI: 10.1016/j.theriogenology.2020.06.022] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 06/10/2020] [Accepted: 06/23/2020] [Indexed: 12/30/2022]
Abstract
Mammalian oocyte maturation and early embryo development are highly sensitive to the in vitro culture environment, and oxygen concentration is one of the important factors. In the present study, we aimed to explore the effects of different oxygen concentrations (20%, 10%, 5% or 1% O2) on yak oocyte maturation, in vitro fertilization (IVF), and embryo development competence, as well as its effects on the oxidative response, metabolism, and apoptosis in cumulus-oocyte complexes (COCs) and the embryo. The results revealed that the maturation rate of oocytes, blastocysts rate and hatched blastocysts rate in the group with 5% oxygen concentration were significantly higher (P < 0.05) than other groups, but the cleavage rate with 5% oxygen concentration was significantly lower (P < 0.05) than the 20% and 10% oxygen concentrations. The maturation rate of oocytes, the cleavage rate, blastocysts rate and hatched blastocysts rate with the 1% oxygen concentration were the lowest. The blastocyst cultured with 5% oxygen concentration had significantly greater (P < 0.05) numbers of total cells, inner cell mass (ICM) cells and trophectoderm (TE) cells compared to the other groups. Analysis of the apoptosis index of oocytes and blastocyst cells by transferase dUTP nick end labeling (TUNEL) showed that the number of apoptotic cells significantly reduced (P < 0.05) with 5% oxygen concentration, but increased significantly (P < 0.05) in the 1% oxygen concentration group. Also, the qRT-PCR and western immunoblotting analysis confirmed that the transcription levels of the metabolism genes, antioxidant response genes, apoptosis genes, oocyte competence genes and embryonic developmental markers showed significant differences (P < 0.05) in the COCs or blastocysts matured in 5% oxygen concentration group compared to the other groups. In summary, our findings demonstrate that 5% oxygen concentration improves oocyte maturation and blastocyst development in the yak, increases blastocyst cell numbers, reduces apoptosis rate in the oocyte and blastocyst as well as reduces embryo cleavage rate.
Collapse
Affiliation(s)
- Honghong He
- Gansu Province Livestock Embryo Engineering Research Center, College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Huizhu Zhang
- Gansu Province Livestock Embryo Engineering Research Center, College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Qin Li
- Gansu Province Livestock Embryo Engineering Research Center, College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Jiangfeng Fan
- Gansu Province Livestock Embryo Engineering Research Center, College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Yangyang Pan
- Gansu Province Livestock Embryo Engineering Research Center, College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Tongxiang Zhang
- Gansu Province Livestock Embryo Engineering Research Center, College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Niayale Robert
- Gansu Province Livestock Embryo Engineering Research Center, College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Ling Zhao
- Gansu Province Livestock Embryo Engineering Research Center, College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Xuequan Hu
- Gansu Province Livestock Embryo Engineering Research Center, College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Xiaohong Han
- Gansu Province Livestock Embryo Engineering Research Center, College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Shanshan Yang
- Gansu Province Livestock Embryo Engineering Research Center, College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Yan Cui
- Gansu Province Livestock Embryo Engineering Research Center, College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Sijiu Yu
- Gansu Province Livestock Embryo Engineering Research Center, College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China.
| |
Collapse
|
10
|
Zuo Z, Niu Z, Liu Z, Ma J, Qu P, Qiao F, Su J, Zhang Y, Wang Y. The effects of glycine-glutamine dipeptide replaced l-glutamine on bovine parthenogenetic and IVF embryo development. Theriogenology 2019; 141:82-90. [PMID: 31518732 DOI: 10.1016/j.theriogenology.2019.09.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 08/17/2019] [Accepted: 09/05/2019] [Indexed: 12/19/2022]
Abstract
Relative to alanine and serine amino acid levels, glutamine is highly abundant in follicular fluid, and is an important source of energy required for oocyte maturation and embryo development. Thus, glutamine is an essential component of in vitro embryo culture media. However, glutamine has poor stability and degrades spontaneously in solution to form ammonia and pyrrolidonecarboxylic acid. In the present study, we aimed to explore the effect of substituting l-glutamine with glycine-glutamine, a more stable glutamine, on development of early parthenogenetic embryos and in vitro fertilization (IVF) embryos in bovine. Results revealed that glycine-glutamine can significantly increase cleavage rate (parthenogenetic embryos:87.24% vs. 72.61%, IVF embryos:89.33% vs. 83.79%, P < 0.01), blastocyst number (parthenogenetic embryos:24.98% vs. 18.07%, IVF embryos:33.53% vs. 27.29%, P < 0.01), and blastocyst number (parthenogenetic embryos:96 vs. 76, IVF embryos:114 vs. 109, P < 0.01), reduce blastocyst apoptosis (parthenogenetic embryos:3.72% vs. 6.65%, IVF embryos:2.53% vs.6.23%, P < 0.01), alleviate embryo ammonia toxicity, and reduce the content of reactive oxygen species (ROS) compared with the l-glutamine. In addition, glycine-glutamine can alter epigenetic reprogramming by increasing the expression of HDAC1 (Histone Deacetylase 1) and decreasing the relative expression levels of H3K9 acetylation in early parthenogenetic embryos and IVF embryos. From our present study, we concluded that glycine-glutamine is an effective substitute of glutamine in modified synthetic oviduct fluid with amino acids (mSOFaa).
Collapse
Affiliation(s)
- Zhenzi Zuo
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, PR China; Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, 712100, PR China
| | - Zhihan Niu
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, PR China; Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, 712100, PR China
| | - Zhengqing Liu
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, PR China; Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, 712100, PR China
| | - Jukui Ma
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, PR China; Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, 712100, PR China
| | - Pengxiang Qu
- Laboratory Animal Centre, Xi'an Jiaotong University Health Science Centre, Xi'an, Shaanxi, 710061, PR China
| | - Fang Qiao
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, PR China; Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, 712100, PR China
| | - Jianmin Su
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, PR China; Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, 712100, PR China
| | - Yong Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, PR China; Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, 712100, PR China.
| | - Yongsheng Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, PR China; Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, 712100, PR China.
| |
Collapse
|
11
|
Qiao F, Ge H, Ma X, Zhang Y, Zuo Z, Wang M, Zhang Y, Wang Y. Bovine uterus-derived exosomes improve developmental competence of somatic cell nuclear transfer embryos. Theriogenology 2018; 114:199-205. [PMID: 29653387 DOI: 10.1016/j.theriogenology.2018.03.027] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Revised: 03/13/2018] [Accepted: 03/16/2018] [Indexed: 01/15/2023]
Abstract
Exosomes widely exist in various tissues and body fluids, including blood, tissue fluid, and urine. In the present study, exosomes were first isolated from the early luteal phase uterus and confirmed through morphological examination, immunofluorescence (IF) staining of special membrane antigen, and Western blot. The effects of exosomes on the developmental competence of somatic cell nuclear transfer (SCNT) embryos were investigated. Transmission electron microscopy results showed that the isolated exsomes were spherical particles with a 50 nm-150 nm diameter. Immunostaining showed that the surface of these isolated particles were CD9 positive, which was confirmed using Western blot. Supplementing SCNT embryos with these isolated exsomes on day 4 of culture significantly increased the blastocyst formation rate (31% vs. 34%, 40.3%, and 34.3%) and hatching rate (30.3% vs. 33.3%, 40.7%, and 35%) in comparison with the non-supplementation (control), and day 3 and day 5 supplementation groups. Blastocysts from the exsome supplementation groups showed higher inner cell mass/trophectoderm cell ratio (48% vs 37.9%) and lower apoptosis index (2.1% vs 6.5%) than the control group. The gene expression analysis of the blastocysts also showed that the exsomes supplementation significantly enhanced the expression levels of IFNT and acrogranin and decreased the expression levels of HSP70, BAX and BIP. In conclusion, the present study indicated that the early luteal phase uterus secretes exosomes, which might play important roles in the development of SCNT embryos.
Collapse
Affiliation(s)
- Fang Qiao
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, PR China; Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, 712100, PR China
| | - Hui Ge
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, PR China; Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, 712100, PR China
| | - Xiaonan Ma
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, PR China; Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, 712100, PR China
| | - Ying Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, PR China; Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, 712100, PR China
| | - Zhenzi Zuo
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, PR China; Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, 712100, PR China
| | - Mengyun Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, PR China; Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, 712100, PR China
| | - Yong Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, PR China; Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, 712100, PR China.
| | - Yongsheng Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, PR China; Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, 712100, PR China.
| |
Collapse
|
12
|
Sefid F, Ostadhosseini S, Hosseini S, Ghazvini Zadegan F, Pezhman M, Nasr Esfahani MH. Vitamin K2 improves developmental competency and cryo-tolerance of in vitro derived ovine blastocyst. Cryobiology 2017; 77:34-40. [DOI: 10.1016/j.cryobiol.2017.06.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 06/03/2017] [Accepted: 06/03/2017] [Indexed: 01/06/2023]
|
13
|
Wang L, Zhang H, Wang Y, Wang F, Liu X, Wu Y, Hua S, Quan F, Zhang Y. Peroxiredoxin 5 is essential for in vitro development of bovine SCNT embryos. Theriogenology 2017; 92:156-166. [DOI: 10.1016/j.theriogenology.2016.09.020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Revised: 09/08/2016] [Accepted: 09/09/2016] [Indexed: 01/13/2023]
|
14
|
Qu P, Qing S, Liu R, Qin H, Wang W, Qiao F, Ge H, Liu J, Zhang Y, Cui W, Wang Y. Effects of embryo-derived exosomes on the development of bovine cloned embryos. PLoS One 2017; 12:e0174535. [PMID: 28350875 PMCID: PMC5370134 DOI: 10.1371/journal.pone.0174535] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 03/11/2017] [Indexed: 01/21/2023] Open
Abstract
The developmental competence of in vitro cultured (IVC) embryos is markedly lower than that of their in vivo counterparts, suggesting the need for optimization of IVC protocols. Embryo culture medium is routinely replaced three days after initial culture in bovine, however, whether this protocol is superior to continuous nonrenewal culture method under current conditions remains unclear. Using bovine somatic cell nuclear transfer (SCNT) embryos as the model, our results showed that compared with routine renewal treatment, nonrenewal culture system significantly improved blastocyst formation, blastocyst quality (increased total cell number, decreased stress and apoptosis, enhanced Oct-4 expression and ratio of ICM/TE), as well as following development to term. Existence and function of SCNT embryo-derived exosomes were then investigated to reveal the cause of impaired development induced by culture medium replacement. Exosomes were successfully isolated through differential centrifugation and identified by both electron microscopy and immunostaining against exosomal membrane marker CD9. Supplementation of extracted exosomes into freshly renewed medium significantly rescued not only blastocyst formation and quality (in vitro development), but also following growth to term (in vivo development). Notably, ratio of ICM/TE and calving rate were enhanced to a similar level as that in nonrenewal group. In conclusion, our results for the first time indicate that 1: bovine SCNT embryos can secrete exosomes into chemically defined culture medium during IVC; 2: secreted exosomes are essential for SCNT blastocyst formation, blastocyst quality, and following development to term; 3: removal of exosomes induced by culture medium replacement impairs SCNT embryo development, which can be avoided by nonrenewal culture procedure or markedly recovered by exosome supplementation.
Collapse
Affiliation(s)
- Pengxiang Qu
- College of Veterinary Medicine, Northwest A&F University, Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Yangling, Shaanxi, PR China
| | - Suzhu Qing
- College of Veterinary Medicine, Northwest A&F University, Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Yangling, Shaanxi, PR China
| | - Ruiqi Liu
- College of Veterinary Medicine, Northwest A&F University, Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Yangling, Shaanxi, PR China
| | - Hongyu Qin
- College of Veterinary Medicine, Northwest A&F University, Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Yangling, Shaanxi, PR China
| | - Weiwei Wang
- College of Veterinary Medicine, Northwest A&F University, Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Yangling, Shaanxi, PR China
| | - Fang Qiao
- College of Veterinary Medicine, Northwest A&F University, Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Yangling, Shaanxi, PR China
| | - Hui Ge
- College of Veterinary Medicine, Northwest A&F University, Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Yangling, Shaanxi, PR China
| | - Jun Liu
- College of Veterinary Medicine, Northwest A&F University, Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Yangling, Shaanxi, PR China
| | - Yong Zhang
- College of Veterinary Medicine, Northwest A&F University, Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Yangling, Shaanxi, PR China
- * E-mail: (YZ); (WC); (YW)
| | - Wei Cui
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, Massachusetts, United States of America
- * E-mail: (YZ); (WC); (YW)
| | - Yongsheng Wang
- College of Veterinary Medicine, Northwest A&F University, Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Yangling, Shaanxi, PR China
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, Massachusetts, United States of America
- * E-mail: (YZ); (WC); (YW)
| |
Collapse
|
15
|
Kim SK, Lee JR, Samuel Kim S. Chapter 2 Utility of Animal Models for Human Ovarian Tissue Cryopreservation. Methods Mol Biol 2017; 1568:23-31. [PMID: 28421486 DOI: 10.1007/978-1-4939-6828-2_2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Success in cryopreservation of ovarian tissue (OT) in animal models has led to develop efficient cryo-technologies for human ovarian tissue. In this chapter, cryopreservation protocols developed for animal experiments are described.
Collapse
Affiliation(s)
- Seul Ki Kim
- Department of Obstetrics and Gynecology, Seoul National University Bundang Hospital, Seongnam, 463-707, South Korea
| | - Jung Ryeol Lee
- Department of Obstetrics and Gynecology, Seoul National University Bundang Hospital, Seongnam, 463-707, South Korea
| | - S Samuel Kim
- Center for Fertility and Reproduction, American-Sino Women's and Children's Hospital, 155 Songyuan Road, Shanghai, 200336, China.
| |
Collapse
|
16
|
Zanotelli MR, Henningsen JD, Hopkins PM, Dederich AP, Herman T, Puccinelli TJ, Salih SM. An ovarian bioreactor for in vitro culture of the whole bovine ovary: a preliminary report. J Ovarian Res 2016; 9:47. [PMID: 27488614 PMCID: PMC4973044 DOI: 10.1186/s13048-016-0249-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Accepted: 06/22/2016] [Indexed: 12/21/2022] Open
Abstract
Background Improved cancer therapeutics and enhanced cancer survivorship have emphasized the severe long-term side effects of chemotherapy. Specifically, studies have linked many chemotherapy agents with primary ovarian insufficiency, although an exact insult model has not yet been determined. To investigate and ultimately solve this problem, a novel device for extended study of mammalian ovaries in vitro was developed. Methods A bioreactor was fabricated for bovine ovarian culture that provides intravascular delivery of media to the ovary through isolation and cannulation of a main ovarian artery branch. Whole ovaries were cultured in vitro using three methods: (1) continuously supplied fresh culture media, (2) recirculated culture media, or (3) continuously supplied fresh culture media supplemented with 500 nM doxorubicin for 24 or 48 h. TUNEL assay was used to assess apoptotic cell percentages in the three groups as compared to uncultured baseline ovaries. Results The ovary culture method was shown to maintain cell viability by effectively delivering nutrient-enriched pH-balanced media at a constant flow rate. Lower apoptosis observed in ovaries cultured in continuously supplied fresh culture media illustrates that this culture device and method are the first to sustain whole bovine ovary viability for 48 h. Meanwhile, the increase in the percentage of cell apoptosis with doxorubicin treatment indicates that the device can provide an alternative model for testing chemotherapy and chemoprotection treatments to prevent primary ovarian insufficiency in cancer patients. Conclusions An ovarian bioreactor with consistent culture media flow through an ovarian vasculature-assisted approach maintains short-term whole bovine ovary viability. Electronic supplementary material The online version of this article (doi:10.1186/s13048-016-0249-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Matthew R Zanotelli
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA
| | - Joseph D Henningsen
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA
| | - Patrick M Hopkins
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA
| | - Aaron P Dederich
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA
| | - Tessa Herman
- Department of Obstetrics and Gynecology, West Virginia University, Morgantown, WV, 26506, USA
| | - Tracy J Puccinelli
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA
| | - Sana M Salih
- Department of Obstetrics and Gynecology, West Virginia University, Morgantown, WV, 26506, USA.
| |
Collapse
|
17
|
Qu P, Li Y, Deng T, Jia D, Qing S, Su J, Zhang Y, Wang Y. Effects of Insulin-like Growth Factor-1 on Development of Somatic Cell Cloned Bovine Embryos. Cell Reprogram 2016; 18:162-70. [DOI: 10.1089/cell.2015.0079] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Pengxiang Qu
- College of Veterinary Medicine, Northwest A&F University, Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Yangling, Shaanxi Province, P.R. China
| | - Yanyan Li
- College of Veterinary Medicine, Northwest A&F University, Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Yangling, Shaanxi Province, P.R. China
- Qinyang Institute of Animal Health Inspection, Qinyang City, Henan Province
| | - Tengfei Deng
- College of Veterinary Medicine, Northwest A&F University, Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Yangling, Shaanxi Province, P.R. China
| | - Dan Jia
- College of Veterinary Medicine, Northwest A&F University, Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Yangling, Shaanxi Province, P.R. China
| | - Suzhu Qing
- College of Veterinary Medicine, Northwest A&F University, Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Yangling, Shaanxi Province, P.R. China
| | - Jianmin Su
- College of Veterinary Medicine, Northwest A&F University, Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Yangling, Shaanxi Province, P.R. China
| | - Yong Zhang
- College of Veterinary Medicine, Northwest A&F University, Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Yangling, Shaanxi Province, P.R. China
| | - Yongsheng Wang
- College of Veterinary Medicine, Northwest A&F University, Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Yangling, Shaanxi Province, P.R. China
| |
Collapse
|
18
|
Li Y, Zhang Z, He C, Zhu K, Xu Z, Ma T, Tao J, Liu G. Melatonin protects porcine oocyte in vitro maturation from heat stress. J Pineal Res 2015; 59:365-75. [PMID: 26291611 DOI: 10.1111/jpi.12268] [Citation(s) in RCA: 95] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Accepted: 08/14/2015] [Indexed: 12/14/2022]
Abstract
Melatonin is a pleiotropic molecule which plays an important role in animal reproductive activities. Because of the increased global warming, the impact of heat stress (HS) on stockbreeding has become an inevitable issue to be solved. To investigate the potential effects of melatonin on the in vitro maturation of porcine oocyte under the HS, a HS model for porcine oocyte maturation has been used in this study and the different concentrations of melatonin (10(-6) -10(-9) m) were also tested for their protective effects on oocytes. The polar body rate, the index of the nuclear maturation of the oocytes, and the cleavage rate as well as the blastocyst rate were measured to evaluate the developmental competence of the oocytes after parthenogenetic activation (PA). The results showed that HS [in vitro maturation (IVM) 20-24 hr, 42°C] significantly reduced the polar body rate of oocytes and the blastocyte rate of porcine PA embryos, while melatonin (10(-7) m) application not only improved polar body rate and blastocyte rate, but also preserved the normal levels of steroid hormone which is disrupted by HS. The presence of melatonin (10(-7) m) during the oocyte maturation under the HS reduced reactive oxygen species (ROS) formation, enhanced glutathione (GSH) production, inhibited cell apoptosis, and increased the gene expressions of SIRT1, AKT2, and Polg2. Importantly, the endogenously occurring melatonin of cumulus-oocyte complexes was significantly induced by HS. The results indicated that melatonin application effectively protected the oocytes from HS. These observations warranted the further studies in vivo regarding to improve the reproductive activities of animals under the global warming environment.
Collapse
Affiliation(s)
- Yu Li
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - ZhenZhen Zhang
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - ChangJiu He
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - KuanFeng Zhu
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - ZhiYuan Xu
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing, China
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, Jilin, China
| | - Teng Ma
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - JingLi Tao
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - GuoShi Liu
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing, China
- College of Animal Science and Technology, Xinjiang Agricultural University, Wulumuqi, Xinjiang, China
| |
Collapse
|
19
|
Urrego R, Herrera-Puerta E, Chavarria NA, Camargo O, Wrenzycki C, Rodriguez-Osorio N. Follicular progesterone concentrations and messenger RNA expression of MATER and OCT-4 in immature bovine oocytes as predictors of developmental competence. Theriogenology 2014; 83:1179-87. [PMID: 25662108 DOI: 10.1016/j.theriogenology.2014.12.024] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Revised: 12/11/2014] [Accepted: 12/18/2014] [Indexed: 12/31/2022]
Abstract
The ability of bovine embryos to develop to the blastocyst stage and to implant and generate healthy offspring depends greatly on the competence of the oocyte. Oocyte competence is attributed to its close communication with the follicular environment and to its capacity to synthesize and store substantial amounts of messenger RNA. Higher developmental competence of bovine oocytes has been associated with both the expression of a cohort of developmental genes and the concentration of sex steroids in the follicular fluid. The aim of this study was to identify differences in the expression of FST in cumulus cells and OCT-4 and MATER in oocytes and the influence of the follicular progesterone and follicular estrogen concentration on the competence of bovine oocytes retrieved 30 minutes or 4 hours after slaughter. Cumulus-oocyte complexes (COCs) were left in postmortem ovaries for 30 minutes (group I) or 4 hours (group II) at 30 °C. Aspirated oocytes were then subjected to IVM, IVF, and IVC or were evaluated for MATER and OCT-4 messenger RNA abundance by quantitative real-time polymerase chain reaction. Total RNA was isolated from pools of 100 oocytes for each experimental replicate. Progesterone and estradiol concentration in follicular fluid was evaluated by immunoassay using an IMMULITE 2000 analyzer. Three repeats of in vitro embryo production were performed with a total of 455 (group I) and 470 (group II) COCs. There were no significant differences between the cleavage rates (72 hours postinsemination [hpi]) between both groups (63.5% vs. 69.1%). However, blastocyst (168 hpi) and hatching (216 hpi) rates were higher (P < 0.05) in group II compared with those of group I (21.3% vs. 30.7% and 27.6% vs. 51.5%, respectively). Group II oocytes exhibited the highest MATER and OCT-4 abundance (P < 0.05). Follicular estradiol concentration was not different between both the groups, whereas the progesterone concentration was lower (P ≤ 0.05) in group II follicles. These results indicate that retrieving COCs 4 hours after slaughter could increase bovine in vitro developmental competence, which is linked to higher levels of oocyte MATER and OCT-4 transcripts and lower follicular progesterone concentration. Moreover, the results of the present study contribute to the identification of factors involved in the developmental competence of immature oocytes.
Collapse
Affiliation(s)
- R Urrego
- Grupo CENTAURO, Universidad de Antioquia, Medellín, Colombia; Grupo INCA-CES, Facultad de Medicina Veterinaria y Zootecnia, Universidad CES, Medellín, Colombia.
| | - E Herrera-Puerta
- Grupo INCA-CES, Facultad de Medicina Veterinaria y Zootecnia, Universidad CES, Medellín, Colombia; Grupo Biología CES-EIA, Universidad CES, Medellín, Colombia
| | - N A Chavarria
- Grupo INCA-CES, Facultad de Medicina Veterinaria y Zootecnia, Universidad CES, Medellín, Colombia
| | - O Camargo
- Grupo Genes, Gametos y Embriones, Universidad Nacional de Colombia, Medellín, Colombia
| | - C Wrenzycki
- Clinic for Obstetrics, Gynecology and Andrology of Large and Small Animals, Faculty of Veterinary Medicine, Justus-Liebig-University Giessen, Giessen, Germany
| | | |
Collapse
|
20
|
Li Q, Wang YS, Wang LJ, Zhang H, Li RZ, Cui CC, Li WZ, Zhang Y, Jin YP. Vitamin C supplementation enhances compact morulae formation but reduces the hatching blastocyst rate of bovine somatic cell nuclear transfer embryos. Cell Reprogram 2014; 16:290-7. [PMID: 24960527 DOI: 10.1089/cell.2013.0088] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Vitamin C, an antioxidant that reduces reactive oxygen species (ROS) in cells, is capable of significantly improving the developmental competence of porcine and mouse somatic cell nuclear transfer (SCNT) embryos, both in vitro and in vivo. In the present study, the effects of vitamin C on the developmental competence of bovine SCNT embryos were investigated. The results indicated that vitamin C (40 μg/mL) positively affected the scavenging of intracellular ROS, cleavage rate at 24 h (76.67 vs. 68.26%, p<0.05), compact morulae formation (60.83 vs. 51.30%, p<0.05), and the blastomere apoptosis index (3.70 ± 1.41 vs. 4.43% ± 1.65, p<0.05) of bovine SCNT embryos. However, vitamin C supplementation did not significantly affect the blastocyst formation rate and proportion of inner cell mass over total cells per blastocyst on day 7. Moreover, vitamin C supplementation obviously impaired the total cell numbers per blastocyst (97.20 ± 11.35 vs. 88.57 ± 10.43, p<0.05) on day 7 and the hatching blastocysts formation rate on day 9 (26.51 vs. 50.65%, p<0.05) compared with that of the untreated group. Vitamin C supplementation preferentially improved the viability of bovine SCNT embryos prior to the blastocyst stage, but did not enhance the formation and quality of blastocysts in vitro. In conclusion, the effect of vitamin C on the development of bovine SCNT embryos is complex, and vitamin C is not a suitable antioxidant chemical for the in vitro culture of bovine SCNT embryos.
Collapse
Affiliation(s)
- Qian Li
- 1 College of Veterinary Medicine, Northwest A&F University , Yangling 712100, Shaanxi, China
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Su J, Wang Y, Li W, Gao M, Ma Y, Hua S, Quan F, Zhang Y. Effects of 3-hydroxyflavone on the cellular and molecular characteristics of bovine embryos produced by somatic-cell nuclear transfer. Mol Reprod Dev 2014; 81:257-69. [DOI: 10.1002/mrd.22293] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2013] [Accepted: 12/09/2013] [Indexed: 11/09/2022]
Affiliation(s)
- Jianmin Su
- College of Veterinary Medicine; Northwest A&F University; Yangling Shaanxi Province PR China
- Key Laboratory of Animal Biotechnology; the Ministry of Agriculture; PR China
| | - Yongsheng Wang
- College of Veterinary Medicine; Northwest A&F University; Yangling Shaanxi Province PR China
- Key Laboratory of Animal Biotechnology; the Ministry of Agriculture; PR China
| | - Wenzhe Li
- College of Veterinary Medicine; Northwest A&F University; Yangling Shaanxi Province PR China
- Key Laboratory of Animal Biotechnology; the Ministry of Agriculture; PR China
| | - Mingqing Gao
- College of Veterinary Medicine; Northwest A&F University; Yangling Shaanxi Province PR China
- Key Laboratory of Animal Biotechnology; the Ministry of Agriculture; PR China
| | - Yefei Ma
- Department of Gynecology and Obstetrics; Tangdu Hospital; The Fourth Military Medical University; Xi'an Shaanxi Province PR China
| | - Song Hua
- College of Veterinary Medicine; Northwest A&F University; Yangling Shaanxi Province PR China
- Key Laboratory of Animal Biotechnology; the Ministry of Agriculture; PR China
| | - Fusheng Quan
- College of Veterinary Medicine; Northwest A&F University; Yangling Shaanxi Province PR China
- Key Laboratory of Animal Biotechnology; the Ministry of Agriculture; PR China
| | - Yong Zhang
- College of Veterinary Medicine; Northwest A&F University; Yangling Shaanxi Province PR China
- Key Laboratory of Animal Biotechnology; the Ministry of Agriculture; PR China
| |
Collapse
|
22
|
Wang LJ, Xiong XR, Zhang H, Li YY, Li Q, Wang YS, Xu WB, Hua S, Zhang Y. Defined media optimization for in vitro culture of bovine somatic cell nuclear transfer (SCNT) embryos. Theriogenology 2013; 78:2110-9. [PMID: 23110954 DOI: 10.1016/j.theriogenology.2012.03.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2011] [Revised: 03/05/2012] [Accepted: 03/05/2012] [Indexed: 10/27/2022]
Abstract
The objective was to establish an efficient defined culture medium for bovine somatic cell nuclear transfer (SCNT) embryos. In this study, modified synthetic oviductal fluid (mSOF) without bovine serum albumin (BSA) was used as the basic culture medium (BCM), whereas the control medium was BCM with BSA. In Experiment 1, adding polyvinyl alcohol (PVA) to BCM supported development of SCNT embryos to blastocyst stage, but blastocyst formation rate and blastocyst cell number were both lower (P < 0.05) compared to the undefined group (6.1 vs. 32.6% and 67.3 ± 3.4 vs. 109.3 ± 4.5, respectively). In Experiment 2, myo-inositol, a combination of insulin, transferrin and selenium (ITS), and epidermal growth factor (EGF) were added separately to PVA-supplemented BCM. The blastocyst formation rate and blastocyst cell number of those three groups were dramatically improved compared with that of PVA-supplemented group in Experiment 1 (18.5, 23.0, 24.1 vs. 6.1% and 82.7 ± 2.0, 84.3 ± 4.2, 95.3 ± 3.8 vs. 67.3 ± 3.4, respectively, P < 0.05), but were still lower compared with that of undefined group (33.7% and 113.8 ± 3.4, P < 0.05). In Experiment 3, when a combination of myo-inositol, ITS and EGF were added to PVA-supplemented BCM, blastocyst formation rate and blastocyst cell number were similar to that of undefined group (30.4 vs. 31.1% and 109.3 ± 4.4 vs. 112.0 ± 3.6, P > 0.05). In Experiment 4, when blastocysts were cryopreserved and subsequently thawed, there were no significant differences between the optimized defined group (Experiment 3) and undefined group in survival rate and 24 and 48 h hatching blastocyst rates. Furthermore, there were no significant differences in expression levels of H19, HSP70 and BAX in blastocysts derived from optimized defined medium and undefined medium, although the relative expression abundance of IGF-2 was significantly decreased in the former. In conclusion, a defined culture medium containing PVA, myo-inositol, ITS, and EGF supported in vitro development of bovine SCNT embryos.
Collapse
Affiliation(s)
- Li-Jun Wang
- College of Veterinary Medicine, Northwest A & F University, Yangling, Shaanxi 712100, China
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Liu J, Wang Y, Su J, Wang L, Li R, Li Q, Wu Y, Hua S, Quan F, Guo Z, Zhang Y. Effect of the time interval between fusion and activation on epigenetic reprogramming and development of bovine somatic cell nuclear transfer embryos. Cell Reprogram 2013; 15:134-42. [PMID: 23461480 DOI: 10.1089/cell.2012.0052] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Previous studies have shown that the time interval between fusion and activation (FA interval) play an important role in nuclear remodeling and in vitro development of somatic cell nuclear transfer (SCNT) embryos. However, the effects of FA interval on the epigenetic reprogramming and in vivo developmental competence of SCNT embryos remain unknown. In the present study, the effects of different FA intervals (0 h, 2 h, and 4 h) on the epigenetic reprogramming and developmental competence of bovine SCNT embryos were assessed. The results demonstrated that H3 lysine 9 (H3K9ac) levels decreased rapidly after fusion in all three groups. H3K9ac was practically undetectable 2 h after fusion in the 2-h and 4-h FA interval groups. However, H3K9ac was still evidently detectable in the 0-h FA interval group. The H3K9ac levels increased 10 h after fusion in all three groups, but were higher in the 2-h and 4-h FA interval groups than that in the 0-h FA interval group. The methylation levels of the satellite I region in day-7 blastocysts derived from the 2-h or 4-h FA interval groups was similar to that of in vitro fertilization blastocysts and is significantly lower than that of the 0-h FA interval group. SCNT embryos derived from 2-h FA interval group showed higher developmental competence than those from the 0-h and 4-h FA interval groups in terms of cleavage rate, blastocyst formation rate, apoptosis index, and pregnancy and calving rates. Hence, the FA interval is an important factor influencing the epigenetic reprogramming and developmental competence of bovine SCNT embryos.
Collapse
Affiliation(s)
- Jun Liu
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Su J, Wang Y, Li R, Peng H, Hua S, Li Q, Quan F, Guo Z, Zhang Y. Oocytes selected using BCB staining enhance nuclear reprogramming and the in vivo development of SCNT embryos in cattle. PLoS One 2012; 7:e36181. [PMID: 22558373 PMCID: PMC3338625 DOI: 10.1371/journal.pone.0036181] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2011] [Accepted: 03/28/2012] [Indexed: 11/18/2022] Open
Abstract
The selection of good quality oocytes is crucial for in vitro fertilization and somatic cloning. Brilliant cresyl blue (BCB) staining has been used for selection of oocytes from several mammalian species. However, the effects of differential oocyte selection by BCB staining on nuclear reprogramming and in vivo development of SCNT embryos are not well understood. Immature compact cumulus-oocyte complexes (COCs) were divided into control (not exposed to BCB), BCB+ (blue cytoplasm) and BCB- (colorless cytoplasm) groups. We found that BCB+ oocytes yielded a significantly higher somatic cell nuclear transfer (SCNT) blastocyst rate and full term development rate of bovine SCNT embryos than the BCB- and control oocytes. BCB+ embryos (embryos developed from BCB+ oocytes) showed increased acetylation levels of histone H3 at K9 and K18 (AcH3K9, AcH3K18), and methylation levels of histone H3 at K4 (H3K4me2) than BCB- embryos (embryos developed from BCB- oocytes) at the two-cell stage. Furthermore, BCB+ embryos generated more total cells, trophectoderm (TE) cells, and inner cell mass (ICM) cells, and fewer apoptotic cells than BCB- embryos. The expression of SOX2, CDX2, and anti-apoptotic microRNA-21 were up-regulated in the BCB+ blastocysts compared with BCB- blastocysts, whereas the expression of pro-apoptotic gene Bax was down-regulated in BCB+ blastocysts. These results strongly suggest that BCB+ oocytes have a higher nuclear reprogramming capacity, and that BCB staining can be used to select developmentally competent oocytes for nuclear transfer.
Collapse
Affiliation(s)
- Jianmin Su
- College of Veterinary Medicine, Northwest A & F University, Key Laboratory of Animal Reproductive Physiology & Embryo Technology, Ministry of Agriculture, Yangling, Shaanxi, People's Republic of China
| | - Yongsheng Wang
- College of Veterinary Medicine, Northwest A & F University, Key Laboratory of Animal Reproductive Physiology & Embryo Technology, Ministry of Agriculture, Yangling, Shaanxi, People's Republic of China
| | - Ruizhe Li
- College of Veterinary Medicine, Northwest A & F University, Key Laboratory of Animal Reproductive Physiology & Embryo Technology, Ministry of Agriculture, Yangling, Shaanxi, People's Republic of China
| | - Hui Peng
- College of Veterinary Medicine, Northwest A & F University, Key Laboratory of Animal Reproductive Physiology & Embryo Technology, Ministry of Agriculture, Yangling, Shaanxi, People's Republic of China
| | - Song Hua
- College of Veterinary Medicine, Northwest A & F University, Key Laboratory of Animal Reproductive Physiology & Embryo Technology, Ministry of Agriculture, Yangling, Shaanxi, People's Republic of China
| | - Qian Li
- College of Veterinary Medicine, Northwest A & F University, Key Laboratory of Animal Reproductive Physiology & Embryo Technology, Ministry of Agriculture, Yangling, Shaanxi, People's Republic of China
| | - Fusheng Quan
- College of Veterinary Medicine, Northwest A & F University, Key Laboratory of Animal Reproductive Physiology & Embryo Technology, Ministry of Agriculture, Yangling, Shaanxi, People's Republic of China
| | - Zekun Guo
- Department of Biochemistry and Molecular Biology, College of Life Sciences, Northwest A & F University, Yangling, Shaanxi, People's Republic of China
| | - Yong Zhang
- College of Veterinary Medicine, Northwest A & F University, Key Laboratory of Animal Reproductive Physiology & Embryo Technology, Ministry of Agriculture, Yangling, Shaanxi, People's Republic of China
- * E-mail:
| |
Collapse
|
25
|
Xu W, Wang Y, Li Y, Wang L, Xiong X, Su J, Zhang Y. Valproic acid improves the in vitro development competence of bovine somatic cell nuclear transfer embryos. Cell Reprogram 2012; 14:138-45. [PMID: 22372575 DOI: 10.1089/cell.2011.0084] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
The present study was carried out to examine the effect of valproic acid (VPA), an important histone deacetylase inhibitor, on the in vitro development and expression of the epigenetic marker histone H3 lysine 9 (H3K9ac) in bovine somatic cell nuclear transfer (SCNT) embryos. We found that treatment with 4 mM VPA for 24 h could significantly improve the development of bovine SCNT embryos. Compared with the no-treatment group, the cleavage rate was higher (69.79 ± 0.99% vs. 65.11 ± 1.02%, p<0.05), as was the blastocyst rate (39.99 ± 1.29% vs. 34.87 ± 1.74%, p<0.05). Moreover, the rate of apoptosis (1.91 ± 0.48% vs. 5.67 ± 0.40%, p<0.05) in blastocysts was greatly reduced after VPA treatment. Valproic acid treatment also increased the immunofluorescent signal for H3K9ac in SCNT embryos in a pattern similar to that of in vitro fertilized (IVF) embryos. In conclusion, we demonstrated that VPA can significantly improve the in vitro developmental competence and enhance the nuclear reprogramming of bovine SCNT embryos.
Collapse
Affiliation(s)
- Wenbing Xu
- College of Veterinary Medicine, Northwest A&F University, Key Laboratory of Animal Reproductive Physiology & Embryo Technology, Ministry of Agriculture, Yangling, Shaanxi, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
26
|
Wang LJ, Zhang H, Wang YS, Xu WB, Xiong XR, Li YY, Su JM, Hua S, Zhang Y. Scriptaid Improves In Vitro Development and Nuclear Reprogramming of Somatic Cell Nuclear Transfer Bovine Embryos. Cell Reprogram 2011; 13:431-9. [DOI: 10.1089/cell.2011.0024] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Affiliation(s)
- Li-Jun Wang
- College of Veterinary Medicine, Northwest A & F University, Yangling, Shaanxi 712100, People's Republic of China
| | - Hui Zhang
- College of Veterinary Medicine, Northwest A & F University, Yangling, Shaanxi 712100, People's Republic of China
| | - Yong-Sheng Wang
- College of Veterinary Medicine, Northwest A & F University, Yangling, Shaanxi 712100, People's Republic of China
| | - Wen-Bing Xu
- College of Veterinary Medicine, Northwest A & F University, Yangling, Shaanxi 712100, People's Republic of China
| | - Xian-Rong Xiong
- College of Veterinary Medicine, Northwest A & F University, Yangling, Shaanxi 712100, People's Republic of China
| | - Yan-Yan Li
- College of Veterinary Medicine, Northwest A & F University, Yangling, Shaanxi 712100, People's Republic of China
| | - Jian-Min Su
- College of Veterinary Medicine, Northwest A & F University, Yangling, Shaanxi 712100, People's Republic of China
| | - Song Hua
- College of Veterinary Medicine, Northwest A & F University, Yangling, Shaanxi 712100, People's Republic of China
| | - Yong Zhang
- College of Veterinary Medicine, Northwest A & F University, Yangling, Shaanxi 712100, People's Republic of China
| |
Collapse
|