1
|
Daniel Juárez J, Marco-Jiménez F, Vicente JS. Effects of Rederivation by Embryo Vitrification on Performance in a Rabbit Paternal Line. FRONTIERS IN ANIMAL SCIENCE 2022. [DOI: 10.3389/fanim.2022.909446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Embryo cryopreservation is a valuable tool for maintaining genetic variability and preserving breeds and lines, allowing to assess the response to selection and enabling genetic diffusion. This study aimed to evaluate the impact of rederivation by embryo vitrification and transfer procedures on the growth and reproductive traits in a paternal rabbit line selected for average daily gain from weaning (28 days old) to fattening (63 days old). The rederived population was bred over two generations at the same time as a control population of this paternal line and, growth trait parameters (weights at weaning, end of the fattening period, and average daily gain) and reproductive performance (kindling rate, litter size at birth and at weaning) were compared with three filial generations. Moreover, fetal growth and litter size components were assessed for the second generation by ultrasonography and laparoscopy. Differences in postnatal growth traits (end of fattening weight and average daily gain) were observed in the three generations assessed. However, fetal growth, litter size components, and reproductive traits did not show significant differences. In conclusion, cryopreservation and embryo transfer processes cause changes in growth traits of reconstituted populations that influence the following generations, without changes in reproductive traits in a paternal line of rabbits.
Collapse
|
2
|
Ferreira-Silva JC, Oliveira Silva RL, Travassos Vieira JI, Silva JB, Tavares LS, Cavalcante Silva FA, Nunes Pena EP, Chaves MS, Moura MT, Junior TC, Benko-Iseppon AM, Figueirêdo Freitas VJ, Lemos Oliveira MA. Evaluation of quality and gene expression of goat embryos produced in vivo and in vitro after cryopreservation. Cryobiology 2021; 101:115-124. [PMID: 33964298 DOI: 10.1016/j.cryobiol.2021.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 04/22/2021] [Accepted: 04/23/2021] [Indexed: 11/26/2022]
Abstract
In the present study, we aimed to identify morphological and molecular changes of in vivo and in vitro-produced goat embryos submitted to cryopreservation. In vivo embryos were recovered by transcervical technique from superovulated goats, whereas in vitro produced embryos were produced from ovaries collected at a slaughterhouse. Embryos were frozen by two-steps slow freezing method, which is defined as freezing to -32 °C followed by transfer to liquid nitrogen. Morphological evaluation of embryos was carried out by assessing blastocoel re-expansion rate and the total number of blastomeres. The expression profile of candidate genes related to thermal and oxidative stress, apoptosis, epigenetic, and implantation control was measured using RT-qPCR based SYBR Green system. In silico analyses were performed to identify conserved genes in goat species and protein-protein interaction networks were created. In vivo-produced embryos showed greater blastocoel re-expansion and more blastomere cells (P < 0.05). The expression level of CTP2 and HSP90 genes from in vitro cryopreserved embryos was higher than their in vivo counterparts. Unlikely, no significant difference was observed in the transcription level of SOD gene between groups. The high similarity of CPT2 and HSP90 proteins to their orthologs among mammals indicates that they share conserved functions. In summary, cryopreservation negatively affects the morphology and viability of goat embryos produced in vitro and changes the CPT2 and HSP90 gene expression likely in response to the in vitro production process.
Collapse
Affiliation(s)
- José Carlos Ferreira-Silva
- Laboratory of Reproductive Biotechniques, Department of Veterinary Medicine, Federal Rural University of Pernambuco, Brazil.
| | - Roberta Lane Oliveira Silva
- Laboratory of Plant Genetics and Biotechnology, Department of Genetics, Federal University of Pernambuco, Brazil.
| | - Joane Isis Travassos Vieira
- Laboratory of Reproductive Biotechniques, Department of Veterinary Medicine, Federal Rural University of Pernambuco, Brazil.
| | - Jéssica Barboza Silva
- Laboratory of Plant Genetics and Biotechnology, Department of Genetics, Federal University of Pernambuco, Brazil.
| | - Lethicia Souza Tavares
- Laboratory of Plant Genetics and Biotechnology, Department of Genetics, Federal University of Pernambuco, Brazil.
| | | | - Elton Pedro Nunes Pena
- Laboratory of Plant Genomics and Proteomics, Department of Genetics, Federal University of Pernambuco, Brazil.
| | - Maiana Silva Chaves
- Laboratory of Reproductive Biotechniques, Department of Veterinary Medicine, Federal Rural University of Pernambuco, Brazil. maiana-@hotmail.com
| | - Marcelo Tigre Moura
- Laboratory of Reproductive Biotechniques, Department of Veterinary Medicine, Federal Rural University of Pernambuco, Brazil.
| | - Tercilio Calsa Junior
- Laboratory of Plant Genomics and Proteomics, Department of Genetics, Federal University of Pernambuco, Brazil.
| | - Ana Maria Benko-Iseppon
- Laboratory of Plant Genetics and Biotechnology, Department of Genetics, Federal University of Pernambuco, Brazil.
| | | | - Marcos Antonio Lemos Oliveira
- Laboratory of Reproductive Biotechniques, Department of Veterinary Medicine, Federal Rural University of Pernambuco, Brazil.
| |
Collapse
|
3
|
Zomerdijk F, Hiemstra SJ, d'Arbaumont M, Tixier-Boichard M, Boettcher P. Quality Management Practices of Gene Banks for Livestock: A Global Review. Biopreserv Biobank 2020; 18:244-253. [PMID: 32125896 DOI: 10.1089/bio.2019.0128] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
Abstract
The genetic diversity of livestock is decreasing and many countries have created gene banks for ex situ-in vitro conservation of animal genetic resources (AnGR). The collection, processing, and storage of animal germplasm require substantial investment and the material collected (and associated data) is highly valuable. Therefore, quality management systems (QMSs) and practices are important. The objective of this study was to review the quality management procedures of livestock gene banks around the world to identify the general strengths and weaknesses of quality control. A survey was administered by means of an online questionnaire consisting of 54 questions, most of which were yes/no with respect to the presence of a particular aspect of quality management. The survey was distributed through networks of the Food and Agriculture Organization of the United Nations that are associated with AnGR. Ninety responses were received from 62 countries. The gene banks were predominantly public institutions, with the main goal of preventing breed extinction. Approximately 30% of the banks reported having a QMS, 15 of which involved formal certification. Many other banks have plans to implement formal quality management within the next 5 years. Regarding specific aspects of quality management, more emphasis was placed on material entering the banks than on eventual utilization. Among the banks processing and freezing material, 90% followed specific standard operating procedures, but only 24% had policies regarding provision of access to external stakeholders. Increased cooperation among livestock gene banks could improve quality management. Sharing of knowledge could standardize procedures and cooperating peers could evaluate each other's QMSs.
Collapse
Affiliation(s)
- Flin Zomerdijk
- Animal Production and Health Division, Food and Agriculture Organization of the United Nations (FAO), Rome, Italy.,Utrecht University, Utrecht, the Netherlands
| | - Sipke-Joost Hiemstra
- Centre for Genetic Resources, the Netherlands (CGN) of Wageningen University and Research, Wageningen, the Netherlands
| | - Maëlle d'Arbaumont
- GABI, INRA, AgroParisTech, Paris-Saclay University, Jouy-en-Josas, France
| | | | - Paul Boettcher
- Animal Production and Health Division, Food and Agriculture Organization of the United Nations (FAO), Rome, Italy
| |
Collapse
|
4
|
Martinez EA, Martinez CA, Cambra JM, Maside C, Lucas X, Vazquez JL, Vazquez JM, Roca J, Rodriguez-Martinez H, Gil MA, Parrilla I, Cuello C. Achievements and future perspectives of embryo transfer technology in pigs. Reprod Domest Anim 2020; 54 Suppl 4:4-13. [PMID: 31625238 DOI: 10.1111/rda.13465] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 04/25/2019] [Indexed: 12/17/2022]
Abstract
Commercial embryo transfer (ET) has unprecedented productive and economic implications for the pig sector. However, pig ET has been considered utopian for decades mainly because of the requirements of surgical techniques for embryo collection and embryo deposition into recipients, alongside challenges to preserve embryos. This situation has drastically changed in the last decade since the current technology allows non-surgical ET and short- and long-term embryo preservation. Here, we provide a brief review of the improvements in porcine ET achieved by our laboratory in the past 20 years. This review includes several aspects of non-surgical ET technology and different issues affecting ET programmes and embryo preservation systems. The future perspectives of ET technology are also considered. We will refer only to embryos produced in vivo since they are the only type of embryos with possible short-term use in pig production.
Collapse
Affiliation(s)
- Emilio A Martinez
- Department of Medicine and Animal Surgery, Faculty of Veterinary Medicine, International Excellence Campus for Higher Education and Research "Campus Mare Nostrum", University of Murcia, Murcia, Spain.,Institute for Biomedical Research of Murcia (IMIB-Arrixaca), El Palmar, Murcia, Spain
| | - Cristina A Martinez
- Department of Medicine and Animal Surgery, Faculty of Veterinary Medicine, International Excellence Campus for Higher Education and Research "Campus Mare Nostrum", University of Murcia, Murcia, Spain.,Department of Clinical & Experimental Medicine (IKE), Linköping University, Linköping, Sweden
| | - Josep M Cambra
- Department of Medicine and Animal Surgery, Faculty of Veterinary Medicine, International Excellence Campus for Higher Education and Research "Campus Mare Nostrum", University of Murcia, Murcia, Spain.,Institute for Biomedical Research of Murcia (IMIB-Arrixaca), El Palmar, Murcia, Spain
| | - Carolina Maside
- Department of Medicine and Animal Surgery, Faculty of Veterinary Medicine, International Excellence Campus for Higher Education and Research "Campus Mare Nostrum", University of Murcia, Murcia, Spain.,Institute for Biomedical Research of Murcia (IMIB-Arrixaca), El Palmar, Murcia, Spain
| | - Xiomara Lucas
- Department of Medicine and Animal Surgery, Faculty of Veterinary Medicine, International Excellence Campus for Higher Education and Research "Campus Mare Nostrum", University of Murcia, Murcia, Spain.,Institute for Biomedical Research of Murcia (IMIB-Arrixaca), El Palmar, Murcia, Spain
| | - Jose L Vazquez
- Department of Medicine and Animal Surgery, Faculty of Veterinary Medicine, International Excellence Campus for Higher Education and Research "Campus Mare Nostrum", University of Murcia, Murcia, Spain.,Institute for Biomedical Research of Murcia (IMIB-Arrixaca), El Palmar, Murcia, Spain
| | - Juan Maria Vazquez
- Department of Medicine and Animal Surgery, Faculty of Veterinary Medicine, International Excellence Campus for Higher Education and Research "Campus Mare Nostrum", University of Murcia, Murcia, Spain.,Institute for Biomedical Research of Murcia (IMIB-Arrixaca), El Palmar, Murcia, Spain
| | - Jordi Roca
- Department of Medicine and Animal Surgery, Faculty of Veterinary Medicine, International Excellence Campus for Higher Education and Research "Campus Mare Nostrum", University of Murcia, Murcia, Spain.,Institute for Biomedical Research of Murcia (IMIB-Arrixaca), El Palmar, Murcia, Spain
| | | | - Maria Antonia Gil
- Department of Medicine and Animal Surgery, Faculty of Veterinary Medicine, International Excellence Campus for Higher Education and Research "Campus Mare Nostrum", University of Murcia, Murcia, Spain.,Institute for Biomedical Research of Murcia (IMIB-Arrixaca), El Palmar, Murcia, Spain
| | - Inmaculada Parrilla
- Department of Medicine and Animal Surgery, Faculty of Veterinary Medicine, International Excellence Campus for Higher Education and Research "Campus Mare Nostrum", University of Murcia, Murcia, Spain.,Institute for Biomedical Research of Murcia (IMIB-Arrixaca), El Palmar, Murcia, Spain
| | - Cristina Cuello
- Department of Medicine and Animal Surgery, Faculty of Veterinary Medicine, International Excellence Campus for Higher Education and Research "Campus Mare Nostrum", University of Murcia, Murcia, Spain.,Institute for Biomedical Research of Murcia (IMIB-Arrixaca), El Palmar, Murcia, Spain
| |
Collapse
|
5
|
Min SH, Kim JW, Lee YH, Park SY, Jeong PS, Yeon JY, Park H, Chang KT, Koo DB. Forced Collapse of the Blastocoel Cavity Improves Developmental Potential in Cryopreserved Bovine Blastocysts by Slow-Rate Freezing and Vitrification. Reprod Domest Anim 2014; 49:684-692. [DOI: 10.1111/rda.12354] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Accepted: 05/20/2014] [Indexed: 11/26/2022]
Affiliation(s)
- S-H Min
- Department of Biotechnology; College of Engineering; Daegu University; Gyeongsan Gyeongbuk Korea
| | - J-W Kim
- Department of Biotechnology; College of Engineering; Daegu University; Gyeongsan Gyeongbuk Korea
| | - Y-H Lee
- Department of Biotechnology; College of Engineering; Daegu University; Gyeongsan Gyeongbuk Korea
| | - S-Y Park
- Department of Biotechnology; College of Engineering; Daegu University; Gyeongsan Gyeongbuk Korea
| | - P-S Jeong
- Department of Biotechnology; College of Engineering; Daegu University; Gyeongsan Gyeongbuk Korea
| | - J-Y Yeon
- Department of Biotechnology; College of Engineering; Daegu University; Gyeongsan Gyeongbuk Korea
| | - H Park
- Department of Biotechnology; College of Engineering; Daegu University; Gyeongsan Gyeongbuk Korea
| | - K-T Chang
- National Primate Research Center; Korea Research Institute of Bioscience and Biotechnology; Ochang Chungcheongbuk-do Korea
| | - D-B Koo
- Department of Biotechnology; College of Engineering; Daegu University; Gyeongsan Gyeongbuk Korea
| |
Collapse
|