1
|
Joseph J, Zhang L, Adhikari P, Evans JD, Ramachandran R. Avian Pathogenic Escherichia coli (APEC) in Broiler Breeders: An Overview. Pathogens 2023; 12:1280. [PMID: 38003745 PMCID: PMC10674223 DOI: 10.3390/pathogens12111280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 10/18/2023] [Accepted: 10/20/2023] [Indexed: 11/26/2023] Open
Abstract
Poultry meat is one of the major animal protein sources necessary to meet the global protein demand. Sustainability in broiler production is the key to achieving its continuous supply, and broiler breeders play a critical role in maintaining this sustainability by providing good quality chicks. Colibacillosis, the disease caused by avian pathogenic Escherichia coli (APEC), causes severe economic losses to the poultry industry globally. Moreover, APEC causes an additional burden among broiler breeders, such as a decrease in egg production and mortality among these birds. There is vertical transmission of APEC to the broiler chicks through eggs, resulting in increased first-week mortality and subsequent horizontal transmission at the hatchery. In this regard, the vertical transmission of antibiotic resistance genes is another concern that needs attention. Controlling several diseases in broiler breeders would possibly reduce the first-week mortality in chicks, thereby maintaining the production level. For that, constant monitoring of the bacterial populations is critical. Moreover, amidst the increased antibiotic resistance pattern, more focus on alternative treatment strategies like vaccines, probiotics, and bacteriophages is necessary. Future research focusing on strategies to mitigate APEC in broiler breeders would be one of the finest solutions for sustainable broiler production.
Collapse
Affiliation(s)
- Jiddu Joseph
- Department of Poultry Science, Mississippi State University, Mississippi State, MS 39762, USA; (J.J.); (L.Z.); (P.A.)
| | - Li Zhang
- Department of Poultry Science, Mississippi State University, Mississippi State, MS 39762, USA; (J.J.); (L.Z.); (P.A.)
| | - Pratima Adhikari
- Department of Poultry Science, Mississippi State University, Mississippi State, MS 39762, USA; (J.J.); (L.Z.); (P.A.)
| | - Jeffrey D. Evans
- Poultry Research Unit, Agriculture Research Service, United States Department of Agriculture (USDA), Mississippi State, MS 39762, USA;
| | - Reshma Ramachandran
- Department of Poultry Science, Mississippi State University, Mississippi State, MS 39762, USA; (J.J.); (L.Z.); (P.A.)
| |
Collapse
|
2
|
Tvrdá E, Petrovičová M, Benko F, Ďuračka M, Galovičová L, Slanina T, Kačániová M. Curcumin Attenuates Damage to Rooster Spermatozoa Exposed to Selected Uropathogens. Pharmaceutics 2022; 15:65. [PMID: 36678694 PMCID: PMC9861644 DOI: 10.3390/pharmaceutics15010065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 12/18/2022] [Accepted: 12/21/2022] [Indexed: 12/28/2022] Open
Abstract
Artificial insemination, as an essential pillar of the modern poultry industry, primarily depends on the quality of semen collected from stud roosters. Since the collection and storage of ejaculates is not a sterile process, antimicrobial agents have become essential supplements to semen extenders. While the use of traditional antibiotics has been challenged because of rising bacterial resistance, natural biomolecules represent an appealing alternative because of their antibacterial and antioxidant properties. As such, this study strived to compare the effects of 50 μmol/L curcumin (CUR) with 31.2 µg/mL kanamycin (KAN) as a conventional antibiotic on rooster sperm quality in the presence of Salmonella enterica, Escherichia coli and Pseudomonas aeruginosa. Changes in sperm structural integrity and functional activity were monitored at 2 and 24 h of culture. Computer-assisted semen analysis revealed significant sperm motility preservation following treatment with KAN, particularly in the case of Salmonella enterica and Pseudomonas aeruginosa (p < 0.001) after 24 h. On the other hand, CUR was more effective in opposing ROS overproduction by all bacteria (p < 0.05), as determined by luminol-based luminometry, and maintained sperm mitochondrial activity (p < 0.001 in the case of Salmonella enterica; p < 0.05 with respect to Escherichia coli and Pseudomonas aeruginosa), as assessed by the fluorometric JC-1 assay. The TUNEL assay revealed that CUR readily preserved the DNA integrity of rooster sperm exposed to Salmonella enterica (p < 0.01) and Escherichia coli (p < 0.001). The bacteriological analysis showed higher efficiency of KAN in preventing the growth of all selected bacterial species (p < 0.0001) as opposed to CUR. In conclusion, CUR provided protection to rooster spermatozoa against alterations caused by uropathogens, most likely through its antioxidant activity. Hence, CUR supplementation to poultry semen extenders in combination with properly selected antibacterial substances may become an interesting strategy in the management of bacterial contamination during semen storage.
Collapse
Affiliation(s)
- Eva Tvrdá
- Institute of Biotechnology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76 Nitra, Slovakia
| | - Michaela Petrovičová
- Institute of Applied Biology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76 Nitra, Slovakia
- Department of Neuroscience, Second Faculty of Medicine (2. LF UK), V Úvalu 84, 150 06 Prague, Czech Republic
| | - Filip Benko
- Institute of Applied Biology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76 Nitra, Slovakia
| | - Michal Ďuračka
- AgroBioTech Research Centre, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76 Nitra, Slovakia
| | - Lucia Galovičová
- Department of Fruit Science, Viticulture and Enology, Faculty of Horticulture and Landscape Engineering, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76 Nitra, Slovakia
| | - Tomáš Slanina
- Institute of Applied Biology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76 Nitra, Slovakia
| | - Miroslava Kačániová
- Department of Fruit Science, Viticulture and Enology, Faculty of Horticulture and Landscape Engineering, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76 Nitra, Slovakia
- Department of Bioenergetics, Food Analysis and Microbiology, Institute of Food Technology and Nutrition, University of Rzeszow, Cwiklinskiej 1, 35-601 Rzeszow, Poland
| |
Collapse
|
3
|
Benameur Q, Tali-Maamar H, Assaous F, Guettou B, Rahal K, Ben-Mahdi MH. Detection of multidrug resistant Escherichia coli in the ovaries of healthy broiler breeders with emphasis on extended-spectrum β-lactamases producers. Comp Immunol Microbiol Infect Dis 2019; 64:163-167. [PMID: 31174693 DOI: 10.1016/j.cimid.2019.03.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Revised: 03/06/2019] [Accepted: 03/07/2019] [Indexed: 10/27/2022]
Abstract
In the last few years, antimicrobial resistant (AMR) Escherichia coli have been detected in newborn chickens suggesting their vertical transmission from breeding birds to their offspring. However, little is known about the presence of AMR E. coli in the reproductive organs of broiler breeders. The aim of this study was to investigate the presence of E. coli in the ovaries of healthy broiler breeders and to study their antimicrobial resistance. Samples from broiler breeders (n = 80) collected from 80 different broiler breeder flocks were included in this study. Antibiotic susceptibility testing was performed using disk diffusion method according to Clinical and Laboratory Standards Institute guidelines. Minimal inhibitory concentrations (MICs) of five antimicrobial agents were determined by Etest. PCR and sequencing were used to detect the blaESBL genes. E. coli were detected in the ovaries of thirty seven out of 80 (46.25%) sampled flocks. High levels of resistance to various first-line antimicrobial agents were recorded in E. coli isolates. This study showed that 89.18% of E. coli isolates were multidrug resistant (MDR). Furthermore, MDR extended-spectrum β-lactamases (ESBL)-producing E. coli were detected in the ovaries of four different broiler breeder flocks. Molecular characterization revealed that three isolates harboured blaCTX-M-1 gene and one isolate expressed blaSHV-12 gene. In addition, one blaCTX-M-1 -producing E. coli co-harboured the blaTEM-1 gene. These findings would contribute to a better epidemiological understanding of MDR E. coli for improve existing preventive strategies in order to reduce the dissemination of antimicrobial resistance in the broiler production system.
Collapse
Affiliation(s)
- Qada Benameur
- Faculté des Sciences de la Nature et de la Vie, Université Abdelhamid Ibn Badis de Mostaganem, 27000, Mostaganem, Algeria; Laboratoire de Recherche « Santé et Production Animale », Ecole Nationale Supérieure Vétérinaire d'El-Harrach, 16000, Algiers, Algeria.
| | - Hassiba Tali-Maamar
- Laboratoire de Bactériologie Médicale, Institut Pasteur d'Algérie, 16000, Algiers, Algeria
| | - Farida Assaous
- Laboratoire de Bactériologie Médicale, Institut Pasteur d'Algérie, 16000, Algiers, Algeria
| | - Badia Guettou
- Laboratoire de Bactériologie Médicale, Institut Pasteur d'Algérie, 16000, Algiers, Algeria
| | - Kheira Rahal
- Laboratoire de Bactériologie Médicale, Institut Pasteur d'Algérie, 16000, Algiers, Algeria
| | - Meriem-Hind Ben-Mahdi
- Laboratoire de Recherche « Santé et Production Animale », Ecole Nationale Supérieure Vétérinaire d'El-Harrach, 16000, Algiers, Algeria; Ecole Supérieure des Sciences de l'Aliment et des Industries Agroalimentaires, 16000, Algiers, Algeria
| |
Collapse
|
4
|
Dame-Korevaar A, Fischer EAJ, van der Goot J, Stegeman A, Mevius D. Transmission routes of ESBL/pAmpC producing bacteria in the broiler production pyramid, a literature review. Prev Vet Med 2018; 162:136-150. [PMID: 30621893 DOI: 10.1016/j.prevetmed.2018.12.002] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 12/03/2018] [Accepted: 12/05/2018] [Indexed: 10/27/2022]
Abstract
Plasmid mediated Extended Spectrum Beta-Lactamase and AmpC Beta-Lactamase (ESBL/pAmpC) producing bacteria are resistant to beta-lactam antimicrobials and are widespread in humans, the environment and animals. Animals, especially broilers, are an important reservoir of ESBL/pAmpC producing bacteria. To control ESBL/pAmpC prevalence in broilers, transmission within the entire broiler production pyramid should be considered. This study, including 103 articles originating from two electronic databases, searched for evidence for possible routes of transmission of ESBL/pAmpC producing bacteria in the broiler production pyramid. Possible routes of transmission were categorised as 1) vertical between generations, 2) at hatcheries, 3) horizontal on farm, and 4) horizontal between farms and via the environment of farms. This review presents indications for transmission of ESBL/pAmpC producing bacteria for each of these routes. However, the lack of quantitative results in the literature did not allow an estimation of the relative contribution or magnitude of the different routes. Future research should be specifically targeted towards such information as it is crucial to guide reduction strategies for the spread of ESBL/pAmpC producing bacteria in the broiler production chain.
Collapse
Affiliation(s)
- Anita Dame-Korevaar
- Department of Farm Animal Health, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands.
| | - Egil A J Fischer
- Department of Farm Animal Health, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - Jeanet van der Goot
- Department of Bacteriology and Epidemiology, Wageningen Bioveterinary Research, Lelystad, the Netherlands
| | - Arjan Stegeman
- Department of Farm Animal Health, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - Dik Mevius
- Department of Bacteriology and Epidemiology, Wageningen Bioveterinary Research, Lelystad, the Netherlands; Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| |
Collapse
|
5
|
Dandachi I, Chabou S, Daoud Z, Rolain JM. Prevalence and Emergence of Extended-Spectrum Cephalosporin-, Carbapenem- and Colistin-Resistant Gram Negative Bacteria of Animal Origin in the Mediterranean Basin. Front Microbiol 2018; 9:2299. [PMID: 30323797 PMCID: PMC6172473 DOI: 10.3389/fmicb.2018.02299] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 09/10/2018] [Indexed: 11/13/2022] Open
Abstract
In recent years, extended ESBL and carbapenemase producing Gram negative bacteria have become widespread in hospitals, community settings and the environment. This has been triggered by the few therapeutic options left when infections with these multi-drug resistant organisms occur. The emergence of resistance to colistin, the last therapeutic option against carbapenem-resistant bacteria, worsened the situation. Recently, animals were regarded as potent antimicrobial reservoir and a possible source of infection to humans. Enteric Gram negative bacteria in animals can be easily transmitted to humans by direct contact or indirectly through the handling and consumption of undercooked/uncooked animal products. In the Mediterranean basin, little is known about the current overall epidemiology of multi-drug resistant bacteria in livestock, companion, and domestic animals. This review describes the current epidemiology of ESBL, carbapenemase producers and colistin resistant bacteria of animal origin in this region of the world. The CTX-M group 1 seems to prevail in animals in this area, followed by SHV-12 and CTX-M group 9. The dissemination of carbapenemase producers and colistin resistance remains low. Isolated multi-drug resistant bacteria were often co-resistant to non-beta-lactam antibiotics, frequently used in veterinary medicine as treatment, growth promoters, prophylaxis and in human medicine for therapeutic purposes. Antibiotics used in veterinary medicine in this area include mainly tetracycline, aminoglycosides, fluoroquinolones, and polymyxins. Indeed, it appears that the emergence of ESBL and carbapenemase producers in animals is not related to the use of beta-lactam antibiotics but is, rather, due to the co-selective pressure applied by the over usage of non-beta-lactams. The level of antibiotic consumption in animals should be, therefore, re-considered in the Mediterranean area especially in North Africa and western Asia where no accurate data are available about the level of antibiotic consumption in animals.
Collapse
Affiliation(s)
- Iman Dandachi
- IRD, APHM, MEPHI, IHU-Méditerranée Infection, Aix Marseille Université, Marseille, France
- Clinical Microbiology Laboratory, Faculty of Medicine and Medical Sciences, University of Balamand, Beirut, Lebanon
| | - Selma Chabou
- IRD, APHM, MEPHI, IHU-Méditerranée Infection, Aix Marseille Université, Marseille, France
| | - Ziad Daoud
- Clinical Microbiology Laboratory, Faculty of Medicine and Medical Sciences, University of Balamand, Beirut, Lebanon
| | - Jean-Marc Rolain
- IRD, APHM, MEPHI, IHU-Méditerranée Infection, Aix Marseille Université, Marseille, France
| |
Collapse
|
6
|
Alonso C, Zarazaga M, Ben Sallem R, Jouini A, Ben Slama K, Torres C. Antibiotic resistance inEscherichia coliin husbandry animals: the African perspective. Lett Appl Microbiol 2017; 64:318-334. [DOI: 10.1111/lam.12724] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 02/08/2017] [Accepted: 02/10/2017] [Indexed: 12/12/2022]
Affiliation(s)
- C.A. Alonso
- Área Bioquímica y Biología Molecular; Universidad de La Rioja; Logroño Spain
| | - M. Zarazaga
- Área Bioquímica y Biología Molecular; Universidad de La Rioja; Logroño Spain
| | - R. Ben Sallem
- Faculté des Sciences de Tunis; Laboratoire des Microorganismes et Biomolécules Actives; Université de Tunis El Manar; Tunis Tunisia
| | - A. Jouini
- Laboratoire d’Épidémiologie et Microbiologie Vétérinaire. Institut Pasteur de Tunis; Université de Tunis El Manar; Tunis Tunisia
| | - K. Ben Slama
- Faculté des Sciences de Tunis; Laboratoire des Microorganismes et Biomolécules Actives; Université de Tunis El Manar; Tunis Tunisia
| | - C. Torres
- Área Bioquímica y Biología Molecular; Universidad de La Rioja; Logroño Spain
| |
Collapse
|