1
|
Wang MT, Li Z, Ding M, Yao TZ, Yang S, Zhang XJ, Miao C, Du WX, Shi Q, Li S, Mei J, Wang Y, Wang ZW, Zhou L, Li XY, Gui JF. Two duplicated gsdf homeologs cooperatively regulate male differentiation by inhibiting cyp19a1a transcription in a hexaploid fish. PLoS Genet 2022; 18:e1010288. [PMID: 35767574 PMCID: PMC9275722 DOI: 10.1371/journal.pgen.1010288] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 07/12/2022] [Accepted: 06/08/2022] [Indexed: 01/10/2023] Open
Abstract
Although evolutionary fates and expression patterns of duplicated genes have been extensively investigated, how duplicated genes co-regulate a biological process in polyploids remains largely unknown. Here, we identified two gsdf (gonadal somatic cell-derived factor) homeologous genes (gsdf-A and gsdf-B) in hexaploid gibel carp (Carassius gibelio), wherein each homeolog contained three highly conserved alleles. Interestingly, gsdf-A and gsdf-B transcription were mainly activated by dmrt1-A (dsx- and mab-3-related transcription factor 1) and dmrt1-B, respectively. Loss of either gsdf-A or gsdf-B alone resulted in partial male-to-female sex reversal and loss of both caused complete sex reversal, which could be rescued by a nonsteroidal aromatase inhibitor. Compensatory expression of gsdf-A and gsdf-B was observed in gsdf-B and gsdf-A mutants, respectively. Subsequently, we determined that in tissue culture cells, Gsdf-A and Gsdf-B both interacted with Ncoa5 (nuclear receptor coactivator 5) and blocked Ncoa5 interaction with Rora (retinoic acid-related orphan receptor-alpha) to repress Rora/Ncoa5-induced activation of cyp19a1a (cytochrome P450, family 19, subfamily A, polypeptide 1a). These findings illustrate that Gsdf-A and Gsdf-B can regulate male differentiation by inhibiting cyp19a1a transcription in hexaploid gibel carp and also reveal that Gsdf-A and Gsdf-B can interact with Ncoa5 to suppress cyp19a1a transcription in vitro. This study provides a typical case of cooperative mechanism of duplicated genes in polyploids and also sheds light on the conserved evolution of sex differentiation.
Collapse
Affiliation(s)
- Ming-Tao Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Hubei Hongshan Laboratory, The Innovative Academy of Seed Design, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zhi Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Hubei Hongshan Laboratory, The Innovative Academy of Seed Design, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Miao Ding
- State Key Laboratory of Freshwater Ecology and Biotechnology, Hubei Hongshan Laboratory, The Innovative Academy of Seed Design, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Tian-Zi Yao
- State Key Laboratory of Freshwater Ecology and Biotechnology, Hubei Hongshan Laboratory, The Innovative Academy of Seed Design, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Sheng Yang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Hubei Hongshan Laboratory, The Innovative Academy of Seed Design, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xiao-Juan Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Hubei Hongshan Laboratory, The Innovative Academy of Seed Design, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Chun Miao
- State Key Laboratory of Freshwater Ecology and Biotechnology, Hubei Hongshan Laboratory, The Innovative Academy of Seed Design, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Wen-Xuan Du
- State Key Laboratory of Freshwater Ecology and Biotechnology, Hubei Hongshan Laboratory, The Innovative Academy of Seed Design, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Qian Shi
- State Key Laboratory of Freshwater Ecology and Biotechnology, Hubei Hongshan Laboratory, The Innovative Academy of Seed Design, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Shun Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Hubei Hongshan Laboratory, The Innovative Academy of Seed Design, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jie Mei
- College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Yang Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Hubei Hongshan Laboratory, The Innovative Academy of Seed Design, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zhong-Wei Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Hubei Hongshan Laboratory, The Innovative Academy of Seed Design, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Li Zhou
- State Key Laboratory of Freshwater Ecology and Biotechnology, Hubei Hongshan Laboratory, The Innovative Academy of Seed Design, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xi-Yin Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Hubei Hongshan Laboratory, The Innovative Academy of Seed Design, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jian-Fang Gui
- State Key Laboratory of Freshwater Ecology and Biotechnology, Hubei Hongshan Laboratory, The Innovative Academy of Seed Design, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
2
|
Hsu CW, Chung BC. Evolution, Expression, and Function of Gonadal Somatic Cell-Derived Factor. Front Cell Dev Biol 2021; 9:684352. [PMID: 34307362 PMCID: PMC8292791 DOI: 10.3389/fcell.2021.684352] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 05/27/2021] [Indexed: 11/13/2022] Open
Abstract
Fish gonads develop in very diverse ways different from mammalian gonads. This diversity is contributed by species-specific factors. Gonadal somatic cell-derived factor (Gsdf) is one such factor. The gsdf gene exists mostly in teleosts and is absent in many tetrapods, probably as a result of two gene losses during evolution. The gsdf transcript is expressed mainly in gonadal somatic cells, including Sertoli cell in testis and granulosa cells in ovary; however, these gonadal somatic cells can surround many types of germ cells at different developmental stages depending on the fish species. The function of gsdf is also variable. It is involved in germ cell proliferation, testicular formation, ovarian development and even male sex determination. Here, we summarize the common and diverse expression, regulation and functions of gsdf among different fish species with aspect of evolution.
Collapse
Affiliation(s)
- Chen-Wei Hsu
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Bon-Chu Chung
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
3
|
Xie QP, Li BB, Zhan W, Liu F, Tan P, Wang X, Lou B. A Transient Hermaphroditic Stage in Early Male Gonadal Development in Little Yellow Croaker, Larimichthys polyactis. Front Endocrinol (Lausanne) 2021; 11:542942. [PMID: 33584533 PMCID: PMC7873647 DOI: 10.3389/fendo.2020.542942] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 12/07/2020] [Indexed: 01/13/2023] Open
Abstract
Animal taxa show remarkable variability in sexual reproduction, where separate sexes, or gonochorism, is thought to have evolved from hermaphroditism for most cases. Hermaphroditism accounts for 5% in animals, and sequential hermaphroditism has been found in teleost. In this study, we characterized a novel form of the transient hermaphroditic stage in little yellow croaker (Larimichthys polyactis) during early gonadal development. The ovary and testis were indistinguishable from 7 to 40 days post-hatching (dph). Morphological and histological examinations revealed an intersex stage of male gonads between 43 and 80 dph, which consist of germ cells, somatic cells, efferent duct, and early primary oocytes (EPOs). These EPOs in testis degenerate completely by 90 dph through apoptosis yet can be rescued by exogenous 17-β-estradiol. Male germ cells enter the mitotic flourishing stage before meiosis is initiated at 180 dph, and they undergo normal spermatogenesis to produce functional sperms. This transient hermaphroditic stage is male-specific, and the ovary development appears to be normal in females. This developmental pattern is not found in the sister species Larimichthys crocea or any other closely related species. Further examinations of serum hormone levels indicate that the absence of 11-ketotestosterone and elevated levels of 17-β-estradiol delineate the male intersex gonad stage, providing mechanistic insights on this unique phenomenon. Our research is the first report on male-specific transient hermaphroditism and will advance the current understanding of fish reproductive biology. This unique gonadal development pattern can serve as a useful model for studying the evolutionary relationship between hermaphroditism and gonochorism, as well as teleost sex determination and differentiation strategies.
Collapse
Affiliation(s)
- Qing-Ping Xie
- Institute of Hydrobiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
- Marine Fisheries Research Institute of Zhejiang Province, Zhoushan, China
| | - Bing-Bing Li
- School of Fishery, Zhejiang Ocean University, Zhoushan, China
| | - Wei Zhan
- Institute of Hydrobiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Feng Liu
- Institute of Hydrobiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Peng Tan
- Marine Fisheries Research Institute of Zhejiang Province, Zhoushan, China
| | - Xu Wang
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL, United States
- Alabama Agricultural Experiment Station, Auburn, AL, United States
- The HudsonAlpha Institute for Biotechnology, Huntsville, AL, United States
| | - Bao Lou
- Institute of Hydrobiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| |
Collapse
|
4
|
Zhang Y, Wang J, Lu L, Li Y, Wei Y, Cheng Y, Zhang X, Tian H, Wang W, Ru S. Genotoxic biomarkers and histological changes in marine medaka (Oryzias melastigma) exposed to 17α-ethynylestradiol and 17β-trenbolone. MARINE POLLUTION BULLETIN 2020; 150:110601. [PMID: 31706722 DOI: 10.1016/j.marpolbul.2019.110601] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Revised: 09/01/2019] [Accepted: 09/13/2019] [Indexed: 06/10/2023]
Abstract
Endocrine-disrupting pollutants in marine environments have aroused great concern for their adverse effects on the reproduction of marine organisms. This study aimed to seek promising biomarkers for estrogenic/androgenic chemicals. First, two possible male-specific genes, SRY-box containing gene 9a2 (sox9a2) and gonadal soma-derived factor (gsdf), were cloned from marine medaka (Oryzias melastigma). Then the responses of sox9a2, gsdf, choriogenin (chgH and chgL), vitellogenin (vtg1 and vtg2), and cytochrome P450 aromatase (cyp19a and cyp19b) were investigated after exposure to 17α-ethynylestradiol (EE2) and 17β-trenbolone (TB) at 2, 10, and 50 ng/L. The results showed that gsdf was specifically expressed in the testes and easily induced in the ovaries after TB exposure, indicating that gsdf was a potential biomarker of environmental androgens. ChgL was a useful biomarker of weak estrogen pollution for its high sensitivity to low levels of EE2. In addition, both EE2 and TB exposure damaged gonadal structures and inhibited gonadal development.
Collapse
Affiliation(s)
- Yabin Zhang
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Jun Wang
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China.
| | - Lin Lu
- School of Public Health, Qingdao University, Qingdao, 266021, China
| | - Yuejiao Li
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Yanyan Wei
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Yuqi Cheng
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Xiaona Zhang
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Hua Tian
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Wei Wang
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Shaoguo Ru
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China.
| |
Collapse
|
5
|
Zhu Y, Wang C, Chen X, Guan G. Identification of gonadal soma-derived factor involvement in Monopterus albus (protogynous rice field eel) sex change. Mol Biol Rep 2016; 43:629-37. [PMID: 27230579 DOI: 10.1007/s11033-016-3997-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Accepted: 05/04/2016] [Indexed: 11/25/2022]
Abstract
We studied molecular events and potential mechanisms underlying the process of female-to-male sex transformation in the rice field eel (Monopterus albus), a protogynous hermaphrodite fish in which the gonad is initially a female ovary and transforms into male testes. We cloned and identified a novel gonadal soma derived factor (GSDF), which encodes a member of the transforming growth factor-beta superfamily. gsdf expression was measured in gonads of female, intersex and male with reverse transcription-PCR and gsdf's role in sex transformation was studied with qPCR, histological analysis and dual-color in situ hybridization assays and compared to other sex-related genes. gsdf was correlated to Sertoli cell differentiation, indicating involvement in testicular differentiation and sex transformation from female to male in this species. A unique expression pattern reveals a potential role of gsdf essential for the sex transformation of rice field eels.
Collapse
Affiliation(s)
- Yefei Zhu
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, College of Fisheries and Life Sciences, Shanghai Ocean University, HuchengHuan Road 999, Shanghai, 201306, China
| | - Chunlei Wang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, College of Fisheries and Life Sciences, Shanghai Ocean University, HuchengHuan Road 999, Shanghai, 201306, China
| | - Xiaowu Chen
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, College of Fisheries and Life Sciences, Shanghai Ocean University, HuchengHuan Road 999, Shanghai, 201306, China
| | - Guijun Guan
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, College of Fisheries and Life Sciences, Shanghai Ocean University, HuchengHuan Road 999, Shanghai, 201306, China.
| |
Collapse
|