1
|
Gui Y, Ma X, Xiong M, Wen Y, Cao C, Zhang L, Wang X, Liu C, Zhang H, Huang X, Xiong C, Pan F, Yuan S. Transcriptome analysis of meiotic and post-meiotic spermatogenic cells reveals the potential hub genes of aging on the decline of male fertility. Gene 2024; 893:147883. [PMID: 37839768 DOI: 10.1016/j.gene.2023.147883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 10/06/2023] [Indexed: 10/17/2023]
Abstract
Genetic and epigenetic changes in sperm caused by male aging may be essential factors affecting semen parameters, but the effects and specific molecular mechanisms of aging on male reproduction have not been fully clarified. In this study, to explore the effect of aging on male fertility and seek the potential molecular etiology, we performed high-throughput RNA-sequencing in isolated spermatogenic cells, including pachytene spermatocytes (marked by the completion of chromosome synapsis) and round spermatids (produced by the separation of sister chromatids) from the elderly and the young men. Functional enrichment analysis of differentially expressed genes (DEGs) in round spermatids between the elderly and young showed that they were significantly enriched in gamete generation, spindle assembly, and cilium movement involved in cell motility. In addition, the expression levels of DEGs in round spermatids (post-meiotic cells) were found to be more susceptible to age. Furthermore, ten genes (AURKA, CCNB1, CDC20, CCNB2, KIF2C, KIAA0101, NR5A1, PLK1, PTTG1, RAD51AP1) were identified to be the hub genes involved in the regulation of sperm quality in the elderly through Protein-Protein Interaction (PPI) network construction and measuring semantic among GO terms and gene products. Our data provide aging-related molecular alterations in meiotic and post-meiotic spermatogenic cells, and the information gained from this study may explain the abnormal aging-related male fertility decline.
Collapse
Affiliation(s)
- Yiqian Gui
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Xixiang Ma
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Laboratory Animal Center, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Mengneng Xiong
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Yujiao Wen
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Congcong Cao
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Liang Zhang
- Department of Medical Genetics, China Medical University, Shenyang, Liaoning 110122, China
| | - Xiaoli Wang
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Chunyan Liu
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Huiping Zhang
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Xunbin Huang
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Wuhan Tongji Reproductive Hospital, Wuhan, Hubei 430013, China
| | | | - Feng Pan
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China
| | - Shuiqiao Yuan
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Laboratory Animal Center, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China.
| |
Collapse
|
2
|
Yang D, Zhang M, Chen W, Lu Q, Wan S, Du X, Li Y, Li B, Wu W, Wang C, Li N, Peng S, Tang H, Hua J. UCHL1 maintains microenvironmental homeostasis in goat germline stem cells. FASEB J 2023; 37:e23306. [PMID: 37934018 DOI: 10.1096/fj.202301674rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 10/26/2023] [Accepted: 10/30/2023] [Indexed: 11/08/2023]
Abstract
Spermatogonial stem cells (SSCs) play a crucial role in mammalian spermatogenesis and maintain the stable inheritance of the germline in livestock. However, stress and bacterial or viral infections can disrupt immune homeostasis of the testes, thereby leading to spermatogenesis destruction and infertility, which severely affects the health and productivity of mammals. This study aimed to explore the effect of ubiquitin C-terminal hydrolase L1 (UCHL1) knockdown (KD) in goat SSCs and mouse testes and investigate the potential anti-inflammatory function of UCHL1 in a poly(I:C)-induced inflammation model to maintain microenvironmental homeostasis. In vitro, the downregulation of UCHL1 (UCHL1 KD) in goat SSCs increased the expression levels of apoptosis and inflammatory factors and inhibited the self-renewal and proliferation of SSCs. In vivo, the structure of seminiferous tubules and spermatogenic cells was disrupted after UCHL1 KD, and the expression levels of apoptosis- and inflammation-related proteins were significantly upregulated. Furthermore, UCHL1 inhibited the TLR3/TBK1/IRF3 pathway to resist poly(I:C)-induced inflammation in SSCs by antagonizing HSPA8 and thus maintaining SSC autoimmune homeostasis. Most importantly, the results of this study showed that UCHL1 maintained immune homeostasis of SSCs and spermatogenesis. UCHL1 KD not only inhibited the self-renewal and proliferation of goat SSCs and spermatogenesis but was also involved in the inflammatory response of goat SSCs. Additionally, UCHL1 has an antiviral function in SSCs by antagonizing HSPA8, which provides an important basis for exploring the specific mechanisms of UCHL1 in goat spermatogenesis.
Collapse
Affiliation(s)
- Donghui Yang
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A&F University, Yangling, China
| | - Mengfei Zhang
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A&F University, Yangling, China
| | - Wenbo Chen
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A&F University, Yangling, China
| | - Qizhong Lu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Shicheng Wan
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A&F University, Yangling, China
| | - Xiaomin Du
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A&F University, Yangling, China
- Shaanxi Provincial Engineering and Technology Research Center of Cashmere Goats, College of Life Sciences, Yulin University, Yulin, China
| | - Yunxiang Li
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A&F University, Yangling, China
| | - Balun Li
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A&F University, Yangling, China
| | - Wenping Wu
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A&F University, Yangling, China
| | - Congliang Wang
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A&F University, Yangling, China
| | - Na Li
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A&F University, Yangling, China
| | - Sha Peng
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A&F University, Yangling, China
| | - Haiyang Tang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jinlian Hua
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A&F University, Yangling, China
| |
Collapse
|
3
|
Yang D, Lu Q, Peng S, Hua J. Ubiquitin C-terminal hydrolase L1 (UCHL1), a double-edged sword in mammalian oocyte maturation and spermatogenesis. Cell Prolif 2023; 56:e13347. [PMID: 36218038 PMCID: PMC9890544 DOI: 10.1111/cpr.13347] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 09/14/2022] [Accepted: 09/29/2022] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Recent studies have shown that ubiquitin-mediated cell apoptosis can modulate protein interaction and involve in the progress of oocyte maturation and spermatogenesis. As one of the key regulators involved in ubiquitin signal, ubiquitin C-terminal hydrolase L1 (UCHL1) is considered a molecular marker associated with spermatogonia stem cells. However, the function of UCHL1 was wildly reported to regulate various bioecological processes, such as Parkinson's disease, lung cancer, breast cancer and colon cancer, how UCHL1 affects the mammalian reproductive system remains an open question. METHODS We identified papers through electronic searches of PubMed database from inception to July 2022. RESULTS Here, we summarize the important function of UCHL1 in controlling mammalian oocyte development, regulating spermatogenesis and inhibiting polyspermy, and we posit the balance of UCHL1 was essential to maintaining reproductive cellular and tissue homeostasis. CONCLUSION This study considers the 'double-edged sword' role of UCHL1 during gametogenesis and presents new insights into UCHL1 in germ cells.
Collapse
Affiliation(s)
- Donghui Yang
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & TechnologyNorthwest A&F UniversityYanglingShaanxiChina
| | - Qizhong Lu
- State Key Laboratory of Biotherapy and Cancer Center, Research Unit of Gene and Immunotherapy, Collaborative Innovation Center of Biotherapy, West China HospitalSichuan UniversityChengduChina
| | - Sha Peng
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & TechnologyNorthwest A&F UniversityYanglingShaanxiChina
| | - Jinlian Hua
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & TechnologyNorthwest A&F UniversityYanglingShaanxiChina
| |
Collapse
|
4
|
Singh SP, Kharche SD, Pathak M, Soni YK, Ranjan R, Singh MK, Chauhan MS. Reproductive stage- and season-dependent culture characteristics of enriched caprine male germline stem cells. Cytotechnology 2022; 74:123-140. [PMID: 35185290 PMCID: PMC8816984 DOI: 10.1007/s10616-021-00515-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 12/10/2021] [Indexed: 02/03/2023] Open
Abstract
The present study aims to evaluate season- and reproductive-stage dependent variation in culture characteristics and expression of pluripotency and adhesion markers in caprine-male germline stem cells (cmGSCs). For this, testes from pre-pubertal (4-6 months) and adult (~ 2 years) bucks during non-breeding (July-August; n = 4 each) and breeding (October-November; n = 4 each) seasons were used to isolated testicular cells by two-step enzymatic digestion. After cmGSCs enrichment by multiple methods (differential platting, Percoll density gradient centrifugation, and MACS), cell viability of CD90+ cells was assessed before co-cultured onto the Sertoli cell feeder layer up to 3rd-passage (P-3). The culture characteristics of cmGSCs were compared during primary culture (P-0) and P-3 with different assays [BrdU-assay (proliferation), MTT-assay (senescence), and Cluster-forming activity-assay] and transcript expression analyses by qRT-PCR. Moreover, the co-localization of UCHL-1, CD90, and DBA was examined by a double-immunofluorescence method. In adult bucks, significantly (p < 0.05) higher cell numbers with the ability to proliferate faster and form a greater number of cell clusters, besides up-regulation of pluripotency and adhesion markers expression were observed during the breeding season than the non-breeding season. In contrast, such season-dependent variation was lacking in pre-pubertal bucks. The expression of transcripts during non-breeding seasons was significantly (p < 0.05) higher in pre-pubertal cmGSCs than in adult cells (UCHL-1 = 2.38-folds; CD-90 = 6.66-folds; PLZF = 20.87-folds; ID-4 = 4.75-folds; E-cadherin = 3.89-folds and β1-integrin = 5.70-folds). Overall, the reproductive stage and season affect the population, culture characteristics, and expression of pluripotency and adhesion specific markers in buck testis. These results provide an insight to develop an efficient system for successful cell culture processes targeting cmGSCs. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s10616-021-00515-x.
Collapse
Affiliation(s)
- Shiva Pratap Singh
- Animal Physiology and Reproduction Division, ICAR-Central Institute for Research on Goats, Makhdoom, Farah, Mathura, Uttar Pradesh 281122 India
| | - Suresh Dinkar Kharche
- Animal Physiology and Reproduction Division, ICAR-Central Institute for Research on Goats, Makhdoom, Farah, Mathura, Uttar Pradesh 281122 India
| | - Manisha Pathak
- Animal Physiology and Reproduction Division, ICAR-Central Institute for Research on Goats, Makhdoom, Farah, Mathura, Uttar Pradesh 281122 India
| | - Yogesh Kumar Soni
- Animal Physiology and Reproduction Division, ICAR-Central Institute for Research on Goats, Makhdoom, Farah, Mathura, Uttar Pradesh 281122 India
| | - Ravi Ranjan
- Animal Physiology and Reproduction Division, ICAR-Central Institute for Research on Goats, Makhdoom, Farah, Mathura, Uttar Pradesh 281122 India
| | - Manoj Kumar Singh
- Animal Genetics and Breeding Division, ICAR-Central Institute for Research on Goats, Makhdoom, Farah, Mathura, Uttar Pradesh 281122 India
| | | |
Collapse
|
5
|
Binsila BK, Selvaraju S, Ghosh SK, Ramya L, Arangasamy A, Ranjithkumaran R, Bhatta R. EGF, GDNF, and IGF-1 influence the proliferation and stemness of ovine spermatogonial stem cells in vitro. J Assist Reprod Genet 2020; 37:2615-2630. [PMID: 32821972 DOI: 10.1007/s10815-020-01912-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 08/03/2020] [Indexed: 11/25/2022] Open
Abstract
PURPOSE The objective of the present study was to purify sheep spermatogonial stem cells (SSCs) from testicular isolate using combined enrichment methods and to study the effect of growth factors on SSC stemness during culture. METHODS The testicular cells from prepubertal male sheep were isolated, and SSCs were purified using Ficoll gradients (10 and 12%) followed by differential plating (laminin with BSA). SSCs were cultured with StemPro®-34 SFM, additives, and FBS for 7 days. The various doses (ng/ml) of growth factors, EGF at 10, 15, and 20, GDNF at 40, 70, and 100 and IGF-1 at 50, 100, and 150 were tested for the proliferation and stemness of SSCs in vitro. The stemness in cultured cells was assessed using SSC markers PLZF, ITGA6, and GFRα1. RESULTS Ficoll density gradient separation significantly (p < 0.05) increased the percentage of SSCs in 12% fraction (35.1 ± 3.8 vs 11.2 ± 3.7). Subsequently, purification using laminin with BSA plating further enriched SSCs to 61.7 ± 4.7%. GDNF at 40 ng/ml, EGF at 15 and 20 ng/ml and IGF1 at 100 and 150 ng/ml significantly (p < 0.05) improved proliferation and stemness of SSCs up to 7 days in culture. GDNF at 40 ng/ml outperformed other growth factors tested and could maintain the ovine SSCs proliferation and stemness for 36 days. CONCLUSIONS The combined enrichment method employing density gradient centrifugation and laminin with BSA plating improves the purification efficiency of ovine SSCs. GDNF at 40 ng/ml is essential for optimal proliferation and sustenance of stemness of ovine SSCs in vitro.
Collapse
Affiliation(s)
- B K Binsila
- Reproductive Physiology Laboratory, Animal Physiology Division, Indian Council of Agricultural Research-National Institute of Animal Nutrition and Physiology, Bengaluru, 560 030, India.
| | - S Selvaraju
- Reproductive Physiology Laboratory, Animal Physiology Division, Indian Council of Agricultural Research-National Institute of Animal Nutrition and Physiology, Bengaluru, 560 030, India
| | - S K Ghosh
- Animal Reproduction Division, Indian Council of Agricultural Research-Indian Veterinary Research Institute, Izatnagar, 243 122, India
| | - L Ramya
- Reproductive Physiology Laboratory, Animal Physiology Division, Indian Council of Agricultural Research-National Institute of Animal Nutrition and Physiology, Bengaluru, 560 030, India
| | - A Arangasamy
- Reproductive Physiology Laboratory, Animal Physiology Division, Indian Council of Agricultural Research-National Institute of Animal Nutrition and Physiology, Bengaluru, 560 030, India
| | - R Ranjithkumaran
- Reproductive Physiology Laboratory, Animal Physiology Division, Indian Council of Agricultural Research-National Institute of Animal Nutrition and Physiology, Bengaluru, 560 030, India
| | - R Bhatta
- Indian Council of Agricultural Research-National Institute of Animal Nutrition and Physiology, Bengaluru, 560 030, India
| |
Collapse
|
6
|
Santiago J, Silva JV, Alves MG, Oliveira PF, Fardilha M. Testicular Aging: An Overview of Ultrastructural, Cellular, and Molecular Alterations. J Gerontol A Biol Sci Med Sci 2020; 74:860-871. [PMID: 29688289 DOI: 10.1093/gerona/gly082] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Indexed: 11/12/2022] Open
Abstract
The trend in parenthood at an older age is increasing for both men and women in developed countries, raising concerns about the reproductive ability, and the consequences for the offspring's health. While reproductive activity in women stops with menopause, a complete cessation of the reproductive potential does not occur in men. Although several studies have been published on the effects of aging on semen parameters and spermatozoa DNA integrity, literature on impact of aging on the testis, particularly cellular, and molecular alterations, has been, so far, limited and controversial. This work discusses the current knowledge on testicular aging in humans and other mammals, covering topics from tissue ultrastructure, to cellular and molecular alterations. Aging affects male reproductive function at multiple levels, from sperm production and quality, to the morphology and histology of the male reproductive system. The morphological and functional changes that occur in the testes result in variations in the levels of many hormones, changes in molecules involved in mitochondrial function, receptors, and signaling proteins. Despite knowing that these age-related alterations occur, their real impact on male fertility and reproductive health are still far from being fully understood, highlighting that research in the field is crucial.
Collapse
Affiliation(s)
- Joana Santiago
- Laboratory of Signal Transduction, Department of Medical Sciences, Institute of Biomedicine - iBiMED, University of Aveiro, Portugal
| | - Joana V Silva
- Laboratory of Signal Transduction, Department of Medical Sciences, Institute of Biomedicine - iBiMED, University of Aveiro, Portugal.,Reproductive Genetics and Embryo-fetal Development Group, Institute for Innovation and Health Research (I3S), University of Porto, Portugal.,Department of Microscopy, Laboratory of Cell Biology, and Unit for Multidisciplinary Research in Biomedicine (UMIB), Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Portugal
| | - Marco G Alves
- Department of Genetics, Faculty of Medicine, University of Porto, Portugal
| | - Pedro F Oliveira
- Reproductive Genetics and Embryo-fetal Development Group, Institute for Innovation and Health Research (I3S), University of Porto, Portugal.,Department of Microscopy, Laboratory of Cell Biology, and Unit for Multidisciplinary Research in Biomedicine (UMIB), Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Portugal.,Department of Genetics, Faculty of Medicine, University of Porto, Portugal
| | - Margarida Fardilha
- Laboratory of Signal Transduction, Department of Medical Sciences, Institute of Biomedicine - iBiMED, University of Aveiro, Portugal
| |
Collapse
|
7
|
Xu C, Shah MA, Mipam T, Wu S, Yi C, Luo H, Yuan M, Chai Z, Zhao W, Cai X. Bovid microRNAs involved in the process of spermatogonia differentiation into spermatocytes. Int J Biol Sci 2020; 16:239-250. [PMID: 31929752 PMCID: PMC6949159 DOI: 10.7150/ijbs.38232] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Accepted: 09/28/2019] [Indexed: 12/17/2022] Open
Abstract
The male infertility of cattleyak resulted from spermatogenic arrest has greatly restricted the effective utilization of the heterosis from crossbreeding of cattle and yak. Based on our previous studies, the significant divergences of the transcriptomic and proteomic sequencing between yak and cattleyak prompt us to investigate the critical roles of microRNAs in post-transcriptional regulation of gene expression during spermatogenesis. TUNEL-POD analysis presented sharply decreased spermatogenic cell types and the increased apoptotic spermatogonia in cattleyak. The STA-PUT velocity sedimentation was employed to obtain spermatogonia and spermatocytes from cattle, yak and cattleyak and these spermatogenic cells were verified by the morphological and phenotypic identification. MicroRNA microarray showed that 27 differentially expressed miRNAs were simultaneously identified both in cattleyak vs cattle and in cattleyak vs yak comparisons. Further analysis revealed that the down-regulation of bta-let-7 families, bta-miR-125 and bta-miR-23a might impair the RA-induced differentiation of spermatogonia. Target gene analysis for differentially expressed miRNAs revealed that miRNAs targeted major players involved in vesicle-mediated transport, regulation of protein kinase activity and Pathways in cancer. In addition, spermatogonia transfection analysis revealed that the down-regulation of bta-miR-449a in the cattleyak might block the transition of male germ cells from the mitotic cycle to the meiotic program. The present study provided valuable information for future elucidating the regulatory roles of miRNAs involved in spermatogenic arrest of cattleyak.
Collapse
Affiliation(s)
- Chuanfei Xu
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province and Ministry of Education, Southwest Minzu University, Chengdu 610041, Sichuan, China.,School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, Sichuan, China
| | - Mujahid Ali Shah
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, Sichuan, China
| | - TserangDonko Mipam
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province and Ministry of Education, Southwest Minzu University, Chengdu 610041, Sichuan, China
| | - Shixin Wu
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, Sichuan, China
| | - Chuanping Yi
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, Sichuan, China
| | - Hui Luo
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, Sichuan, China
| | - Meng Yuan
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, Sichuan, China
| | - Zhixin Chai
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province and Ministry of Education, Southwest Minzu University, Chengdu 610041, Sichuan, China
| | - Wangsheng Zhao
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, Sichuan, China
| | - Xin Cai
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province and Ministry of Education, Southwest Minzu University, Chengdu 610041, Sichuan, China.,School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, Sichuan, China
| |
Collapse
|
8
|
Valdivia M, Castañeda-Zegarra S, Lévano G, Lazo J, Reyes J, Bravo Z, Santiani A, Mujica F, Ruíz J, Gonzales GF. Spermatogonial stem cells identified by molecular expression of PLZF, integrin β1 and reactivity to Dolichos biflorus agglutinin in alpaca adult testes. Andrologia 2019; 51:e13283. [PMID: 30957907 DOI: 10.1111/and.13283] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 02/21/2019] [Accepted: 03/08/2019] [Indexed: 12/13/2022] Open
Abstract
The identification system of spermatogonial stem cell (SSC) was established in alpaca using the molecular expression as well as the reactivity pattern to Dolichos biflorus agglutinin (DBA) by flow cytometry. Twenty-four testicles with their epididymis were recovered from adult alpacas at the slaughterhouse of Huancavelica-Perú. Samples were transported to the Laboratory of Reproductive Physiology at Universidad Nacional Mayor de San Marcos. Testes were selected for our study when the progressive motility of epididymal spermatozoa (ESPM) was above 30%. Isolation of SSC was performed with two enzymatic digestions. Finally, sperm viability was evaluated by means of the trypan blue vital stain in spermatogonial round cells. Samples with more than 80% viability were selected. Isolated cells cultured for 2 days were used for identifying the presence of SSCs by the expression of integrin β1 (116 bp) and PLZF (206 bp) genes. Spermatogonia were classified according to the DBA reactivity. Spermatogonia with a strong positive to DBA (sDBA+ ) were classified as SSC (Mean ± SEM=4.44 ± 0.68%). Spermatogonia in early differentiation stages stained weakly positive with DBA (wDBA+ ) (Mean ± SEM=37.44 ± 3.07%) and differentiated round cells as DBA negative (Mean ± SEM=54.12 ± 3.18%). With the use of molecular and DBA markers, it is possible to identify easily the spermatogonial stem cells in alpaca.
Collapse
Affiliation(s)
- Martha Valdivia
- Laboratory of Animal Reproductive Physiology, Biological Sciences Faculty, Universidad Nacional Mayor de San Marcos, Lima, Perú.,Endocrine and Reproductive Laboratory, Department of Biological and Physiological Science, Laboratory of Investigation and Development (LID), Faculty of Sciences and Philosophy, Universidad Peruana Cayetano Heredia, Lima, Perú
| | - Sergio Castañeda-Zegarra
- Laboratory of Animal Reproductive Physiology, Biological Sciences Faculty, Universidad Nacional Mayor de San Marcos, Lima, Perú
| | - Gloria Lévano
- Laboratory of Animal Reproductive Physiology, Biological Sciences Faculty, Universidad Nacional Mayor de San Marcos, Lima, Perú
| | - Jorge Lazo
- Laboratory of Animal Reproductive Physiology, Biological Sciences Faculty, Universidad Nacional Mayor de San Marcos, Lima, Perú
| | - Jhakelin Reyes
- Laboratory of Animal Reproductive Physiology, Biological Sciences Faculty, Universidad Nacional Mayor de San Marcos, Lima, Perú
| | - Zezé Bravo
- Laboratory of Animal Reproductive Physiology, Biological Sciences Faculty, Universidad Nacional Mayor de San Marcos, Lima, Perú
| | - Alexei Santiani
- Laboratory of Animal Reproduction, Faculty of Veterinary Medicine, Universidad Nacional Mayor de San Marcos, Lima, Perú
| | - Fidel Mujica
- Biological Sciences Faculty, Universidad Nacional San Cristóbal de Huamanga, Ayacucho, Perú
| | - Jaime Ruíz
- Laboratory of Reproductive Biotechnology, Faculty of Engineering Sciences, Universidad Nacional de Huancavelica, Huancavelica, Perú
| | - Gustavo F Gonzales
- Endocrine and Reproductive Laboratory, Department of Biological and Physiological Science, Laboratory of Investigation and Development (LID), Faculty of Sciences and Philosophy, Universidad Peruana Cayetano Heredia, Lima, Perú
| |
Collapse
|
9
|
Binsila KB, Selvaraju S, Ghosh SK, Parthipan S, Archana SS, Arangasamy A, Prasad JK, Bhatta R, Ravindra JP. Isolation and enrichment of putative spermatogonial stem cells from ram (Ovis aries) testis. Anim Reprod Sci 2018; 196:9-18. [DOI: 10.1016/j.anireprosci.2018.04.070] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Revised: 04/01/2018] [Accepted: 04/13/2018] [Indexed: 11/17/2022]
|
10
|
Shah MA, Xu C, Wu S, Zhao W, Luo H, Yi C, Liu W, Cai X. Isolation and characterization of spermatogenic cells from cattle, yak and cattleyak. Anim Reprod Sci 2018; 193:182-190. [PMID: 29685708 DOI: 10.1016/j.anireprosci.2018.04.067] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 04/05/2018] [Accepted: 04/13/2018] [Indexed: 10/17/2022]
Abstract
Cattleyak forms the first generation in the cross-breeding of cattle (Bos taurus) and yak (Bos grunniens), the purpose of which is to increase the yak's performance in meat and milk production. The female cattleyak is fertile while the male remains sterile due to spermatogenic arrest. The spermatogenic cells (including spermatogonia and spermatocytes) of cattle, yak and cattleyak have not been successfully isolated so far. In this work, spermatogenic cells were isolated from these bovid species with the STA-PUT method that has been previously used for germ cell sorting in human and mouse, and the isolated cells could be used to investigate the mechanisms involved in male sterility observed in cattleyak. The characteristics and size of the isolated cells were investigated through microscopic examination, and the cell types were identified by RT-PCR amplification of the marker genes. The purity of spermatogonia and spermatocytes isolated from each bovid species was found to be higher than 85%. The spermatogonium diameter of cattle (10.10 ± 1.04 μm) and yak (14.90 ± 2.30 μm) were significantly larger (P < 0.01) than that of cattleyak (8.60 ± 0.92 μm). The spermatocyte diameter of cattle (19.40 ± 1.50 μm) and yak (20.50 ± 2.42 μm) were also significantly larger (P < 0.01) than that of cattleyak (17.70 ± 2.05 μm). Therefore, the STA-PUT was again validated to be a convenient, economical and efficient method for isolation of spermatogenic cells as it yields more cells within a short time frame.
Collapse
Affiliation(s)
- Mujahid Ali Shah
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, Sichuan, China
| | - Chuanfei Xu
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, Sichuan, China
| | - Shixin Wu
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, Sichuan, China
| | - Wangsheng Zhao
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, Sichuan, China
| | - Hui Luo
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, Sichuan, China
| | - Chuanping Yi
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, Sichuan, China
| | - Wenjing Liu
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, Sichuan, China
| | - Xin Cai
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, Sichuan, China.
| |
Collapse
|
11
|
Park HJ, Lee R, Lee WY, Kim JH, Do JT, Park C, Song H. Stage-specific expression of Sal-like protein 4 in boar testicular germ cells. Theriogenology 2017; 101:44-52. [DOI: 10.1016/j.theriogenology.2017.05.033] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 05/29/2017] [Accepted: 05/29/2017] [Indexed: 12/23/2022]
|