1
|
Song Y, Hai E, Zhang N, Zhang Y, Wang J, Han X, Zhang J. Oocyte transcriptomes and follicular fluid proteomics of ovine atretic follicles reveal the underlying mechanisms of oocyte degeneration. BMC Genomics 2025; 26:97. [PMID: 39893388 PMCID: PMC11786490 DOI: 10.1186/s12864-025-11291-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 01/24/2025] [Indexed: 02/04/2025] Open
Abstract
BACKGROUND In mammals, female fertility is influenced by the result of follicular development (ovulation or atresia). Follicular atresia is a complex physiological process that results in the degeneration of oocytes from the ovary. However, the molecular mechanisms of oocyte degeneration and key protein markers of follicular atresia remain unclear. In this study, we investigated the complex transcriptional regulatory mechanisms and protein profiles in oocytes and follicular fluid in atretic follicle stages using single-cell RNA sequencing and tandem mass tag proteomics. RESULTS First, through paired analysis of different follicle development stages, we identified 175 atresia-specific genes and eight candidate oocyte-secreted factors, including PKG1, YTHDF2, and MYC. Meanwhile, we also characterized unique features of the oocyte transcriptional landscape in the atretic follicle stage that displayed cell death-related transcriptional changes and mechanisms, such as autophagy (TBK1 and IRS4), necroptosis (PKR), and apoptosis (MARCKS). Moreover, we identified atresia-specific genes, namely FTH1, TF, and ACSL4, which may participate in regulation of oocyte ferroptosis in atretic follicles through a series of mechanisms including ferritinophagy, ferritin transport, and lipid metabolism. Additionally, we uncovered 333 differentially expressed proteins that may coordinate follicular atresia and revealed key pathways, such as negative regulation of angiogenesis, metabolic pathways, and transcription and mRNA splicing, that lead to oocyte degeneration. Finally, by combining transcriptome and proteomics analyses, we identified two oocyte-secreted biomarkers, PGK1 and ANGPT2, that may be associated with follicular atresia. CONCLUSIONS In conclusion, our work offers a thorough characterization of oocyte transcription mechanism and follicular fluid protein changes in ovine atretic follicles, which offers a crucial reference for analyzing the mechanism of follicular atresia and establishing an oocyte quality assessment system in sheep.
Collapse
Affiliation(s)
- Yukun Song
- Inner Mongolia Key Laboratory of Sheep & Goat Genetics Breeding and Reproduction, College of Animal Science, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, 010018, China
| | - Erhan Hai
- Inner Mongolia Key Laboratory of Sheep & Goat Genetics Breeding and Reproduction, College of Animal Science, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, 010018, China
| | - Nan Zhang
- Inner Mongolia Key Laboratory of Sheep & Goat Genetics Breeding and Reproduction, College of Animal Science, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, 010018, China
| | - Yu Zhang
- Inner Mongolia Key Laboratory of Sheep & Goat Genetics Breeding and Reproduction, College of Animal Science, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, 010018, China
| | - Junlan Wang
- Inner Mongolia Key Laboratory of Sheep & Goat Genetics Breeding and Reproduction, College of Animal Science, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, 010018, China
| | - Xitong Han
- Inner Mongolia Key Laboratory of Sheep & Goat Genetics Breeding and Reproduction, College of Animal Science, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, 010018, China
| | - Jiaxin Zhang
- Inner Mongolia Key Laboratory of Sheep & Goat Genetics Breeding and Reproduction, College of Animal Science, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, 010018, China.
| |
Collapse
|
2
|
Pasquariello R, Bogliolo L, Di Filippo F, Leoni GG, Nieddu S, Podda A, Brevini TAL, Gandolfi F. Use of assisted reproductive technologies (ARTs) to shorten the generational interval in ruminants: current status and perspectives. Theriogenology 2024; 225:16-32. [PMID: 38788626 DOI: 10.1016/j.theriogenology.2024.05.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/18/2024] [Accepted: 05/18/2024] [Indexed: 05/26/2024]
Abstract
The challenges posed by climate change and increasing world population are stimulating renewed efforts for improving the sustainability of animal production. To meet such challenges, the contribution of genomic selection approaches, in combination with assisted reproductive technologies (ARTs), to spreading and preserving animal genetics is essential. The largest increase in genetic gain can be achieved by shortening the generation interval. This review provides an overview of the current status and progress of advanced ARTs that could be applied to reduce the generation time in both female and male of domestic ruminants. In females, the use of juvenile in vitro embryo transfer (JIVET) enables to generate offspring after the transfer of in vitro produced embryos derived from oocytes of prepubertal genetically superior donors reducing the generational interval and acceleration genetic gain. The current challenge is increasing in vitro embryo production (IVEP) from prepubertal derived oocytes which is still low and variable. The two main factors limiting IVEP success are the intrinsic quality of prepubertal oocytes and the culture systems for in vitro maturation (IVM). In males, advancements in ARTs are providing new strategies to in vitro propagate spermatogonia and differentiate them into mature sperm or even to recapitulate the whole process of spermatogenesis from embryonic stem cells. Moreover, the successful use of immature cells, such as round spermatids, for intracytoplasmic injection (ROSI) and IVEP could allow to complete the entire process in few months. However, these approaches have been successfully applied to human and mouse whereas only a few studies have been published in ruminants and results are still controversial. This is also dependent on the efficiency of ROSI that is limited by the current isolation and selection protocols of round spermatids. In conclusion, the current efforts for improving these reproductive methodologies could lead toward a significant reduction of the generational interval in livestock animals that could have a considerable impact on agriculture sustainability.
Collapse
Affiliation(s)
- Rolando Pasquariello
- Department of Agricultural and Environmental Sciences, University of Milan, Milano, Italy
| | - Luisa Bogliolo
- Department of Veterinary Medicine, University of Sassari, Sassari, Italy
| | - Francesca Di Filippo
- Department of Agricultural and Environmental Sciences, University of Milan, Milano, Italy
| | | | - Stefano Nieddu
- Department of Veterinary Medicine, University of Sassari, Sassari, Italy
| | - Andrea Podda
- Department of Veterinary Medicine, University of Sassari, Sassari, Italy
| | - Tiziana A L Brevini
- Laboratory of Biomedical Embryology and Tissue Engineering, Department of Veterinary Medicine and Animal Science, University of Milan, Lodi, Italy
| | - Fulvio Gandolfi
- Department of Agricultural and Environmental Sciences, University of Milan, Milano, Italy.
| |
Collapse
|
3
|
Hedia M, Leroy JLMR, Govaere J, Van Soom A, Smits K. Lipid metabolites, interleukin-6 and oxidative stress markers in follicular fluid and their association with serum concentrations in mares. Vet Res Commun 2023; 47:2221-2228. [PMID: 37055645 DOI: 10.1007/s11259-023-10122-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 04/10/2023] [Indexed: 04/15/2023]
Abstract
The application of trans-vaginal ovum pick up (OPU) and intracytoplasmic sperm injection (ICSI) is well established for commercial in vitro embryo production in horses. These assisted reproductive techniques are especially applied during the non-breeding season of the mare. However, little is known about how the health of the oocyte donor may affect the biochemical composition of the follicular fluid (FF) in small and medium-sized follicles routinely aspirated during OPU. This study aimed to investigate associations between systemic and FF concentrations of interleukin-6 (IL-6), total cholesterol, triglycerides, non-esterified fatty acids (NEFA), reactive oxygen metabolites (d-ROMs), biological antioxidant potential (BAP), and oxidative stress index (OSI) during the non-breeding season in mares. At the slaughterhouse, serum and FF of small (5-10 mm in diameter), medium (> 10-20 mm in diameter), and large (> 20-30 mm in diameter) follicles were sampled from 12 healthy mares. There was a strong positive association (P < 0.01) between the concentration of IL-6 in serum and those measured in small (r = 0.846), medium (r = 0.999), and large (r = 0.996) follicles. Serum concentrations of NEFA were positively correlated (P < 0.05) with those measured in small (r = 0.726), medium (r = 0.720), and large (r = 0.974) follicles. Values of total cholesterol and OSI in serum and medium follicles were significantly associated (r = 0.736 and r = 0.696, respectively). The serum concentrations of all lipid metabolites were markedly higher than those measured in FF of small- and medium-sized follicles. Values of IL-6 and OSI did not change significantly between serum and all follicle classes (P ≥ 0.05). To conclude, changes in the blood composition associated with inflammation, oxidative stress, and disturbed lipid metabolism of mares may lead to an inadequate oocyte microenvironment, which could affect oocyte quality and the success rate of OPU/ICSI programs. Further research should indicate whether these changes may ultimately affect in vitro oocyte developmental capacity and subsequent embryo quality.
Collapse
Affiliation(s)
- Mohamed Hedia
- Gamete Research Centre, Department of Veterinary Sciences, University of Antwerp, Wilrijk, Belgium.
- Theriogenology Department, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt.
- Department of Internal Medicine, Reproduction and Population Medicine, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium.
| | - Jo L M R Leroy
- Gamete Research Centre, Department of Veterinary Sciences, University of Antwerp, Wilrijk, Belgium
| | - Jan Govaere
- Department of Internal Medicine, Reproduction and Population Medicine, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Ann Van Soom
- Department of Internal Medicine, Reproduction and Population Medicine, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Katrien Smits
- Department of Internal Medicine, Reproduction and Population Medicine, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| |
Collapse
|
4
|
Zhang S, Mu L, Wang H, Xu X, Jia L, Niu S, Wang Y, Wang P, Li L, Chai J, Li Z, Zhang Y, Zhang H. Quantitative proteomic analysis uncovers protein-expression profiles during gonadotropin-dependent folliculogenesis in mice†. Biol Reprod 2023; 108:479-491. [PMID: 36477298 DOI: 10.1093/biolre/ioac217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 07/14/2022] [Accepted: 12/02/2022] [Indexed: 12/13/2022] Open
Abstract
Ovarian follicle is the basic functional unit of female reproduction, and is composed of oocyte and surrounding granulosa cells. In mammals, folliculogenesis strictly rely on gonadotropin regulations to determine the ovulation and the quality of eggs. However, the dynamic changes of protein-expressing profiles in follicles at different developmental stages remain largely unknown. By performing mass-spectrometry-based quantitative proteomic analysis of mouse follicles, we provide a proteomic database (~3000 proteins) that covers three key stages of gonadotropin-dependent folliculogenesis. By combining bioinformatics analysis with in situ expression validation, we showed that our proteomic data well reflected physiological changes during folliculogenesis, which provided potential to predict unknown regulators of folliculogenesis. Additionally, by using the oocyte structural protein zona pellucida protein 2 as the internal control, we showed the possibility of our database to predict the expression dynamics of oocyte-expressing proteins during folliculogenesis. Taken together, we provide a high-coverage proteomic database to study protein-expression dynamics during gonadotropin-dependent folliculogenesis in mammals.
Collapse
Affiliation(s)
- Shuo Zhang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Lu Mu
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Haoran Wang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Xueqiang Xu
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Longzhong Jia
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Shudong Niu
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Yibo Wang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Peike Wang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Lingyu Li
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Junyi Chai
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Zhen Li
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Yan Zhang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Hua Zhang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| |
Collapse
|
5
|
Paulino LRFM, de Assis EIT, Azevedo VAN, Silva BR, da Cunha EV, Silva JRV. Why Is It So Difficult To Have Competent Oocytes from In vitro Cultured Preantral Follicles? Reprod Sci 2022; 29:3321-3334. [PMID: 35084715 DOI: 10.1007/s43032-021-00840-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 12/28/2021] [Indexed: 12/14/2022]
Abstract
The developmental competence of oocytes is acquired gradually during follicular development, mainly through oocyte accumulation of RNA molecules and proteins that will be used during fertilization and early embryonic development. Several attempts to develop in vitro culture systems to support preantral follicle development up to maturation are reported in the literature, but oocyte competence has not yet been achieved in human and domestic animals. The difficulties to have fertilizable oocytes are related to thousands of mRNAs and proteins that need to be synthesized, long-term duration of follicular development, size of preovulatory follicles, composition of in vitro culture medium, and the need of multi-step culture systems. The development of a culture system that maintains bidirectional communication between the oocyte and granulosa cells and that meets the metabolic demands of each stage of follicle growth is the key to sustain an extended culture period. This review discusses the physiological and molecular mechanisms that determine acquisition of oocyte competence in vitro, like oocyte transcriptional activity, follicle and oocyte sizes, and length and regulation of follicular development in murine, human, and domestic animal species. The state of art of in vitro follicular development and the challenges to have complete follicular development in vitro are also highlighted.
Collapse
Affiliation(s)
- Laís R F M Paulino
- Laboratory of Biotechnology and Physiology of Reproduction (LABIREP), Federal University of Ceara, Av. Comandante Maurocélio Rocha Ponte 100, Sobral, CE, CEP 62041-040, Brazil
| | - Ernando I T de Assis
- Laboratory of Biotechnology and Physiology of Reproduction (LABIREP), Federal University of Ceara, Av. Comandante Maurocélio Rocha Ponte 100, Sobral, CE, CEP 62041-040, Brazil
| | - Venância A N Azevedo
- Laboratory of Biotechnology and Physiology of Reproduction (LABIREP), Federal University of Ceara, Av. Comandante Maurocélio Rocha Ponte 100, Sobral, CE, CEP 62041-040, Brazil
| | - Bianca R Silva
- Laboratory of Biotechnology and Physiology of Reproduction (LABIREP), Federal University of Ceara, Av. Comandante Maurocélio Rocha Ponte 100, Sobral, CE, CEP 62041-040, Brazil
| | - Ellen V da Cunha
- Laboratory of Biotechnology and Physiology of Reproduction (LABIREP), Federal University of Ceara, Av. Comandante Maurocélio Rocha Ponte 100, Sobral, CE, CEP 62041-040, Brazil
| | - José R V Silva
- Laboratory of Biotechnology and Physiology of Reproduction (LABIREP), Federal University of Ceara, Av. Comandante Maurocélio Rocha Ponte 100, Sobral, CE, CEP 62041-040, Brazil.
| |
Collapse
|
6
|
Qin P, Ye J, Gong X, Yan X, Lin M, Lin T, Liu T, Li H, Wang X, Zhu Y, Li X, Liu Y, Li Y, Ling Y, Zhang X, Fang F. Quantitative proteomics analysis to assess protein expression levels in the ovaries of pubescent goats. BMC Genomics 2022; 23:507. [PMID: 35831802 PMCID: PMC9281040 DOI: 10.1186/s12864-022-08699-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 06/13/2022] [Indexed: 11/30/2022] Open
Abstract
Background Changes in the abundance of ovarian proteins play a key role in the regulation of reproduction. However, to date, no studies have investigated such changes in pubescent goats. Herein we applied isobaric tags for relative and absolute quantitation (iTRAQ) and liquid chromatography–tandem mass spectrometry to analyze the expression levels of ovarian proteins in pre-pubertal (n = 3) and pubertal (n = 3) goats. Results Overall, 7,550 proteins were recognized; 301 (176 up- and 125 downregulated) were identified as differentially abundant proteins (DAPs). Five DAPs were randomly selected for expression level validation by Western blotting; the results of Western blotting and iTRAQ analysis were consistent. Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis indicated that DAPs were enriched in olfactory transduction, glutathione metabolism, and calcium signaling pathways. Besides, gene ontology functional enrichment analysis revealed that several DAPs enriched in biological processes were associated with cellular process, biological regulation, metabolic process, and response to stimulus. Protein–protein interaction network showed that proteins interacting with CDK1, HSPA1A, and UCK2 were the most abundant. Conclusions We identified 301 DAPs, which were enriched in olfactory transduction, glutathione metabolism, and calcium signaling pathways, suggesting the involvement of these processes in the onset of puberty. Further studies are warranted to more comprehensively explore the function of the identified DAPs and aforementioned signaling pathways to gain novel, deeper insights into the mechanisms underlying the onset of puberty. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08699-y.
Collapse
Affiliation(s)
- Ping Qin
- Department of Animal Veterinary Science, College of Animal Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei, 230036, Anhui, China.,Anhui Province Key Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230036, Anhui, China
| | - Jing Ye
- Department of Animal Veterinary Science, College of Animal Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei, 230036, Anhui, China.,Anhui Province Key Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230036, Anhui, China
| | - Xinbao Gong
- Department of Animal Veterinary Science, College of Animal Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei, 230036, Anhui, China.,Anhui Province Key Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230036, Anhui, China
| | - Xu Yan
- Department of Animal Veterinary Science, College of Animal Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei, 230036, Anhui, China.,Anhui Province Key Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230036, Anhui, China
| | - Maosen Lin
- Department of Animal Veterinary Science, College of Animal Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei, 230036, Anhui, China.,Anhui Province Key Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230036, Anhui, China
| | - Tao Lin
- Department of Animal Veterinary Science, College of Animal Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei, 230036, Anhui, China.,Anhui Province Key Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230036, Anhui, China
| | - Tong Liu
- Department of Animal Veterinary Science, College of Animal Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei, 230036, Anhui, China.,Anhui Province Key Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230036, Anhui, China
| | - Hailing Li
- Department of Animal Veterinary Science, College of Animal Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei, 230036, Anhui, China.,Anhui Province Key Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230036, Anhui, China
| | - Xiujuan Wang
- Animal Husbandry Development Center, Huoqiu Animal Health Supervision Institute, Huoqiu County, Auditorium Road, Luan, 237400, Anhui, China
| | - Yanyun Zhu
- Department of Animal Veterinary Science, College of Animal Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei, 230036, Anhui, China
| | - Xiaoqian Li
- Department of Animal Veterinary Science, College of Animal Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei, 230036, Anhui, China
| | - Ya Liu
- Department of Animal Veterinary Science, College of Animal Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei, 230036, Anhui, China.,Anhui Province Key Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230036, Anhui, China
| | - Yunsheng Li
- Department of Animal Veterinary Science, College of Animal Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei, 230036, Anhui, China.,Anhui Province Key Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230036, Anhui, China
| | - Yinghui Ling
- Anhui Province Key Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230036, Anhui, China
| | - Xiaorong Zhang
- Department of Animal Veterinary Science, College of Animal Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei, 230036, Anhui, China.,Anhui Province Key Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230036, Anhui, China
| | - Fugui Fang
- Department of Animal Veterinary Science, College of Animal Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei, 230036, Anhui, China. .,Anhui Province Key Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230036, Anhui, China.
| |
Collapse
|
7
|
Ishak GM, Feugang JM, Pechanova O, Pechan T, Peterson DG, Willard ST, Ryan PL, Gastal EL. Follicular-fluid proteomics during equine follicle development. Mol Reprod Dev 2022; 89:298-311. [PMID: 35762042 DOI: 10.1002/mrd.23622] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 05/04/2022] [Accepted: 06/03/2022] [Indexed: 11/06/2022]
Abstract
The complex composition of the follicular fluid (FF), the intimate proximity to the oocyte, and the continual changes in their composition have a major effect on folliculogenesis and oogenesis. To date, the profiling of FF proteomes during follicle selection, development, and ovulation has not been comprehensively investigated. Therefore, a shotgun proteomics approach and bioinformatics analyses were used to profile the proteomes of equine FF harvested in vivo from follicles at the following development stages: predeviation (18-20 mm), deviation (22-25 mm), postdeviation (26-29 mm), preovulatory (30-35 mm), and impending ovulation. A total of 294 proteins were detected in FF (FDR <1%), corresponding to 65 common proteins and 124, 142, 167, 132, and 142 proteins in the predeviation, deviation, postdeviation, preovulatory, and impending ovulation groups, respectively. The higher expression of properdin and several other proteins belonging to the complement system during the deviation time and ovulation suggested their contribution in the selection of the future dominant follicle and ovulation. Apolipoprotein A-1 and antithrombin-III appeared to be important throughout folliculogenesis. The "complement and coagulation cascades" was the major KEGG pathway across all stages of follicle development. The significant expression of several proteins belonging to the serine-type endopeptidase indicated their likely contribution to follicle and oocyte development. Our data provide an extensive description and functional analyses of the equine FF proteome during follicle selection, development, and ovulation. This information will help improve understanding of the ovarian function and ovulatory dysfunctions and might serve as a reference for future biomarker discovery for oocyte quality assessment.
Collapse
Affiliation(s)
- Ghassan M Ishak
- Department of Surgery and Obstetrics, College of Veterinary Medicine, University of Baghdad, Baghdad, Iraq
- Animal Science, School of Agricultural Sciences, Southern Illinois University, Carbondale, Illinois, USA
| | - Jean M Feugang
- Department of Animal and Dairy Sciences, Mississippi State University, Mississippi State, Mississippi, USA
| | - Olga Pechanova
- Institute for Genomics, Biocomputing & Biotechnology, Mississippi State University, Mississippi State, Mississippi, USA
| | - Tibor Pechan
- Institute for Genomics, Biocomputing & Biotechnology, Mississippi State University, Mississippi State, Mississippi, USA
| | - Daniel G Peterson
- Institute for Genomics, Biocomputing & Biotechnology, Mississippi State University, Mississippi State, Mississippi, USA
| | - Scott T Willard
- Department of Animal and Dairy Sciences, Mississippi State University, Mississippi State, Mississippi, USA
| | - Peter L Ryan
- Department of Animal and Dairy Sciences, Mississippi State University, Mississippi State, Mississippi, USA
| | - Eduardo L Gastal
- Animal Science, School of Agricultural Sciences, Southern Illinois University, Carbondale, Illinois, USA
| |
Collapse
|
8
|
Souza TTS, van Tilburg MF, Bezerra MJB, Rola LD, Pereira LMC, Duarte JMB, Chaves MS, Melo LM, Moura AAAN, Freitas VJF. Global proteomic analysis of the follicular fluid from brown brocket deer (Mazama gouazoubira; Fisher, 1814). EUR J WILDLIFE RES 2022. [DOI: 10.1007/s10344-022-01563-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
9
|
Differential proteomic analysis demonstrates follicle fluid participate immune reaction and protein translation in yak. BMC Vet Res 2022; 18:34. [PMID: 35031034 PMCID: PMC8758897 DOI: 10.1186/s12917-021-03097-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 11/29/2021] [Indexed: 12/03/2022] Open
Abstract
Background Ovarian follicle fluid (FF) as a microenvironment surrounding oocyte plays critical roles in physio-biochemical processes of follicle development and oocyte maturation. It is hypothesized that proteins in yak FF participate in the physio-biochemical pathways. The primary aims of this study were to find differentially expressed proteins (DEPs) between mature and immature FF, and to elucidating functions of the mature and immature FF in yak. Results The mature and immature FF samples were obtained from three healthy yaks that were nonpregnant, aged from four to five years, and free from any anatomical reproductive disorders. The FF samples were subjected to mass spectrometry with the isobaric tags for relative and absolute quantification (iTRAQ). The FF samples went through correlation analysis, principle component analysis, and expression pattern analysis based on quantification of the identified proteins. Four hundred sixty-three DEPs between mature and immature FF were identified. The DEPs between the mature and immature FF samples underwent gene ontology (GO), Kyoto encyclopedia of genes and genomes (KEGG), and protein-protein interaction (PPI) analysis. The DEPs highly expressed in the mature FF mainly took parts in the complement and coagulation cascades, defense response, acute-phase response, response to other organism pathways to avoid invasion of exogenous microorganisms. The complement activation pathway contains eight DEPs, namely C2, C5, C6, C7, C9, C4BPA, CFH, and MBL2. The three DEPs, CATHL4, CHGA, and PGLYRP1, take parts in defense response pathway to prevent invasion of exogenetic microorganism. The coagulation cascades pathway involves many coagulation factors, such as F7, F13A1, FGA, FGB, FGG, KLKB1, KNG1, MASP1, SERPINA1, and SERPIND1. While the DEPs highly expressed in the immature FF participated in protein translation, peptide biosynthetic process, DNA conformation change, and DNA geometric change pathways to facilitate follicle development. The translation pathway contains many ribosomal proteins, such as RPL3, RPL5, RPS3, RPS6, and other translation factors, such as EIF3J, EIF4G2, ETF1, MOV10, and NARS. The DNA conformation change and DNA geometric change involve nine DEPs, DDX1, G3BP1, HMGB1, HMGB2, HMGB3, MCM3, MCM5, MCM6, and RUVBL2. Furthermore, the expressed levels of the main DEPs, C2 and SERPIND1, were confirmed by western blot. Conclusions The differential proteomics revealed the up-regulated DEPs in mature FF take parts in immunoreaction to prevent invasion of microorganisms and the up-regulated DEPs in immature FF participate in protein synthesis, which may improve our knowledge of the follicular microenvironment and its biological roles for reproductive processes in yak. The DEPs, C2 and SERPIND1, can be considered as protein markers for mature yak follicle. Supplementary Information The online version contains supplementary material available at 10.1186/s12917-021-03097-0.
Collapse
|
10
|
Wang L, Li J, Zhang L, Shi S, Zhou X, Hu Y, Gao L, Yang G, Pang W, Chen H, Zhao L, Chu G, Cai C. NR1D1 targeting CYP19A1 inhibits estrogen synthesis in ovarian granulosa cells. Theriogenology 2021; 180:17-29. [PMID: 34933195 DOI: 10.1016/j.theriogenology.2021.12.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 11/18/2021] [Accepted: 12/09/2021] [Indexed: 11/26/2022]
Abstract
The circadian system performs an important role in mammalian reproduction with significant effects on hormone secretion. Nuclear receptor subfamily 1 group D member 1 (NR1D1) functions as a transcriptional repressor in the circadian system and affects granulosa cells (GCs), but how it regulates estrogen synthesis has not been clarified. We investigated the effect of NR1D1 on estrogen synthesis and found that NR1D1 was highly expressed in GCs, mainly in cell nuclei. Additionally, the expression of NR1D1 and estrogen synthesis key genes CYP19A1, CYP11A1 and StAR showed rhythmic changes in porcine ovarian GCs. Activation of NR1D1 enhances its ability to inhibit the transcriptional activity of CYP19A1 by binding to the RORE on the CYP19A1 promoter, resulting in a decrease in estradiol content. Interference with NR1D1 can eliminate the transcriptional inhibition of CYP19A1 and promote the synthesis of estradiol. The results suggest that the hormone secretion of the ovary itself is also regulated by the biological clock, and any factors that affect the circadian rhythm can affect the endocrine and reproductive performance of sows, so the natural rhythm of sows should be maintained in production.
Collapse
Affiliation(s)
- Liguang Wang
- College of Animal Science and Technology, Northwest A&F Univeristy, Yangling, 712100, Shaanxi, China
| | - Jingjing Li
- College of Animal Science and Technology, Northwest A&F Univeristy, Yangling, 712100, Shaanxi, China
| | - Lutong Zhang
- College of Animal Science and Technology, Northwest A&F Univeristy, Yangling, 712100, Shaanxi, China
| | - Shengjie Shi
- College of Animal Science and Technology, Northwest A&F Univeristy, Yangling, 712100, Shaanxi, China
| | - Xiaoge Zhou
- College of Animal Science and Technology, Northwest A&F Univeristy, Yangling, 712100, Shaanxi, China
| | - Yamei Hu
- College of Animal Science and Technology, Northwest A&F Univeristy, Yangling, 712100, Shaanxi, China
| | - Lei Gao
- College of Animal Science and Technology, Northwest A&F Univeristy, Yangling, 712100, Shaanxi, China
| | - Gongshe Yang
- College of Animal Science and Technology, Northwest A&F Univeristy, Yangling, 712100, Shaanxi, China
| | - Weijun Pang
- College of Animal Science and Technology, Northwest A&F Univeristy, Yangling, 712100, Shaanxi, China
| | - Huatao Chen
- College of Veterinary Medicine, Northwest A&F Univeristy, Yangling, 712100, Shaanxi, China
| | - Lijia Zhao
- College of Veterinary Medicine, Northwest A&F Univeristy, Yangling, 712100, Shaanxi, China
| | - Guiyan Chu
- College of Animal Science and Technology, Northwest A&F Univeristy, Yangling, 712100, Shaanxi, China
| | - Chuanjiang Cai
- College of Animal Science and Technology, Northwest A&F Univeristy, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
11
|
Sim YJ, Ryu AR, Lee MY. Proteomic analysis of human follicular fluid from polycystic ovary syndrome patients. Biotechnol Appl Biochem 2021; 69:289-295. [PMID: 33438252 DOI: 10.1002/bab.2108] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 01/06/2021] [Indexed: 12/14/2022]
Abstract
Comparative proteomic profiling of human follicular fluid (HFF) from polycystic ovary syndrome (PCOS) and non-PCOS patients who displayed low levels of fertility was carried out via two-dimensional gel electrophoresis (2-DE) combined with mass spectrometry. HFF, an important reproductive fluid, was used for the proteomic analysis of PCOS patients to determine the effect of PCOS on folliculogenesis. HFF was obtained from 10 women (average age, 35 years) undergoing in vitro fertilization at two hospitals. The proteins of HFF were separated using 2-DE analysis and validated by Western blot assay. Approximately 250 protein spots were separated on the 2-DE gel. Among them, the expression levels of seven proteins were found to change at least 1.5-fold in the PCOS patient group. Three protein spots, albumin, uncharacterized protein 1, and uncharacterized protein 2, were downregulated in PCOS patients. However, four protein spots, gelsolin, vitamin D binding protein, serum albumin, and complement factor B, were upregulated in PCOS patient group. These proteins may serve as a panel of potential pathological biomarkers during fertilization and oocyte development.
Collapse
Affiliation(s)
- Young-Jin Sim
- Elle Medi Obstetrics, Changwon, Gyeongnam, 51191, Republic of Korea
| | - A-Reum Ryu
- Department of Medical Biotechnology, Soonchunhyang University, Asan, 31538, Republic of Korea.,Department of Medical Science, Soonchunhyang University, Asan, 31538, Republic of Korea
| | - Mi-Young Lee
- Department of Medical Biotechnology, Soonchunhyang University, Asan, 31538, Republic of Korea.,Department of Medical Science, Soonchunhyang University, Asan, 31538, Republic of Korea
| |
Collapse
|
12
|
Souza-Fabjan JMG, Batista RITP, Correia LFL, Paramio MT, Fonseca JF, Freitas VJF, Mermillod P. In vitro production of small ruminant embryos: latest improvements and further research. Reprod Fertil Dev 2021; 33:31-54. [PMID: 38769678 DOI: 10.1071/rd20206] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024] Open
Abstract
This review presents the latest advances in and main obstacles to the application of invitro embryo production (IVEP) systems in small ruminants. This biotechnology is an extremely important tool for genetic improvement for livestock and is essential for the establishment of other biotechnologies, such as cloning and transgenesis. At present, the IVEP market is almost non-existent for small ruminants, in contrast with the trends observed in cattle. This is probably related to the lower added value of small ruminants, lower commercial demand and fewer qualified professionals interested in this area. Moreover, there are fewer research groups working on small ruminant IVEP than those working with cattle and pigs. The heterogeneity of oocytes collected from growing follicles in live females or from ovaries collected from abattoirs remains a challenge for IVEP dissemination in goats and sheep. Of note, although the logistics of oocyte collection from live small ruminant females are more complex than in the bovine, in general the IVEP outcomes, in terms of blastocyst production, are similar. We anticipate that after appropriate training and repeatable results, the commercial demand for small ruminant invitro -produced embryos may increase.
Collapse
Affiliation(s)
- Joanna M G Souza-Fabjan
- Faculdade de Veterinária, Universidade Federal Fluminense, Rua Vital Brazil Filho, 64, Niterói-RJ, CEP 24230-340, Brazil; and Corresponding author
| | - Ribrio I T P Batista
- Faculdade de Veterinária, Universidade Federal Fluminense, Rua Vital Brazil Filho, 64, Niterói-RJ, CEP 24230-340, Brazil
| | - Lucas F L Correia
- Faculdade de Veterinária, Universidade Federal Fluminense, Rua Vital Brazil Filho, 64, Niterói-RJ, CEP 24230-340, Brazil
| | - Maria Teresa Paramio
- Departament de Ciencia Animal i dels Aliments, Facultat de Veterinaria, Universitat Autonoma de Barcelona, 08193 Cerdanyola del Valles, Barcelona, Spain
| | - Jeferson F Fonseca
- Embrapa Caprinos e Ovinos, Rodovia MG 133, km 42, Campo Experimental Coronel Pacheco, Coronel Pacheco-MG, CEP 36155-000, Brazil
| | - Vicente J F Freitas
- Laboratório de Fisiologia e Controle da Reprodução, Universidade Estadual do Ceará, Fortaleza-CE, CEP 60714-903, Brazil
| | - Pascal Mermillod
- Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement (INRAE), UMR7247, Physiologie de la Reproduction et des Comportements, Nouzilly, France
| |
Collapse
|
13
|
Proteomic analysis of healthy and atretic porcine follicular granulosa cells. J Proteomics 2020; 232:104027. [PMID: 33130110 DOI: 10.1016/j.jprot.2020.104027] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 10/22/2020] [Accepted: 10/26/2020] [Indexed: 12/12/2022]
Abstract
Follicular atresia is initiated with the apoptosis of granulosa cells (GCs) after birth in mammals. The molecular mechanisms underlying GC apoptosis during follicular selection are unclear at present. The objective of this study is to identify the proteins and pathways that may be involved in porcine follicular atresia. Proteins isolated from GCs collected from healthy and atretic follicles were detected by tandem mass tag (TMT) protein labeling and LC-MS/MS. A total of 4591 proteins in the healthy follicle granulosa cell (HFGC) and atretic follicle granulosa cell (AFGC) groups were identified, and 399 differentially abundant proteins were found between the HFGC and AFGC groups; of which 262 proteins were significantly up-regulated and 137 proteins were significantly down-regulated. Differential protein enrichment analysis showed that proteins involved in proteolysis, protein destabilization, phagocytosis, and engulfment were more abundant in the AFGC group. Also, these proteins were mainly involved in the lysosome, phagosome, autophagy, and apoptosis pathways. Specially, PTGFRN is potential important regulated protein in the development of the antral follicle, and down-regulation of PTGFRN in GCs may lead to follicular atresia. Our study shows that the identified proteins and their related signaling pathways may play crucial roles during health follicle develop to atretic follicle. SIGNIFICANCE: Follicular atresia during 'selection' reduces the reproductive potential of sows. In this study, we found 399 proteins differentially abundant. between the HFGC and AFGC groups. These results establish a foundation for elucidating the mechanism of follicular atresia in swine.
Collapse
|
14
|
Itze-Mayrhofer C, Brem G. Quantitative proteomic strategies to study reproduction in farm animals: Female reproductive fluids. J Proteomics 2020; 225:103884. [PMID: 32593762 DOI: 10.1016/j.jprot.2020.103884] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 06/10/2020] [Accepted: 06/21/2020] [Indexed: 02/06/2023]
Abstract
Reproductive fluids from the female reproductive tract are gaining attention for their potential to support and optimize reproductive processes, including gamete maturation and embryo culture in vitro. Quantitative proteomics is a powerful way to decipher the proteome of reproductive tract fluids and to identify biologically relevant proteins. The present review describes proteomic strategies for analysing female reproductive fluid proteins. In addition, it considers the strategies for the preparation of oviductal, uterine and follicular fluid samples. Finally, it highlights the main results of quantitative proteomic studies, providing insights into the biological processes related to reproductive biology in farm animals. SIGNIFICANCE: Assisted reproductive technologies (ARTs) have become vitally important for farm animal breeding and much effort is going into the optimization and refinement of the techniques. There are also attempts to imitate physiological conditions by adding reproductive fluids or individual fluid proteins to improve in vitro procedures. A detailed knowledge of the reproductive fluid proteomes is indispensable. The present review summarizes the most widely used quantitative proteomic approaches for the analysis of fluids from the female reproductive tract and highlights the potential of quantitative proteomics to delineate reproductive processes and identify candidate proteins for ARTs in farm animals.
Collapse
Affiliation(s)
- Corina Itze-Mayrhofer
- Institute of Animal Breeding and Genetics, Group Molecular Reproduction IFA-Tulln, University of Veterinary Medicine, Vienna, Austria.
| | - Gottfried Brem
- Institute of Animal Breeding and Genetics, Department of Biomedical Sciences, University of Veterinary Medicine, Vienna, Austria
| |
Collapse
|
15
|
Paes VM, de Figueiredo JR, Ryan PL, Willard ST, Feugang JM. Comparative Analysis of Porcine Follicular Fluid Proteomes of Small and Large Ovarian Follicles. BIOLOGY 2020; 9:biology9050101. [PMID: 32429601 PMCID: PMC7285177 DOI: 10.3390/biology9050101] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 04/16/2020] [Accepted: 05/06/2020] [Indexed: 12/21/2022]
Abstract
Ovarian follicular fluid is widely used for in vitro oocyte maturation, but its in-depth characterization to extract full beneficial effects remains unclear. Here, we performed both shotgun (nanoscale liquid chromatography coupled to tandem mass spectrometry or nanoLC-MS/MS) and gel-based (two dimension-differential in-gel electrophoresis or 2D-DIGE) proteomics, followed by functional bioinformatics to compare the proteomes of follicular fluids collected from small (<4 mm) and large (>6-12 mm) follicles of pig ovaries. A total of 2321 unique spots were detected with the 2D-DIGE across small and large follicles, while 2876 proteins with 88% successful annotations were detected with the shotgun approach. The shotgun and 2D-DIGE approaches revealed about 426 and 300 proteins that were respectively common across samples. Six proteins detected with both technical approaches were significantly differently expressed between small and large follicles. Pathways such as estrogen and PI3K-Akt signaling were significantly enriched in small follicles while the complement and coagulation cascades pathways were significantly represented in large follicles. Up-regulated proteins in small follicles were in favor of oocyte maturation, while those in large follicles were involved in the ovulatory process preparation. Few proteins with potential roles during sperm-oocyte interactions were especially detected in FF of large follicles and supporting the potential role of the ovarian FF on the intrafallopian sperm migration and interaction with the oocyte.
Collapse
Affiliation(s)
- Victor M. Paes
- Department of Animal and Dairy Sciences, Mississippi State University, Starkville, MS 39759, USA; (V.M.P.); (P.L.R.); (S.T.W.)
- Laboratory of Manipulation of Oocyte and Preantral follicles, State University of Ceará, CEP, 60740 903 Fortaleza, Brazil;
| | - José R. de Figueiredo
- Laboratory of Manipulation of Oocyte and Preantral follicles, State University of Ceará, CEP, 60740 903 Fortaleza, Brazil;
| | - Peter L. Ryan
- Department of Animal and Dairy Sciences, Mississippi State University, Starkville, MS 39759, USA; (V.M.P.); (P.L.R.); (S.T.W.)
| | - Scott T. Willard
- Department of Animal and Dairy Sciences, Mississippi State University, Starkville, MS 39759, USA; (V.M.P.); (P.L.R.); (S.T.W.)
| | - Jean M. Feugang
- Department of Animal and Dairy Sciences, Mississippi State University, Starkville, MS 39759, USA; (V.M.P.); (P.L.R.); (S.T.W.)
- Correspondence: ; Tel.: +662-325-7567; Fax: +662-325-8873
| |
Collapse
|
16
|
Paes VM, Liao SF, Figueiredo JR, Willard ST, Ryan PL, Feugang JM. Proteome changes of porcine follicular fluid during follicle development. J Anim Sci Biotechnol 2019; 10:94. [PMID: 31827787 PMCID: PMC6902611 DOI: 10.1186/s40104-019-0400-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 10/18/2019] [Indexed: 12/19/2022] Open
Abstract
Background Ovarian follicular fluid influences follicle and oocyte growth, but the fluctuation of its protein content during folliculogenesis has not been comprehensively analyzed. Here we used a shotgun approach and bioinformatics analyses to investigate and compare the proteomes of porcine follicular fluid (pFF) obtained from small (< 4 mm), medium (4–6 mm) and large (> 6–12 mm) follicles. Results Follicular fluid samples containing highest estrogen levels were selected as non-atretic from small (SNA: 26.1 ± 15 ng/mL), medium (MNA: 162 ± 54 ng/mL), and large (LNA: 290 ± 37 ng/mL) follicles for proteomic analyses. We detected 1627, 1699, and 1756 proteins in SNA, MNA, and LNA samples, respectively. Nearly 60–63% of total proteins were specific to each sample, 11–13% were shared in pairwise comparisons, and 247 proteins were shared among all samples. Functional categorization indicated comparable gene ontology (GO) terms distribution per cellular component, molecular function, and biological process categories across samples; however, the ranking of highly significantly enriched GO terms per category revealed differences between samples. The patterns of protein-to-protein interactions varied throughout follicle development, and proteins such as serine protease inhibitor, clade E (SERPINE); plasminogen activator, urokinase (PLAU); and plasminogen activator, urokinase receptor (PLAUR) appeared stage-specific to SNA, MNA, and LNA, respectively. The “complement and coagulation cascades” was the common major pathway. Besides, properdin and fibulin-1 were abundant proteins that appeared absent in LNA samples. Conclusion This study provides extensive and functional analyses of the pFF proteome changes during folliculogenesis and offers the potential for novel biomarker discovery in pFF for oocyte quality assessment.
Collapse
Affiliation(s)
- Victor M Paes
- 1Department of Animal and Dairy Sciences, Mississippi State University, 4025 Wise Center, PO Box 9815, Starkville, Mississippi State MS 39762 USA.,2Laboratory of Manipulation of Oocyte and Preantral follicles, State University of Ceará, Fortaleza, CE Brazil
| | - Shengfa F Liao
- 1Department of Animal and Dairy Sciences, Mississippi State University, 4025 Wise Center, PO Box 9815, Starkville, Mississippi State MS 39762 USA
| | - Jose R Figueiredo
- 2Laboratory of Manipulation of Oocyte and Preantral follicles, State University of Ceará, Fortaleza, CE Brazil
| | - Scott T Willard
- 1Department of Animal and Dairy Sciences, Mississippi State University, 4025 Wise Center, PO Box 9815, Starkville, Mississippi State MS 39762 USA
| | - Peter L Ryan
- 1Department of Animal and Dairy Sciences, Mississippi State University, 4025 Wise Center, PO Box 9815, Starkville, Mississippi State MS 39762 USA
| | - Jean M Feugang
- 1Department of Animal and Dairy Sciences, Mississippi State University, 4025 Wise Center, PO Box 9815, Starkville, Mississippi State MS 39762 USA
| |
Collapse
|
17
|
Protein profile of the ovarian follicular fluid of brown brocket deer ( Mazama gouazoubira; Fisher, 1814). ZYGOTE 2019; 28:170-173. [PMID: 31787122 DOI: 10.1017/s0967199419000741] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The aim of this study was to characterize the protein profile of ovarian follicular fluid (FF) of brown brocket deer (Mazama gouazoubira). Five adult females received an ovarian stimulation treatment and the FF was collected by laparoscopy from small/medium (≤3.5 mm) and large (>3.5 mm) follicles. Concentrations of soluble proteins in FF samples were measured and proteins were analyzed by 1-D SDS-PAGE followed by tryptic digestion and tandem mass spectrometry. Data from protein list defined after a Mascot database search were analyzed using the STRAP software tool. For the protein concentration, no significant difference (P > 0.05) was observed between small/medium and large follicles: 49.2 ± 22.8 and 56.7 ± 27.4 μg/μl, respectively. Mass spectrometry analysis identified 13 major proteins, but with no significant difference (P > 0.05) between follicle size class. This study provides insight into elucidating folliculogenesis in brown brocket deer.
Collapse
|
18
|
Swelum AAA, Saadeldin IM, Abdelnour SA, Ba-Awadh H, Abd El-Hack ME, Sheiha AM. Relationship between concentrations of macro and trace elements in serum and follicular, oviductal, and uterine fluids of the dromedary camel (Camelus dromedarius). Trop Anim Health Prod 2019; 52:1315-1324. [PMID: 31760562 DOI: 10.1007/s11250-019-02137-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 10/25/2019] [Indexed: 12/24/2022]
Abstract
This study aimed at investigating the relationship between concentrations of macro and trace elements in blood serum, and fluids from small and large follicles (SFF and LFF, respectively), oviduct (OF), and uterus (UF) of female dromedary camels. Fluids from small (2-6 mm) and large follicles (7-20 mm), oviduct and uterus, and blood samples were collected from 19 camels. The results indicated that the concentrations of serum Mg, Fe, and Mn were significantly higher than their follicular fluid, OF, and UF concentrations. Levels of Zn, Fe, Cu, Cr, and Mn were significantly higher in SFF than in LFF. Se and Mo concentrations were higher in LFF. Co concentration was lower in serum than in reproductive tract fluids. Cr concentration was higher in UF and OF than in the serum, SFF, and LFF. High Ca concentration was observed for serum and SFF, followed by LFF. The concentration of Na was about 1.18-fold higher in SFF than in serum, OF, and LFF, and approximately 4.1-fold higher in serum than in UF. K was present in higher concentration in SFF than in serum and LFF; however, its concentration was low in UF and OF. In conclusion, this study shows the concentrations of certain elements in small and large follicular, uterine, and oviductal fluids, which may be low or high depending on their function in the development and growth of follicles. This information can support the development of new media for in vitro oocyte maturation and fertilization of female camels.
Collapse
Affiliation(s)
- Ayman Abdel-Aziz Swelum
- Department of Animal Production, College of Food and Agricultural Sciences, King Saud University, P.O Box 2460, Riyradh, 11451, Kingdom of Saudi Arabia. .,Department of Theriogenology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, 44511, Egypt.
| | - Islam M Saadeldin
- Department of Theriogenology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, 44511, Egypt. .,Physiology Department, Faculty of veterinary Medicine, Zagazig University, Zagazig, 44511, Egypt.
| | - Sameh A Abdelnour
- Animal Production Department, Faculty of Agriculture, Zagazig University, Zagazig, 44511, Egypt
| | - Hani Ba-Awadh
- Department of Animal Production, College of Food and Agricultural Sciences, King Saud University, P.O Box 2460, Riyradh, 11451, Kingdom of Saudi Arabia
| | | | - Asmaa M Sheiha
- Animal Production Department, Faculty of Agriculture, Zagazig University, Zagazig, 44511, Egypt
| |
Collapse
|
19
|
Dutra GA, Ishak GM, Pechanova O, Pechan T, Peterson DG, Jacob JCF, Willard ST, Ryan PL, Gastal EL, Feugang JM. Seasonal variation in equine follicular fluid proteome. Reprod Biol Endocrinol 2019; 17:29. [PMID: 30841911 PMCID: PMC6404268 DOI: 10.1186/s12958-019-0473-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Accepted: 02/26/2019] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Proteomic studies of follicular fluid (FF) exist for several species, including the horse; however, the seasonal influence on FF proteome has not been explored in livestock. The application of high-throughput proteomics of FF in horse has the potential to identify seasonal variations of proteins involved in follicle and oocyte growth. METHODS This study (i) profiles the proteomes of equine FF collected from dominant growing follicles during the spring anovulatory season (SAN), and spring (SOV), summer (SUM), and fall (FOV) ovulatory seasons; and (ii) identifies season-dependent regulatory networks and associated key proteins. RESULTS Regardless of season, a total of 90 proteins were identified in FF, corresponding to 63, 72, 69, and 78 proteins detected in the SAN, SOV, SUM, and FOV seasons, respectively. Fifty-two proteins were common to all seasons, a total of 13 were unique to either season, and 25 were shared between two seasons or more. Protein-to-protein interaction (PPI) analysis indicated the likely critical roles of plasminogen in the SAN season, the prothrombin/plasminogen combination in SUM, and plasminogen/complement C3 in both SOV and FOV seasons. The apolipoprotein A1 appeared crucial in all seasons. The present findings show that FF proteome of SUM differs from other seasons, with FF having high fluidity (low viscosity). CONCLUSIONS The balance between the FF contents in prothrombin, plasminogen, and coagulation factor XII proteins favoring FF fluidity may be crucial at the peak of the ovulatory season (SUM) and may explain the reported lower incidence of hemorrhagic anovulatory follicles during the SUM season.
Collapse
Affiliation(s)
- G A Dutra
- Department of Animal Science, Food and Nutrition, Southern Illinois University, Carbondale, IL, USA
- Department of Reproduction and Animal Evaluation, Federal Rural University of Rio de Janeiro, Seropédica, Brazil
| | - G M Ishak
- Department of Animal Science, Food and Nutrition, Southern Illinois University, Carbondale, IL, USA
- Department of Surgery and Obstetrics, College of Veterinary Medicine, University of Baghdad, Baghdad, Iraq
| | - O Pechanova
- Institute for Genomics, Biocomputing and Bioinformatics, University, Mississippi State, Oxford, MS, USA
| | - T Pechan
- Institute for Genomics, Biocomputing and Bioinformatics, University, Mississippi State, Oxford, MS, USA
| | - D G Peterson
- Institute for Genomics, Biocomputing and Bioinformatics, University, Mississippi State, Oxford, MS, USA
| | - J C F Jacob
- Department of Reproduction and Animal Evaluation, Federal Rural University of Rio de Janeiro, Seropédica, Brazil
| | - S T Willard
- Department of Animal and Dairy Sciences, Mississippi State University, Mississippi State, 4025 Wise Center, PO Box 9815, Mississippi State, MS, 39762, USA
| | - P L Ryan
- Department of Animal and Dairy Sciences, Mississippi State University, Mississippi State, 4025 Wise Center, PO Box 9815, Mississippi State, MS, 39762, USA
| | - E L Gastal
- Department of Animal Science, Food and Nutrition, Southern Illinois University, Carbondale, IL, USA
| | - J M Feugang
- Department of Animal and Dairy Sciences, Mississippi State University, Mississippi State, 4025 Wise Center, PO Box 9815, Mississippi State, MS, 39762, USA.
| |
Collapse
|