1
|
Asadi Z, Aghaz F, Rahimi Z, Arkan E, Vaisi-Raygani A. Do Linalool-Loaded Solid Lipid Nanoparticles Improve the Quality of Naval Medical Research Institute Mouse Sperm During Freezing/Thawing and Handling Processes? Biopreserv Biobank 2025. [PMID: 40260493 DOI: 10.1089/bio.2024.0156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/23/2025] Open
Abstract
Introduction: Handling, freezing, and thawing of sperm causes oxidative stress, compromising sperm quality. Nanotechnology offers platforms for the smart delivery of antioxidants during these processes. Objectives: A solid lipid nanoparticle (SLN) was used to deliver linalool, as an antioxidant supplementation to Naval Medical Research Institute mouse sperm during handling, freezing, and thawing. Methods: Linalool-loaded solid lipid nanoparticle (L-SLN) was made using the self-assembly method. After the assessment of physicochemical properties, the impact of L-SLN (10, 20, 30, and 50 µg/mL) on sperm motility, viability, sperm DNA fragmentation (SDF), nitric oxide (NO) production, and the activity of superoxide dismutase (SOD), glutathione peroxidase (GPx), and catalase (CAT), was investigated after its addition to the handling, freezing, and thawing media. Results: L-SLN was successfully created with a size of 262 ± 9.5 and a zeta potential of -28.5 ± 7.12, with an extended-release over time. During handling and freezing, supplementing corresponding media with L-SLN resulted in increased sperm motility and viability, specifically at 30 µg/mL. The percentage of SDF also decreased in post-thawed sperm at 30 µg/mL. L-SLN also led to elevated post-thawed NO production at 20 µg/mL, as well as increased SOD activity at 20 and 30 µg/mL. It also enhanced CAT and GPx activity at 30 and 10 µg/mL respectively. In handling media, L-SLN at 10 µg/mL could enhance NO production, CAT, and SOD activity, and at 20 µg/mL also boosted NO production and GPx activity. Generally, there was no significant improvement in sperm parameters with the mutual concentration of L-SLN for thawing media. Conclusions: Treating sperm extender media with 20 and 30 µg/mL of L-SLN and handling media with 10 and 30 µg/mL of L-SLN could improve sperm parameters following these interventions. L-SLN is a new antioxidant for sperm handling and freezing media, which may be applicable in human reproductive efforts.
Collapse
Affiliation(s)
- Zahra Asadi
- Department of Clinical Biochemistry, Medical School, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Students Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Faranak Aghaz
- Nano Drug Delivery Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Zohreh Rahimi
- Department of Clinical Biochemistry, Medical School, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Elham Arkan
- Nano Drug Delivery Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Asad Vaisi-Raygani
- Department of Clinical Biochemistry, Medical School, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Fertility and Infertility Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
2
|
Elomda AM, Mehaisen GMK, Stino FKR, Saad MF, Ghaly MM, Partyka A, Abbas AO, Nassar FS. The characteristics of frozen-thawed rooster sperm using various intracellular cryoprotectants. Poult Sci 2024; 103:104190. [PMID: 39180781 PMCID: PMC11385514 DOI: 10.1016/j.psj.2024.104190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 07/19/2024] [Accepted: 08/04/2024] [Indexed: 08/26/2024] Open
Abstract
Cryopreservation of rooster semen is essential for conserving genetic resources, genetic improvement, and increasing productivity. However, the nature of avian sperm presents a global issue in ensuring superior frozen semen for artificial insemination. Thus, the present study aimed to evaluate the impact of using dimethylacetamide (DMA), dimethyl sulfoxide (DMSO), and ethylene glycol (EG) as cryoprotectants on post-thawed sperm motility, quality, antioxidant indicators, and fertilizing capacity. Twice a week, fresh semen ejaculates were collected from 15 adult roosters and immediately evaluated to constitute a pool from clean and qualified samples. The pooled semen was further diluted at a ratio of 1:2 (v/v) with an extender and then subjected to a freezing protocol in a liquid nitrogen vapor after adding a cryoprotectant solution containing 6% of either DMA, DMSO, or EG, respectively. After thawing, characteristics of sperm motion, quality, antioxidants, and fertilizing ability were evaluated and compared to fresh and cooled semen as controls. The results demonstrated that semen cooling negatively affected some parameters of sperm motility, quality, antioxidant biomarkers, and fertility. In comparison to the DMSO and EG groups, employing DMA considerably (P < 0.05) raised the percentages of sperm progressive motility, viability, plasma membrane intactness, and DNA integrity. The DMA group showed a significant increase in the catalase and glutathione reduced antioxidant enzyme activity and a reduction in nitric oxide and lipid peroxidation. After artificial insemination, the DMA and DMSO groups exhibited considerably (P < 0.05) better rates of hatchability and fertility than the EG group. It is concluded that freezing extenders containing 6% DMA is better than DMSO or EG to improve the post thaw semen quality and fertility in chickens.
Collapse
Affiliation(s)
- Ahmed M Elomda
- Department of Animal Biotechnology, Animal Production Research Institute, Agriculture Research Center, Dokki, Giza, Egypt
| | - Gamal M K Mehaisen
- Department of Animal Production, Faculty of Agriculture, Cairo University, Giza, Egypt
| | - Farid K R Stino
- Department of Animal Production, Faculty of Agriculture, Cairo University, Giza, Egypt
| | - Mohamed F Saad
- Department of Animal Biotechnology, Animal Production Research Institute, Agriculture Research Center, Dokki, Giza, Egypt
| | - Mona M Ghaly
- Department of Animal Production, Faculty of Agriculture, Cairo University, Giza, Egypt
| | - Agnieszka Partyka
- Department of Reproduction and Clinic of Farm Animals, Wroclaw University of Environmental and Life Sciences, Wroclaw, Poland.
| | - Ahmed O Abbas
- Department of Animal Production, Faculty of Agriculture, Cairo University, Giza, Egypt; Department of Animal and Fish Production, College of Agricultural and Food Sciences, King Faisal University, Al-Ahsa, Saudi Arabia
| | - Farid S Nassar
- Department of Animal Production, Faculty of Agriculture, Cairo University, Giza, Egypt; Department of Animal and Fish Production, College of Agricultural and Food Sciences, King Faisal University, Al-Ahsa, Saudi Arabia
| |
Collapse
|
3
|
Calabrese EJ, Agathokleous E, Dhawan G, Kapoor R, Dhawan V, Manes PK, Calabrese V. Nitric oxide and hormesis. Nitric Oxide 2023; 133:1-17. [PMID: 36764605 DOI: 10.1016/j.niox.2023.02.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/20/2023] [Accepted: 02/05/2023] [Indexed: 02/10/2023]
Abstract
This present paper provides an assessment of the occurrence of nitric oxide (NO)-induced hormetic-biphasic dose/concentration relationships in biomedical research. A substantial reporting of such NO-induced hormetic effects was identified with particular focus on wound healing, tumor promotion, and sperm biology, including mechanistic assessment and potential for translational applications. Numerous other NO-induced hormetic effects have been reported, but require more development prior to translational applications. The extensive documentation of NO-induced biphasic responses, across numerous organs (e.g., bone, cardiovascular, immune, intestine, and neuronal) and cell types, suggests that NO-induced biological activities are substantially mediated via hormetic processes. These observations are particularly important because broad areas of NO biology are constrained by the quantitative features of the hormetic response. This determines the amplitude and width of the low dose stimulation, affecting numerous biomedical implications, study design features (e.g., number of doses, dose spacing, sample sizes, statistical power), and the potential success of clinical trials.
Collapse
Affiliation(s)
- Edward J Calabrese
- Department of Environmental Health Sciences, Morrill I, N344, University of Massachusetts, Amherst, MA, 01003, USA.
| | - Evgenios Agathokleous
- School of Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing, 210044, China.
| | | | - Rachna Kapoor
- Saint Francis Hospital and Medical Center, Hartford, CT, USA.
| | - Vikas Dhawan
- Department of Surgery, Indian Naval Ship Hospital, Mumbai, India.
| | | | - Vittorio Calabrese
- Department of Biomedical and Biotechnological Sciences, School of Medicine University of Catania, Via Santa Sofia 97, Catania, 95123, Italy.
| |
Collapse
|
4
|
Upadhyay VR, Roy AK, Pandita S, Raval K, Patoliya P, Ramesh V, Dewry RK, Yadav HP, Mohanty TK, Bhakat M. Optimized addition of nitric oxide compounds in semen extender improves post-thaw seminal attributes of Murrah buffaloes. Trop Anim Health Prod 2023; 55:47. [PMID: 36702975 DOI: 10.1007/s11250-023-03474-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 01/17/2023] [Indexed: 01/28/2023]
Abstract
Semen dilution and cryopreservation alter the homogeneity of seminal plasma, resulting in a non-physiological redox milieu and consequently poor sperm functionality. Considering the concentration-specific bimodal action of nitric oxide (NO) in the regulation of sperm functions, cryopreservation media supplemented with optimized concentrations can improve the semen attributes. The present study aimed to evaluate the effect of adding an optimized concentration of sodium nitroprusside (SNP) and N-nitro-L-arginine methyl ester (L-NAME) in an extender on in vitro semen quality. An aliquot of semen samples (n = 32) from Murrah buffalo bulls (n = 8) was divided into control (C) and treatment (T-I: SNP in extender at 1 µmol/L; T-II: L-NAME in extender at 10 µmol/L). Fresh semen quality parameters showed no significant difference at 0 h except for the structural integrity in the T-II group. Post-thaw semen quality parameters and sperm kinematics using computer-aided sperm analysis (CASA) revealed significantly higher (p < 0.05) cryoresistance in the treatment groups. Viability, acrosome integrity, and membrane integrity were significantly higher (p < 0.05) in both treatment groups; however, the results were pervasive in T-II. Lower abnormal spermatozoa were observed in both T-I and T-II. SNP supplementation led to a significant rise (p < 0.05) in NO, whereas L-NAME reduced the NO concentration in post-thawed samples, which was directly correlated with different sperm functionality and associated biomarkers viz. total antioxidant capacity (TAC) and thiobarbituric acid reactive substance (TBARS). It was concluded that the cryopreservation media supplemented with SNP and L-NAME at 1 µmol/L and 10 µmol/L, respectively, lower the cryo-damage and improve post-thaw seminal attributes.
Collapse
Affiliation(s)
- Vishwa Ranjan Upadhyay
- Division of Animal Physiology, ICAR-National Dairy Research Institute, Karnal, Haryana, 132001, India.
| | - A K Roy
- Division of Animal Physiology, ICAR-National Dairy Research Institute, Karnal, Haryana, 132001, India
| | - Sujata Pandita
- Division of Animal Physiology, ICAR-National Dairy Research Institute, Karnal, Haryana, 132001, India
| | - Kathan Raval
- Artificial Breeding Research Centre, ICAR-National Dairy Research Institute, Karnal, Haryana, India
| | - Priyanka Patoliya
- Artificial Breeding Research Centre, ICAR-National Dairy Research Institute, Karnal, Haryana, India
| | - Vikram Ramesh
- Animal Reproduction and Gynaecology, ICAR-National Research Center on Mithun, Medziphema, India
| | - Raju Kr Dewry
- Artificial Breeding Research Centre, ICAR-National Dairy Research Institute, Karnal, Haryana, India
| | - Hanuman P Yadav
- Artificial Breeding Research Centre, ICAR-National Dairy Research Institute, Karnal, Haryana, India
| | - T K Mohanty
- Artificial Breeding Research Centre, ICAR-National Dairy Research Institute, Karnal, Haryana, India
| | - Mukesh Bhakat
- Artificial Breeding Research Centre, ICAR-National Dairy Research Institute, Karnal, Haryana, India
| |
Collapse
|
5
|
Miguel-Jiménez S, Carvajal-Serna M, Peña-Delgado V, Casao A, Pérez-Pe R. Effect of melatonin and nitric oxide on capacitation and apoptotic changes induced by epidermal growth factor in ram sperm. Reprod Fertil Dev 2023; 35:282-293. [PMID: 36403503 DOI: 10.1071/rd22146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 10/17/2022] [Indexed: 11/21/2022] Open
Abstract
CONTEXT Apart from the canonical cAMP-PKA pathway, ram sperm capacitation can be achieved by the MAPK ERK1/2 signalling cascade, activated by epidermal growth factor (EGF). AIMS This study aims to investigate the effect of melatonin and nitric oxide (NO·) on capacitation and apoptotic-like changes in EGF-capacitated ram spermatozoa. METHODS In vitro capacitation was induced by EGF in the absence or presence of melatonin (100pM or 1μM). Also, a NO· precursor, L-arginine, or a NOS inhibitor, NG-nitro-L-arginine methyl ester (L-NAME), were added to capacitation media to study the interaction of NO· and melatonin during EGF-capacitation. Sperm functionality parameters (motility, viability, capacitation state), apoptotic markers (caspase activation and DNA damage), NO· levels, and phosphorylated c-Jun N-terminal kinase (JNK) and p38 mitogen-activated protein kinase (assessed by Western blot), were evaluated in swim-up and capacitated samples with EGF. KEY RESULTS NO· levels and the apoptotic-related markers were raised after EGF incubation. Melatonin had a bimodal role on sperm EGF-capacitation, preventing it at high concentration and promoting acrosome reaction at low concentration, but neither of the two concentrations prevented the increase in apoptotic-like markers or NO· levels. However, melatonin at 1μM prevented the activation of JNK. CONCLUSIONS NO· metabolism does not seem to modulate the apoptosis-like events in ram spermatozoa. Melatonin at 1μM prevents ram sperm capacitation induced by EGF independently from nitric oxide metabolism, and it could be exerted by limiting the JNK mitogen-activated protein kinase (MAPK) activation. IMPLICATIONS This study improvesour understanding of the biochemical mechanisms involved in sperm capacitation, and ultimately, fertility.
Collapse
Affiliation(s)
- Sara Miguel-Jiménez
- Department of Biochemistry and Molecular and Cell Biology, Faculty of Veterinary Sciences, Institute of Environmental Sciences of Aragón (IUCA), University of Zaragoza, Miguel Servet 177, Zaragoza 50013, Spain
| | - Melissa Carvajal-Serna
- Department of Biochemistry and Molecular and Cell Biology, Faculty of Veterinary Sciences, Institute of Environmental Sciences of Aragón (IUCA), University of Zaragoza, Miguel Servet 177, Zaragoza 50013, Spain
| | - Victoria Peña-Delgado
- Department of Biochemistry and Molecular and Cell Biology, Faculty of Veterinary Sciences, Institute of Environmental Sciences of Aragón (IUCA), University of Zaragoza, Miguel Servet 177, Zaragoza 50013, Spain
| | - Adriana Casao
- Department of Biochemistry and Molecular and Cell Biology, Faculty of Veterinary Sciences, Institute of Environmental Sciences of Aragón (IUCA), University of Zaragoza, Miguel Servet 177, Zaragoza 50013, Spain
| | - Rosaura Pérez-Pe
- Department of Biochemistry and Molecular and Cell Biology, Faculty of Veterinary Sciences, Institute of Environmental Sciences of Aragón (IUCA), University of Zaragoza, Miguel Servet 177, Zaragoza 50013, Spain
| |
Collapse
|
6
|
Upadhyay VR, Ramesh V, Dewry RK, Yadav DK, Ponraj P. Bimodal interplay of reactive oxygen and nitrogen species in physiology and pathophysiology of bovine sperm function. Theriogenology 2022; 187:82-94. [DOI: 10.1016/j.theriogenology.2022.04.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 04/22/2022] [Accepted: 04/23/2022] [Indexed: 11/17/2022]
|
7
|
Staicu FD, Martínez-Soto JC, Canovas S, Matás C. Nitric oxide-targeted protein phosphorylation during human sperm capacitation. Sci Rep 2021; 11:20979. [PMID: 34697378 PMCID: PMC8546126 DOI: 10.1038/s41598-021-00494-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Accepted: 10/07/2021] [Indexed: 12/25/2022] Open
Abstract
Among many other molecules, nitric oxide insures the correct progress of sperm capacitation by mediating phosphorylation events. For a more comprehensive understanding of how this happens, we capacitated human spermatozoa from healthy men in the presence/absence of S-Nitrosoglutathione, a nitric oxide donor, two nitric oxide synthase inhibitors, NG-Nitro-l-arginine Methyl Ester Hydrochloride and Aminoguanidine Hemisulfate salt and, finally, with/without l-Arginine, the substrate for nitric oxide synthesis, and/or human follicular fluid. When analyzing the phosphorylation of protein kinase A substrates and tyrosine residues, we particularly observed how the inhibition of nitric oxide synthesis affects certain protein bands (~ 110, ~ 87, ~ 75 and ~ 62 kD) by lowering their phosphorylation degree, even when spermatozoa were incubated with l-Arginine and/or follicular fluid. Mass spectrometry analysis identified 29 proteins in these species, related to: spermatogenesis, binding to the zona pellucida, energy and metabolism, stress response, motility and structural organization, signaling and protein turnover. Significant changes in the phosphorylation degree of specific proteins could impair their biological activity and result in severe fertility-related phenotypes. These findings provide a deeper understanding of nitric oxide’s role in the capacitation process, and consequently, future studies in infertile patients should determine how nitric oxide mediates phosphorylation events in the species here described.
Collapse
Affiliation(s)
- Florentin-Daniel Staicu
- Department of Physiology, Veterinary Faculty, University of Murcia, International Excellence Campus for Higher Education and Research (Campus Mare Nostrum), Calle Campus Universitario, 11, 30100, Murcia, Spain.,Institute for Biomedical Research of Murcia (IMIB), Murcia, Spain
| | | | - Sebastian Canovas
- Institute for Biomedical Research of Murcia (IMIB), Murcia, Spain.,Department of Physiology, Nursery Faculty, University of Murcia, International Excellence Campus for Higher Education and Research (Campus Mare Nostrum), Murcia, Spain
| | - Carmen Matás
- Department of Physiology, Veterinary Faculty, University of Murcia, International Excellence Campus for Higher Education and Research (Campus Mare Nostrum), Calle Campus Universitario, 11, 30100, Murcia, Spain. .,Institute for Biomedical Research of Murcia (IMIB), Murcia, Spain.
| |
Collapse
|
8
|
Li H, Yang BY, Liu MM, Zhao SW, Xie SZ, Wang H, Zhang S, Xuan XN, Jia LJ. Reproductive injury in male BALB/c mice infected with Neospora caninum. Parasit Vectors 2021; 14:158. [PMID: 33726783 PMCID: PMC7962277 DOI: 10.1186/s13071-021-04664-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 02/26/2021] [Indexed: 11/12/2022] Open
Abstract
Background Neospora caninum is one of the main causes of abortion in pregnant animals. However, N. caninum-induced reproductive injury in male mice is still unclear. Methods Male BALB/c mice were infected with a bovine isolate of N. caninum, and the organ coefficients of the testis and epididymis were measured. Lesions in the testis and epididymis were observed by light microscopy and transmission electron microscopy. Expression of the spermatogenic cell apoptosis-related proteins p53 and caspase-3 was detected by western blot. The expression of spermatogenesis-related genes in the testis was detected by reverse transcription-PCR. Sperm morphology and motility were observed. The levels of nitric oxide (NO) and antisperm antibody (AsAb) in the testicular homogenates and hormones in the serum were detected by enzyme-linked immunosorbent assay. The reproductive capacity of the male mice was detected using a reproduction test. Results The organ coefficients of the testis and epididymis of the experimental group were significantly downregulated. Light microscopy examination revealed that the spermatogenic cells of the testis were arranged in a disordered manner, and the number was reduced. The number of sperm in the epididymal lumen was significantly reduced, and the cytoplasm exhibited vacuolation and degeneration. Ultrastructural studies revealed that the cells of the testis and epididymis tissues showed varying degrees of disease. The level of p53 and caspase-3 expression in the testis was significantly upregulated. The expression of the testicular spermatogenesis-related genes Herc4, Ipo11 and Mrto4 were strongly downregulated. Observation of sperm by microscopic examination revealed significantly reduced sperm density and sperm motility, and the number of sperm deformities was significantly increased. The level of NO and AsAb was significantly increased. The levels of luteinizing hormone, follicle-stimulating hormone and gonadotropin-releasing hormone were significantly upregulated, whereas the levels of testosterone, thyrotropin-releasing hormone, thyroxine and thyroid-stimulating hormone were significantly downregulated. After challenge, the infected male mice and healthy female mice were caged together: the subsequent fetal death rate was increased, and the conception rate, litter size, number of live births and the birth weight were significantly reduced. Conclusions Infection of male BALB/c mice with the bovine isolate of N. caninum induced varying degrees of injury to the testis, epididymis and sperm of the mice, destroyed spermatogenesis and affected the reproductive capacity.![]()
Collapse
Affiliation(s)
- Hang Li
- Engineering Research Center of North-East Cold Region Beef Cattle Science & Technology Innovation, Ministry of Education, Yanbian University, No.977 Park Road, Yanji, 133002, People's Republic of China.,National Research Center for Protozoan Diseases, Obihiro University of Agriculture Veterinary Medicine, Inada-cho, Obihiro, Hokkaido, 080-8555, Japan
| | - Bing-Yi Yang
- Engineering Research Center of North-East Cold Region Beef Cattle Science & Technology Innovation, Ministry of Education, Yanbian University, No.977 Park Road, Yanji, 133002, People's Republic of China
| | - Ming-Ming Liu
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture Veterinary Medicine, Inada-cho, Obihiro, Hokkaido, 080-8555, Japan
| | - Shao-Wei Zhao
- Engineering Research Center of North-East Cold Region Beef Cattle Science & Technology Innovation, Ministry of Education, Yanbian University, No.977 Park Road, Yanji, 133002, People's Republic of China
| | - Su-Zhu Xie
- Engineering Research Center of North-East Cold Region Beef Cattle Science & Technology Innovation, Ministry of Education, Yanbian University, No.977 Park Road, Yanji, 133002, People's Republic of China
| | - Hao Wang
- Engineering Research Center of North-East Cold Region Beef Cattle Science & Technology Innovation, Ministry of Education, Yanbian University, No.977 Park Road, Yanji, 133002, People's Republic of China
| | - Shuang Zhang
- Engineering Research Center of North-East Cold Region Beef Cattle Science & Technology Innovation, Ministry of Education, Yanbian University, No.977 Park Road, Yanji, 133002, People's Republic of China
| | - Xue-Nan Xuan
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture Veterinary Medicine, Inada-cho, Obihiro, Hokkaido, 080-8555, Japan
| | - Li-Jun Jia
- Engineering Research Center of North-East Cold Region Beef Cattle Science & Technology Innovation, Ministry of Education, Yanbian University, No.977 Park Road, Yanji, 133002, People's Republic of China.
| |
Collapse
|
9
|
Almadaly EA, Ashour MA, Elfeky MS, Gewaily MS, Assar DH, Gamal IM. Seminal plasma and serum fertility biomarkers in Ossimi rams and their relationship with functional membrane integrity and morphology of spermatozoa. Small Rumin Res 2021. [DOI: 10.1016/j.smallrumres.2021.106318] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
10
|
Ciani F, Maruccio L, Cocchia N, d’Angelo D, Carotenuto D, Avallone L, Namagerdi AA, Tafuri S. Antioxidants in assisted reproductive technologies: An overview on dog, cat, and horse. J Adv Vet Anim Res 2021; 8:173-184. [PMID: 33860028 PMCID: PMC8043350 DOI: 10.5455/javar.2021.h500] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 11/02/2020] [Accepted: 11/14/2020] [Indexed: 01/24/2023] Open
Abstract
Assisted reproductive technologies (ARTs) are widely used as a tool to improve reproductive performance in both humans and animals. In particular, in the veterinary field, ARTs are used to improve animal genetics, recover endangered animals, and produce offspring in the event of subfertility or infertility in males or females. However, the use of ARTs did not improve the fertilization rate in some animals due to various factors such as the difficulty in reproducing an anatomical and humoral substrate typical of the natural condition or due to the increase in catabolites and their difficult elimination. The in vitro environment allows the production and increase in the concentration of substances, including reactive oxygen species (ROS), which could be harmful to gametes. If produced in high concentration, the ROS becomes deleterious, both in vitro and in vivo systems. It has been seen that the use of antioxidants can help neutralize or counteract the production of ROS. The present study aims to report the latest findings regarding the use of antioxidants in ARTs of some domestic species, such as dogs, cats, and horses, compared to other animal species, such as cattle, in which ARTs have instead developed more widely.
Collapse
Affiliation(s)
- Francesca Ciani
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Naples, Italy
- These authors contributed equally
| | - Lucianna Maruccio
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Naples, Italy
- These authors contributed equally
| | - Natascia Cocchia
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Naples, Italy
| | - Danila d’Angelo
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Naples, Italy
| | | | - Luigi Avallone
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Naples, Italy
| | | | - Simona Tafuri
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Naples, Italy
| |
Collapse
|
11
|
Alves NDC, Diniz SDA, Viegas RN, Cortes SF, Costa ED, Freitas MM, Martins-Filho OA, Araújo MSS, Lana ÂMQ, Wenceslau RR, Lagares MDA. Addition of caffeine to equine thawed sperm increases motility and decreases nitrite concentration. Andrologia 2020; 53:e13918. [PMID: 33368488 DOI: 10.1111/and.13918] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 11/03/2020] [Accepted: 11/04/2020] [Indexed: 11/26/2022] Open
Abstract
The aim of this study was to improve the quality of frozen-thawed equine sperm by the addition of caffeine to it. Semen from nine stallions was frozen and different concentrations of caffeine (3, 5 and 7.5 mM) were added to frozen-thawed semen. The sperm kinetic parameters, membrane functionality and integrity, and acrosome integrity and spontaneous acrosome reacted sperm were evaluated with a computer-assisted sperm analysis, a hypoosmotic swelling test and epifluorescent microscopy, respectively. Nitrite and hydroperoxide concentrations of frozen-thawed semen were measured using spectrophotometry. Sperm fertility was evaluated by artificial insemination (AI) of 16 mares with thawed ejaculates (control and 5 mM caffeine-treated groups). Compared to that in the control, the addition of 5 mM caffeine induced an increase in sperm motility (38.9 ± 2.8 versus 32.6 ± 3.4%), and a decrease in nitrite concentration (11.4 ± 2.1 versus 12.8 ± 2.9 µM/µg protein, p < .05). Moreover, the pregnancy rate from AI in the caffeine group was significantly higher (62.5%) than that in the control group (12.5%). These data suggest that caffeine reduced the nitrite concentration and enhanced sperm motility in thawed equine sperm, thus increasing the fertility rate in mares inseminated with caffeine-treated equine semen.
Collapse
Affiliation(s)
| | | | - Rodrigo Novaes Viegas
- Veterinary School, Federal University of Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Steyner Franca Cortes
- Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Eduardo Damasceno Costa
- Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Marina Morra Freitas
- Faculty of Veterinary Medicine, Pontifical Catholic University of Minas Gerais, Betim, Brazil
| | - Olindo Assis Martins-Filho
- René Rachou Research Center - Fiocruz, Laboratory of Diagnostic and Monitoring Biomarkers, Belo Horizonte, Brazil
| | - Márcio Sobreira Silva Araújo
- René Rachou Research Center - Fiocruz, Laboratory of Diagnostic and Monitoring Biomarkers, Belo Horizonte, Brazil
| | | | | | | |
Collapse
|
12
|
Kadlec M, Ros-Santaella JL, Pintus E. The Roles of NO and H 2S in Sperm Biology: Recent Advances and New Perspectives. Int J Mol Sci 2020; 21:E2174. [PMID: 32245265 PMCID: PMC7139502 DOI: 10.3390/ijms21062174] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 03/10/2020] [Accepted: 03/18/2020] [Indexed: 01/24/2023] Open
Abstract
After being historically considered as noxious agents, nitric oxide (NO) and hydrogen sulfide (H2S) are now listed as gasotransmitters, gaseous molecules that play a key role in a variety of cellular functions. Both NO and H2S are endogenously produced, enzymatically or non-enzymatically, and interact with each other in a range of cells and tissues. In spite of the great advances achieved in recent decades in other biological systems, knowledge about H2S function and interactions with NO in sperm biology is in its infancy. Here, we aim to provide an update on the importance of these molecules in the physiology of the male gamete. Special emphasis is given to the most recent advances in the metabolism, mechanisms of action, and effects (both physiological and pathophysiological) of these gasotransmitters. This manuscript also illustrates the physiological implications of NO and H2S observed in other cell types, which might be important for sperm function. The relevance of these gasotransmitters to several signaling pathways within sperm cells highlights their potential use for the improvement and successful application of assisted reproductive technologies.
Collapse
Affiliation(s)
| | | | - Eliana Pintus
- Department of Veterinary Sciences, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, 165 00 Praha 6-Suchdol, Czech Republic; (M.K.); (J.L.R.-S.)
| |
Collapse
|
13
|
Miguel-Jiménez S, Carvajal-Serna M, Calvo S, Casao A, Cebrián-Pérez JÁ, Muiño-Blanco T, Pérez-Pe R. Does Melatonin Exert Its Effect on Ram Sperm Capacitation Through Nitric Oxide Synthase Regulation? Int J Mol Sci 2020; 21:ijms21062093. [PMID: 32197481 PMCID: PMC7139474 DOI: 10.3390/ijms21062093] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 03/09/2020] [Accepted: 03/16/2020] [Indexed: 01/02/2023] Open
Abstract
Nitric oxide (NO·), synthesized from L-arginine by nitric oxide synthase (NOS), is involved in sperm functionality. NOS isoforms have been detected in spermatozoa from different species, and an increment in NOS activity during capacitation has been reported. This work aims to determine the presence and localization of NOS isoforms in ram spermatozoa and analyse their possible changes during in vitro capacitation. Likewise, we investigated the effect of melatonin on the expression and localization of NOS and NO· levels in capacitated ram spermatozoa. Western blot analysis revealed protein bands associated with neuronal NOS (nNOS) and epithelial NOS (eNOS) but not with inducible NOS (iNOS). However, the three isoforms were detected by indirect immunofluorescence (IFI), and their immunotypes varied over in vitro capacitation with cAMP-elevating agents. NO· levels (evaluated by DAF-2-DA/PI staining) increased after in vitro capacitation, and the presence of L-arginine in the capacitating medium raised NO· production and enhanced the acrosome reaction. Incubation in capacitating conditions with a high-cAMP medium with melatonin modified the NOS distribution evaluated by IFI, but no differences in Western blotting were observed. Melatonin did not alter NO· levels in capacitating conditions, so we could infer that its role in ram sperm capacitation would not be mediated through NO· metabolism.
Collapse
|
14
|
Alsalman ARS, Almashhedy LA, Alta'ee AH, Hadwan MH. Effect of Zinc Supplementation on Urate Pathway Enzymes in Spermatozoa and Seminal Plasma of Iraqi Asthenozoospermic Patients: A Randomized Controlled Trial. INTERNATIONAL JOURNAL OF FERTILITY & STERILITY 2019; 13:315-323. [PMID: 31710193 PMCID: PMC6875853 DOI: 10.22074/ijfs.2020.5760] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 04/27/2019] [Indexed: 01/30/2023]
Abstract
Background Uric acid (UA) is crucial for sperm metabolism as it protects seminal plasma against oxidative dam-
age. Zinc also plays a central role in sperm metabolism. The current study was designed to investigate the role of zinc
supplementation on qualitative and quantitative properties of seminal fluid, in parallel with the UA level and urate
pathway enzymes in the semen of patients with asthenozoospermia. Materials and Methods The study was designed as a randomized controlled trial of 60 asthenozoospermic subfertile
men. The current study, which was conducted during one year, involved 60 fertile and 60 asthenozoospermic subfertile
men belonging to Hilla City, Iraq. Semen samples were obtained from the participants before and after treatment with
zinc supplements. The levels of UA, xanthine oxidase (XO), adenosine deaminase (ADA) and 5'-nucleotidase (5'-NU)
activities were determined in spermatozoa and seminal plasma of both groups. Results UA levels (P=0.034) and 5'-NU activity (P=0.046) were significantly lower but ADA (P=0.05) and XO (P=0.015)
activities were significantly higher in infertile men than in healthy men. Treatment with zinc sulfate induced an increase in UA
(P=0.001) level and 5'-NU activity (P=0.001), but a decrease in ADA (P=0.016) and XO (P=0.05) activities. Conclusion Zinc supplementation restores UA levels and the activities of enzymes involved in the urate pathway
(XO and ADA) in the seminal plasma and spermatozoa of patients with asthenozoospermia, to reference values. Sup-
plementation of Zn compounds enhances the qualitative and quantitative properties of semen (Registration number:
NCT03361618).
Collapse
Affiliation(s)
| | - Lamia A Almashhedy
- Chemistry Department, College of Science, University of Babylon, Hilla, Iraq
| | - Abdulsamie H Alta'ee
- College of Medicine, University of Babylon, Hilla, Iraq.,College of Pharmacy, University of Babylon, Hilla, Iraq
| | - Mahmoud H Hadwan
- Chemistry Department, College of Science, University of Babylon, Hilla, Iraq. Electronic Address:
| |
Collapse
|
15
|
Li Y, Chen J, Li Z, Li C. Mitochondrial OXPHOS is involved in the protective effects of L-arginine against heat-induced low sperm motility of boar. J Therm Biol 2019; 84:236-244. [DOI: 10.1016/j.jtherbio.2019.07.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 06/30/2019] [Accepted: 07/01/2019] [Indexed: 12/18/2022]
|
16
|
Regulation of boar sperm functionality by the nitric oxide synthase/nitric oxide system. J Assist Reprod Genet 2019; 36:1721-1736. [PMID: 31325069 PMCID: PMC6707978 DOI: 10.1007/s10815-019-01526-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 07/08/2019] [Indexed: 12/15/2022] Open
Abstract
Purpose Nitric oxide (NO) is a free radical synthesized mainly by nitric oxide synthases (NOSs). NO regulates many aspects in sperm physiology in different species. However, in vitro studies investigating NOS distribution, and how NO influences sperm capacitation and fertilization (IVF) in porcine, have been lacking. Therefore, our study aimed to clarify these aspects. Methods Two main experiments were conducted: (i) boar spermatozoa were capacitated in the presence/absence of S-nitrosoglutathione (GSNO), a NO donor, and two NOS inhibitors, NG-nitro-L-arginine methyl ester hydrochloride (L-NAME) and aminoguanidine hemisulfate salt (AG), and (ii) IVF was performed in the presence or not of these supplements, but neither the oocytes nor the sperm were previously incubated in the supplemented media. Results Our results suggest that NOS distribution could be connected to pathways which lead to capacitation. Treatments showed significant differences after 30 min of incubation, compared to time zero in almost all motility parameters (P < 0.05). When NOSs were inhibited, three protein kinase A (PKA) substrates (~ 75, ~ 55, and ~50 kDa) showed lower phosphorylation levels between treatments (P < 0.05). No differences were observed in total tyrosine phosphorylation levels evaluated by Western blotting nor in situ. The percentage of acrosome-reacted sperm and phosphatidylserine translocation was significantly lower with L-NAME. Both inhibitors reduced sperm intracellular calcium concentration and IVF parameters, but L-NAME impaired sperm ability to penetrate denuded oocytes. Conclusions These findings point out to the importance of both sperm and cumulus-oocyte-derived NO in the IVF outcome in porcine. Electronic supplementary material The online version of this article (10.1007/s10815-019-01526-6) contains supplementary material, which is available to authorized users.
Collapse
|