1
|
Lasalle A, Benech-Correa G, Brunet FG, Vizziano-Cantonnet D. hsd17b1 is a key gene for ovarian differentiation of the Siberian sturgeon. Mol Reprod Dev 2024; 91:e23729. [PMID: 38282315 DOI: 10.1002/mrd.23729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 11/21/2023] [Accepted: 12/28/2023] [Indexed: 01/30/2024]
Abstract
This is the first work using gonads from undifferentiated, genetically-sexed Siberian sturgeon describing expression changes in genes related to steroid synthesis and female and male sex differentiation. One factor identified as relevant for ovarian differentiation was the gene coding for the enzyme Hsd17b1, which converts estrone into estradiol-17β. hsd17b1 was highly activated in female gonads at 2.5 months of age, around the onset of sex differentiation, preceding activation of two other genes involved in estrogen production (cyp19a1 and foxl2). hsd17b1 was also strongly repressed in males. Two known foxl2 paralogs are found in Siberian sturgeon-foxl2 and foxl2l-but only foxl2 appeared to be associated with ovarian differentiation. With regard to the male pathway, neither 11-oxygenated androgens nor classic male genes (amh, dmrt1, sox9, and dhh) were found to be involved in male sex differentiation, leaving open the question of which genes participate in early male gonad development in this ancient fish. Taken together, these results indicate an estrogen-dependence of female sex differentiation and 11-oxygenated androgen-independence of male sex differentiation.
Collapse
Affiliation(s)
- André Lasalle
- Laboratorio de Fisiología de la Reproducción y Ecología de Peces, Instituto de Biología, Facultad de Ciencias, Universidad de la República Oriental del Uruguay, Montevideo, Uruguay
| | - Germán Benech-Correa
- Laboratorio de Fisiología de la Reproducción y Ecología de Peces, Instituto de Biología, Facultad de Ciencias, Universidad de la República Oriental del Uruguay, Montevideo, Uruguay
| | - Frédéric G Brunet
- Institut de Génomique Fonctionnelle de Lyon, UMR5242, Ecole Normale Supérieure de Lyon, Centre National de la Recherche Scientifique, Université Claude Bernard, Lyon, France
| | - Denise Vizziano-Cantonnet
- Laboratorio de Fisiología de la Reproducción y Ecología de Peces, Instituto de Biología, Facultad de Ciencias, Universidad de la República Oriental del Uruguay, Montevideo, Uruguay
| |
Collapse
|
2
|
Liao J, Wan H, Zhang Z, Sheng Y, Jia X, Wang Y. Transcriptional regulation of IAG by dsx and foxl-2 in mud crab (Scylla paramamosain). Gen Comp Endocrinol 2024; 345:114396. [PMID: 37879419 DOI: 10.1016/j.ygcen.2023.114396] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 10/07/2023] [Accepted: 10/21/2023] [Indexed: 10/27/2023]
Abstract
Scylla paramamosain is an important cultured crab species on the southeast coast of China. However, the molecular regulation mechanism of its gonadal development still has not been thoroughly studied. Dsx (doublesex) and foxl-2 (forkhead transcription factor gene 2) are important transcription factors involved in gonadal development. So far, studies on the functions of dsx and foxl-2 in crustaceans are very limited. Insulin-like androgenic gland hormone (IAG) is an effector molecule that regulates the differentiation, development and sex maintenance of testes in crustaceans. In this study, the promoter region of Sp-IAG was predicted, and several potential binding sites of dsx and foxl-2 were found. Site-directed mutagenesis was performed on the predicted potential binding sites, and their promoter activity was analyzed. The results showed that there was a dsx and a foxl-2 binding site, respectively, that could regulate the expression of Sp-IAG. In order to verify the regulatory effect of these two transcription factors on Sp-IAG, we constructed the expression plasmids of dsx and foxl-2 and co-transfected them into HEK293T cell lines with the promoter of Sp-IAG, respectively. The results showed that dsx could significantly promote the expression of Sp-IAG, while foxl-2 could inhibit its expression substantially. Then we carried out in vivo RNA interference experiment on mud crabs. The expression of dsx and foxl-2 in crabs was interfered respectively. The results of qRT-PCR showed that the expression of Sp-IAG was significantly inhibited after interfering with dsx, while significantly increased after interfering with foxl-2, which was consistent with the cell experiment. In conclusion, dsx and foxl-2 transcription factors play opposite roles in regulating the expression of Sp-IAG.
Collapse
Affiliation(s)
- Jiaqian Liao
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Fisheries College, Jimei University, Xiamen 361021, China; Fujian Engineering Research Center of Aquatic Breeding and Healthy Aquaculture, Xiamen 361021, China
| | - Haifu Wan
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Fisheries College, Jimei University, Xiamen 361021, China; Fujian Engineering Research Center of Aquatic Breeding and Healthy Aquaculture, Xiamen 361021, China
| | - Ziping Zhang
- College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yinshen Sheng
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Fisheries College, Jimei University, Xiamen 361021, China; Fujian Engineering Research Center of Aquatic Breeding and Healthy Aquaculture, Xiamen 361021, China
| | - Xiwei Jia
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Fisheries College, Jimei University, Xiamen 361021, China; Fujian Engineering Research Center of Aquatic Breeding and Healthy Aquaculture, Xiamen 361021, China
| | - Yilei Wang
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Fisheries College, Jimei University, Xiamen 361021, China; Fujian Engineering Research Center of Aquatic Breeding and Healthy Aquaculture, Xiamen 361021, China.
| |
Collapse
|
3
|
Ruan R, Li Y, Yue H, Ye H, Jin J, Wu J, Du H, Li C. Transcriptome Analyses Reveal Expression Profiles of Morphologically Undifferentiated and Differentiated Gonads of Yangtze Sturgeon Acipenser dabryanus. Genes (Basel) 2023; 14:2058. [PMID: 38003000 PMCID: PMC10671670 DOI: 10.3390/genes14112058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 11/01/2023] [Accepted: 11/07/2023] [Indexed: 11/26/2023] Open
Abstract
Sturgeon is known as a primitive fish with the ZZ/ZW sex determination system and is highly prized for its valuable caviar. Exploring the molecular mechanisms underlying gonadal differentiation would contribute to broadening our knowledge on the genetic regulation of sex differentiation of fish, enabling improved artificial breeding and management of sturgeons. However, the mechanisms are still poorly understood in sturgeons. This study aimed to profile expression patterns between female and male gonads at morphologically undifferentiated and early differentiated stages and identify vital genes involved in gonadal sex differentiation of sturgeons. The sexes of Yangtze sturgeon (Acipenser dabryanus) juveniles were identified via the sex-specific DNA marker and histological observation. Transcriptome analyses were carried out on female and male gonads at 30, 80 and 180 days post-hatching. The results showed that there was a total of 17 overlapped DEGs in the comparison groups of between female and male gonads at the three developmental stages, in which there were three DEGs related to ovarian steroidogenesis, including hsd17b1, foxl2 and cyp19a1. The three DEGs were highly expressed in the female gonads, of which the expression levels were gradually increased with the number of days after hatching. No well-known testis-related genes were found in the overlapped DEGs. Additionally, the expression levels of hsd17b1 and cyp19a1 mRNA were decreased with the knockdown of foxl2 mRNA via siRNA. The results further suggested that foxl2 should play a crucial role in the ovarian differentiation of sturgeons. In conclusion, this study showed that more genes involved in ovarian development than testis development emerged with sexually dimorphic expression during early gonadal sex differentiation, and it provided a preliminary understanding of the molecular regulation on gonadal differentiation of sturgeons.
Collapse
Affiliation(s)
- Rui Ruan
- Key Laboratory of Freshwater Biodiversity Conservation, Ministry of Agriculture and Rural Affairs of China, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China; (R.R.); (Y.L.); (H.Y.); (H.Y.); (J.J.); (J.W.)
| | - Ying Li
- Key Laboratory of Freshwater Biodiversity Conservation, Ministry of Agriculture and Rural Affairs of China, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China; (R.R.); (Y.L.); (H.Y.); (H.Y.); (J.J.); (J.W.)
| | - Huamei Yue
- Key Laboratory of Freshwater Biodiversity Conservation, Ministry of Agriculture and Rural Affairs of China, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China; (R.R.); (Y.L.); (H.Y.); (H.Y.); (J.J.); (J.W.)
| | - Huan Ye
- Key Laboratory of Freshwater Biodiversity Conservation, Ministry of Agriculture and Rural Affairs of China, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China; (R.R.); (Y.L.); (H.Y.); (H.Y.); (J.J.); (J.W.)
| | - Jiali Jin
- Key Laboratory of Freshwater Biodiversity Conservation, Ministry of Agriculture and Rural Affairs of China, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China; (R.R.); (Y.L.); (H.Y.); (H.Y.); (J.J.); (J.W.)
| | - Jinping Wu
- Key Laboratory of Freshwater Biodiversity Conservation, Ministry of Agriculture and Rural Affairs of China, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China; (R.R.); (Y.L.); (H.Y.); (H.Y.); (J.J.); (J.W.)
| | - Hao Du
- Laboratory of Freshwater Fish Germplasm Resources and Biotechnology, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
| | - Chuangju Li
- Key Laboratory of Freshwater Biodiversity Conservation, Ministry of Agriculture and Rural Affairs of China, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China; (R.R.); (Y.L.); (H.Y.); (H.Y.); (J.J.); (J.W.)
| |
Collapse
|
4
|
Costábile A, Castellano M, Aversa-Marnai M, Quartiani I, Conijeski D, Perretta A, Villarino A, Silva-Álvarez V, Ferreira AM. A different transcriptional landscape sheds light on Russian sturgeon (Acipenser gueldenstaedtii) mechanisms to cope with bacterial infection and chronic heat stress. FISH & SHELLFISH IMMUNOLOGY 2022; 128:505-522. [PMID: 35985628 DOI: 10.1016/j.fsi.2022.08.022] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 08/09/2022] [Accepted: 08/11/2022] [Indexed: 06/15/2023]
Abstract
Sturgeons are chondrostean fish of high economic value and critically endangered due to anthropogenic activities, which has led to sturgeon aquaculture development. Russian sturgeon (Acipenser gueldenstaedtii), the second most important species reared for caviar, is successfully farmed in subtropical countries, including Uruguay. However, during the Uruguayan summer, sturgeons face intolerable warmer temperatures that weaken their defences and favour infections by opportunistic pathogens, increasing fish mortality and farm economic losses. Since innate immunity is paramount in fish, for which the liver plays a key role, we used deep RNA sequencing to analyse differentially expressed genes in the liver of Russian sturgeons exposed to chronic heat stress and challenged with Aeromonas hydrophila. We assembled 149.615 unigenes in the Russian sturgeon liver transcriptome and found that metabolism and immune defence pathways are among the top five biological processes taking place in the liver. Chronic heat stress provoked profound effects on liver biological functions, up-regulating genes related to protein folding, heat shock response and lipid and protein metabolism to meet energy demands for coping with heat stress. Besides, long-term exposure to heat stress led to cell damage triggering liver inflammation and diminishing liver ability to mount an innate response to A. hydrophila challenge. Accordingly, the reprogramming of liver metabolism over an extended period had detrimental effects on fish health, resulting in weight loss and mortality, with the latter increasing after A. hydrophila challenge. To our knowledge, this is the first transcriptomic study describing how chronic heat-stressed sturgeons respond to a bacterial challenge, suggesting that liver metabolism alterations have a negative impact on the innate anti-bacterial response.
Collapse
Affiliation(s)
- Alicia Costábile
- Sección Bioquímica y Biología Molecular, Facultad de Ciencias, Universidad de la República, CP 11400, Montevideo, Uruguay
| | - Mauricio Castellano
- Unidad de Inmunología, Instituto de Química Biológica, Facultad de Ciencias, Universidad de la República, CP 11600, Montevideo, Uruguay; Área Inmunología, Departamento de Biociencias, Facultad de Química, Universidad de la República, Montevideo, CP 11600, Montevideo, Uruguay; Sección Bioquímica y Biología Molecular, Facultad de Ciencias, Universidad de la República, CP 11400, Montevideo, Uruguay
| | - Marcio Aversa-Marnai
- Unidad de Inmunología, Instituto de Química Biológica, Facultad de Ciencias, Universidad de la República, CP 11600, Montevideo, Uruguay; Área Inmunología, Departamento de Biociencias, Facultad de Química, Universidad de la República, Montevideo, CP 11600, Montevideo, Uruguay
| | - Ignacio Quartiani
- Unidad de Patología, Biología y Cultivo de Organismos Acuáticos, Departamento de Ciencia y Tecnología de los Alimentos, Facultad de Veterinaria, Universidad de la República, CP 11300, Montevideo, Uruguay
| | | | - Alejandro Perretta
- Unidad de Patología, Biología y Cultivo de Organismos Acuáticos, Departamento de Ciencia y Tecnología de los Alimentos, Facultad de Veterinaria, Universidad de la República, CP 11300, Montevideo, Uruguay
| | - Andrea Villarino
- Sección Bioquímica y Biología Molecular, Facultad de Ciencias, Universidad de la República, CP 11400, Montevideo, Uruguay
| | - Valeria Silva-Álvarez
- Unidad de Inmunología, Instituto de Química Biológica, Facultad de Ciencias, Universidad de la República, CP 11600, Montevideo, Uruguay; Área Inmunología, Departamento de Biociencias, Facultad de Química, Universidad de la República, Montevideo, CP 11600, Montevideo, Uruguay.
| | - Ana María Ferreira
- Unidad de Inmunología, Instituto de Química Biológica, Facultad de Ciencias, Universidad de la República, CP 11600, Montevideo, Uruguay; Área Inmunología, Departamento de Biociencias, Facultad de Química, Universidad de la República, Montevideo, CP 11600, Montevideo, Uruguay.
| |
Collapse
|
5
|
Whole-Genome Inter-Sex Variation in Russian Sturgeon ( Acipenser gueldenstaedtii). Int J Mol Sci 2022; 23:ijms23169469. [PMID: 36012734 PMCID: PMC9409348 DOI: 10.3390/ijms23169469] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 08/17/2022] [Accepted: 08/17/2022] [Indexed: 11/17/2022] Open
Abstract
The Russian sturgeon (Acipenser gueldenstaedtii, AG) is an endangered fish species increasingly raised on fish farms for black caviar. Understanding the process of sex determination in AG is, therefore, of scientific and commercial importance. AG lacks sexual dimorphism until sexual maturation and has a predominantly octoploid genome without a definite sex chromosome. A conserved short female-specific genomic sequence was recently described, leading to the development of a genetic sex marker. However, no biological function has been reported for this sequence. Thus, the mechanism of sex determination and the overall inter-sex genomic variation in AG are still unknown. To comprehensively analyze the inter-sex genomic variation and assess the overall inter-species variation between AG and A. ruthenus (AR, sterlet), a related tetraploid sturgeon species, we performed whole-genome sequencing on DNA from 10 fish-farm-raised adult AG (5 males and 5 females). We produced a partially assembled, ~2390 MBp draft genome for AG. We validated in AG the female-specific region previously described in AR. We identified ~2.8 million loci (SNP/indels) varying between the species, but only ~7400 sex-associated loci in AG. We mapped the sex-associated AG loci to the AR genome and identified 15 peaks of sex-associated variation (10 kb segments with 30 or more sex-associated variants), 1 of which matched the previously reported sex-variable region. Finally, we identified 14 known and predicted genes in proximity to these peaks. Our analysis suggests that one or more of these genes may have functional roles in sex determination and/or sexual differentiation in sturgeons. Further functional studies are required to elucidate these roles.
Collapse
|
6
|
Curzon AY, Shirak A, Meerson A, Degani G, Hurvitz A, Ben-Naim N, Domovitz R, Ron M, Seroussi E. Cross-species conservation of a transposase-linked element enables genetic sexing of commercial populations of Russian sturgeon (Acipenser gueldenstaedtii). Anim Genet 2022; 53:441-446. [PMID: 35288964 PMCID: PMC9311079 DOI: 10.1111/age.13188] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 02/24/2022] [Accepted: 02/28/2022] [Indexed: 12/01/2022]
Abstract
All‐female culture of sturgeon is essential for efficient caviar production. However, Russian sturgeon (Acipenser gueldenstaedtii) does not exhibit external sexual dimorphism, and therefore, commercial farms apply gonadal endoscopy or ultrasound at the earliest age of 4–5 years to separate the sexes, with ~90% accuracy. Recently, a dominant genomic marker (AllWSEX2) has been found with association to femaleness in sturgeons. We developed a duplex PCR (dAllWSEX2) with the adjacent bmp7 gene as an internal control, to validate an effective PCR. Robust amplification of control fragments was observed for all samples of our commercial A. gueldenstaedtii stock (n = 337). The dAllWSEX2 assay was significantly associated with sex (n = 43, p < 1.6 × 10−8), yet four (18%) of the endoscopy‐determined females were genetic males. To examine whether some females display a male genetic profile, we tested 96 egg‐producing females, which were all verified as genetic females, indicating that the observed mismatches may be attributed to wrong sexing by endoscopy. Application of dAllWSEX2 on 100 7‐month‐old fish showed no sex‐dependent differences in body weight, indicating that weighing is not an applicable tool for sorting females at a young age. Sanger sequencing of the bmp7 fragment revealed octaploidy and sex‐independent variation, suggesting that the critical sex‐determining region harboring AllWSEX2 is small. In keeping with a model of a single‐ploidy encoding female determination, AllWSEX2 showed no variation despite being a transposase‐linked repetitive element. Cross‐species conservation of AllWSEX2, and absence of annotated sex‐determination genes in this region suggests that, in sturgeons, the sex‐determining mechanism is different from mechanisms identified in other fish.
Collapse
Affiliation(s)
- Arie Y Curzon
- Institute of Animal Science, Agricultural Research Organization, Rishon LeTsiyon, Israel.,Robert H. Smith Faculty of Agriculture Food and Environment, Hebrew University of Jerusalem, Rehovot, Israel
| | - Andrey Shirak
- Institute of Animal Science, Agricultural Research Organization, Rishon LeTsiyon, Israel
| | - Ari Meerson
- MIGAL-Galilee Technology Center, Kiryat Shmona, Israel.,School of Science and Technology, Tel-Hai Academic College, Galilee, Israel
| | - Gad Degani
- MIGAL-Galilee Technology Center, Kiryat Shmona, Israel.,School of Science and Technology, Tel-Hai Academic College, Galilee, Israel
| | - Avshalom Hurvitz
- Caviar Galilee Agricultural Cooperative Society Ltd., Kibbutz Dan, Israel
| | - Naama Ben-Naim
- Caviar Galilee Agricultural Cooperative Society Ltd., Kibbutz Dan, Israel
| | - Roee Domovitz
- Caviar Galilee Agricultural Cooperative Society Ltd., Kibbutz Dan, Israel
| | - Micha Ron
- Institute of Animal Science, Agricultural Research Organization, Rishon LeTsiyon, Israel
| | - Eyal Seroussi
- Institute of Animal Science, Agricultural Research Organization, Rishon LeTsiyon, Israel
| |
Collapse
|
7
|
Degani G, Veksler-Lublinsky I, Meerson A. Markers of Genetic Variation in Blue Gourami ( Trichogaster trichopterus) as a Model for Labyrinth Fish. BIOLOGY 2021; 10:biology10030228. [PMID: 33809419 PMCID: PMC7999218 DOI: 10.3390/biology10030228] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/05/2021] [Accepted: 03/12/2021] [Indexed: 12/29/2022]
Abstract
Simple Summary This review is a summary of recent studies of genes, many of them involved in growth and reproduction, which can be used for distinguishing between species of the Anabantoidei suborder of fish, focusing on the Blue Gourami as a model species. This is important in both basic science and aquaculture applications. Abstract Markers of genetic variation between species are important for both applied and basic research. Here, various genes of the blue gourami (Trichogaster trichopterus, suborder Anabantoidei, a model labyrinth fish), many of them involved in growth and reproduction, are reviewed as markers of genetic variation. The genes encoding the following hormones are described: kisspeptins 1 and 2, gonadotropin-releasing hormones 1, 2, and 3, growth hormone, somatolactin, prolactin, follicle- stimulating hormone and luteinizing hormone, as well as mitochondrial genes encoding cytochrome b and 12S rRNA. Genetic markers in blue gourami, representing the suborder Anabantoidei, differ from those in other bony fishes. The sequence of the mitochondrial cytochrome c oxidase subunit 1 (COI) gene of blue gourami is often used to study the Anabantoidei suborder. Among the genes involved in controlling growth and reproduction, the most suitable genetic markers for distinguishing between species of the Anabantoidei have functions in the hypothalamic–pituitary–somatotropic axis: pituitary adenylate cyclase-activating polypeptide and growth hormone, and the 12S rRNA gene.
Collapse
Affiliation(s)
- Gad Degani
- MIGAL–Galilee Research Institute, P.O.B. 831, Kiryat Shmona 1101602, Israel;
- Faculty of Sciences, Tel-Hai Academic College, Upper Galilee 1220800, Israel
| | - Isana Veksler-Lublinsky
- Department of Software and Information Systems Engineering, Ben Gurion University of the Negev, P.O.B. 653, Beer-Sheva 8410501, Israel;
| | - Ari Meerson
- MIGAL–Galilee Research Institute, P.O.B. 831, Kiryat Shmona 1101602, Israel;
- Faculty of Sciences, Tel-Hai Academic College, Upper Galilee 1220800, Israel
- Correspondence: ; Tel.: +972-4-6955022
| |
Collapse
|
8
|
Klopp C, Cabau C, Greif G, Lasalle A, Di Landro S, Vizziano-Cantonnet D. Siberian sturgeon multi-tissue reference transcriptome database. DATABASE-THE JOURNAL OF BIOLOGICAL DATABASES AND CURATION 2020; 2020:6006229. [PMID: 33238003 PMCID: PMC7687680 DOI: 10.1093/database/baaa082] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 08/25/2020] [Accepted: 09/01/2020] [Indexed: 11/13/2022]
Abstract
Motivation: Siberian sturgeon is a long lived and late maturing fish farmed for caviar production in 50 countries. Functional genomics enable to find genes of interest for fish farming. In the absence of a reference genome, a reference transcriptome is very useful for sequencing based functional studies. Results: We present here a high-quality transcriptome assembly database built using RNA-seq reads coming from brain, pituitary, gonadal, liver, stomach, kidney, anterior kidney, heart, embryonic and pre-larval tissues. It will facilitate crucial research on topics such as puberty, reproduction, growth, food intake and immunology. This database represents a major contribution to the publicly available sturgeon transcriptome reference datasets. Availability: The database is publicly available at http://siberiansturgeontissuedb.sigenae.org Supplementary information: Supplementary data are available at Database online.
Collapse
Affiliation(s)
- Christophe Klopp
- SIGENAE, Genotoul Bioinfo, MIAT UR875, INRAe, Chemin de Borde-Rouge - Auzeville BP 52627, 31326 CASTANET-TOLOSAN CEDEX, France
| | - Cédric Cabau
- SIGENAE, GenPhySE, Université de Toulouse, INRAe, ENVT, Chemin de Borde-Rouge - Auzeville BP 52627, 31326 CASTANET-TOLOSAN CEDEX, France
| | - Gonzalo Greif
- Laboratorio de Interacción Hospedero-Patógeno/Unidad de Biología Molecular, Instituto Pasteur de Montevideo, Mataojo 2020, Montevideo 11400, Uruguay
| | - André Lasalle
- Laboratorio de Fisiología de la Reproducción y Ecología de Peces, Instituto de Biología, Facultad de Ciencias, Universidad de la República Oriental del Uruguay, Iguá 4225, Montevideo 11 400, Uruguay
| | - Santiago Di Landro
- Laboratorio de Fisiología de la Reproducción y Ecología de Peces, Instituto de Biología, Facultad de Ciencias, Universidad de la República Oriental del Uruguay, Iguá 4225, Montevideo 11 400, Uruguay
| | - Denise Vizziano-Cantonnet
- Laboratorio de Fisiología de la Reproducción y Ecología de Peces, Instituto de Biología, Facultad de Ciencias, Universidad de la República Oriental del Uruguay, Iguá 4225, Montevideo 11 400, Uruguay
| |
Collapse
|
9
|
Zhang Y, Wang J, Lu L, Li Y, Wei Y, Cheng Y, Zhang X, Tian H, Wang W, Ru S. Genotoxic biomarkers and histological changes in marine medaka (Oryzias melastigma) exposed to 17α-ethynylestradiol and 17β-trenbolone. MARINE POLLUTION BULLETIN 2020; 150:110601. [PMID: 31706722 DOI: 10.1016/j.marpolbul.2019.110601] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Revised: 09/01/2019] [Accepted: 09/13/2019] [Indexed: 06/10/2023]
Abstract
Endocrine-disrupting pollutants in marine environments have aroused great concern for their adverse effects on the reproduction of marine organisms. This study aimed to seek promising biomarkers for estrogenic/androgenic chemicals. First, two possible male-specific genes, SRY-box containing gene 9a2 (sox9a2) and gonadal soma-derived factor (gsdf), were cloned from marine medaka (Oryzias melastigma). Then the responses of sox9a2, gsdf, choriogenin (chgH and chgL), vitellogenin (vtg1 and vtg2), and cytochrome P450 aromatase (cyp19a and cyp19b) were investigated after exposure to 17α-ethynylestradiol (EE2) and 17β-trenbolone (TB) at 2, 10, and 50 ng/L. The results showed that gsdf was specifically expressed in the testes and easily induced in the ovaries after TB exposure, indicating that gsdf was a potential biomarker of environmental androgens. ChgL was a useful biomarker of weak estrogen pollution for its high sensitivity to low levels of EE2. In addition, both EE2 and TB exposure damaged gonadal structures and inhibited gonadal development.
Collapse
Affiliation(s)
- Yabin Zhang
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Jun Wang
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China.
| | - Lin Lu
- School of Public Health, Qingdao University, Qingdao, 266021, China
| | - Yuejiao Li
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Yanyan Wei
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Yuqi Cheng
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Xiaona Zhang
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Hua Tian
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Wei Wang
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Shaoguo Ru
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China.
| |
Collapse
|