1
|
Zhao C, Xu R, Xin S, Jiang B, Feng S, Wang X, Xia C. AMPKα alleviates the inhibitory effect of NEFA on the function of bovine follicular granulosa cells cultured in vitro. Anim Reprod Sci 2025; 276:107831. [PMID: 40164035 DOI: 10.1016/j.anireprosci.2025.107831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 03/16/2025] [Accepted: 03/22/2025] [Indexed: 04/02/2025]
Abstract
High levels of non-esterified fatty acids (NEFA) in cows with subclinical ketosis (SCK) impair postpartum follicular development and disrupt estrus. The precise mechanism through which NEFA impacts the functionality of bovine follicular cells remains elusive. An in vivo experiment was conducted to compare SCK cows without estrus (SCK-E, n = 6) with healthy cows in estrus (C-E, n = 6). In the vitro test, bovine granulosa cells (GCs) were exposed to 0.4 mM NEFA. Notably, the SCK-E group exhibited an elevated ratio of phosphorylated adenosine 5'-monophosphate-activated protein kinase α (AMPKα) to total AMPKα in both liver and ovarian tissues, compared to the C-E group. NEFA treatment of GCs adversely affected steroid hormone synthesis, suppressed the expression of cyclin and proteins crucial for steroid synthesis, and triggered cell apoptosis, thereby inhibiting cell proliferation. Furthermore, it led to a decline in cell mitochondrial membrane potential and an increase in reactive oxygen species production, ultimately causing cellular damage. Subsequently, GCs were co-cultured with adenovirus (ad-AMPKα-siRNA) and NEFA (0.4 mM). Inhibiting AMPKα further exacerbated the detrimental effects of NEFA on steroid hormone synthesis, cell apoptosis, cell proliferation, and mitochondrial function in GCs. Furthermore, upon inhibiting AMPKα, a reduction was observed in both mRNA and protein levels of acetyl-CoA carboxylase 1, accompanied by an elevation in the levels of carnitine palmitoyltransferase-1. These findings suggest that AMPKα becomes activated in SCK cows experiencing elevated NEFA levels, and that AMPKα has the potential to mitigate the detrimental effects of NEFA on GCs function in vitro.
Collapse
Affiliation(s)
- Chang Zhao
- College of Veterinary Medicine, Anhui Agricultural University, Hefei, China.
| | - Ruru Xu
- College of Veterinary Medicine, Anhui Agricultural University, Hefei, China
| | - Shuzhen Xin
- College of Veterinary Medicine, Anhui Agricultural University, Hefei, China
| | - Benzheng Jiang
- College of Veterinary Medicine, Anhui Agricultural University, Hefei, China
| | - Shibin Feng
- College of Veterinary Medicine, Anhui Agricultural University, Hefei, China
| | - Xichun Wang
- College of Veterinary Medicine, Anhui Agricultural University, Hefei, China.
| | - Cheng Xia
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China.
| |
Collapse
|
2
|
Lv H, Liu L, Zou W, Yang Y, Li Y, Yang S, Liang A, Yang L. Isorhamnetin Ameliorates Non-Esterified Fatty Acid-Induced Apoptosis, Lipid Accumulation, and Oxidative Stress in Bovine Endometrial Epithelial Cells via Inhibiting the MAPK Signaling Pathway. Antioxidants (Basel) 2025; 14:156. [PMID: 40002343 PMCID: PMC11852151 DOI: 10.3390/antiox14020156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 01/12/2025] [Accepted: 01/22/2025] [Indexed: 02/27/2025] Open
Abstract
High concentrations of non-esterified fatty acids (NEFA) in the blood contribute to various metabolic disorders and are linked to endometritis in dairy cows. Isorhamnetin (ISO), a flavonoid found in many plants, is known for its antioxidant, anti-inflammatory, and anti-obesity properties. This study systematically assessed NEFA-induced damage in bovine endometrial epithelial cells (bEECs) and investigated whether ISO alleviates NEFA-induced cell damage and its underlying molecular mechanisms. Our observations revealed that excessive NEFA inhibited proliferation and induced apoptosis in bEECs, accompanied by an increase in the expression of BAX and cleaved caspase-3. We further observed that NEFA could induce lipid accumulation, reactive oxygen species (ROS) generation, and the release of pro-inflammatory factors IL-1β, IL-6, and TNF-α in bEECs. RNA sequencing and Western blot analysis revealed that NEFA induced damage in bEECs by activating MAPK signaling pathway. Notably, ISO treatment ameliorated these effects induced by NEFA, as evidenced by decreased protein levels of BAX, cleaved caspase-3, and PPAR-γ, along with reductions in triglyceride content, ROS generation, and levels of IL-1β, IL-6, and TNF-α. Mechanistically, our experimental results demonstrated that ISO inhibited NEFA-induced activation of MAPK signaling. Overall, ISO shows promise for therapeutic development to address NEFA-related endometritis in dairy cows.
Collapse
Affiliation(s)
- Haimiao Lv
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (H.L.); (L.L.); (W.Z.); (Y.Y.); (Y.L.); (S.Y.)
| | - Lijuan Liu
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (H.L.); (L.L.); (W.Z.); (Y.Y.); (Y.L.); (S.Y.)
| | - Wenna Zou
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (H.L.); (L.L.); (W.Z.); (Y.Y.); (Y.L.); (S.Y.)
| | - Ying Yang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (H.L.); (L.L.); (W.Z.); (Y.Y.); (Y.L.); (S.Y.)
| | - Yuan Li
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (H.L.); (L.L.); (W.Z.); (Y.Y.); (Y.L.); (S.Y.)
| | - Shengji Yang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (H.L.); (L.L.); (W.Z.); (Y.Y.); (Y.L.); (S.Y.)
| | - Aixin Liang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (H.L.); (L.L.); (W.Z.); (Y.Y.); (Y.L.); (S.Y.)
- National Center for International Research on Animal Genetics, Breeding and Reproduction, Huazhong Agricultural University, Wuhan 430070, China
| | - Liguo Yang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (H.L.); (L.L.); (W.Z.); (Y.Y.); (Y.L.); (S.Y.)
- National Center for International Research on Animal Genetics, Breeding and Reproduction, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
3
|
Zhao J, Xu Y, Yu H, Li X, Wang W, Mao D. Effects of PPARG on the proliferation, apoptosis, and estrogen secretion in goat granulosa cells. Theriogenology 2025; 231:62-72. [PMID: 39413539 DOI: 10.1016/j.theriogenology.2024.10.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 10/04/2024] [Accepted: 10/12/2024] [Indexed: 10/18/2024]
Abstract
As a member of peroxisome proliferator-activated receptor (PPAR) family, PPARG has been reported to be involved in glucolipid metabolism in various species. However, the function of PPARG in estradiol (E2) synthesis, apoptosis, and proliferation in goat ovarian granulosa cells (GCs) is unclear. In this study, we found that goat PPARG was expressed in GCs of all grades of follicles, and localized in the cytoplasm and nucleus of GCs. Transfection of small interfering RNA-PPARG2 (si-PPARG2) decreased E2 synthesis and the abundances of HSD3B and CYP19A1 mRNA and protein. It also promoted cell apoptosis with significant increases in the ratio of BAX/BCL-2 and Caspase3 mRNA and protein. Meanwhile, cell cycle was inhibited by si-PPARG2 transfection, accompanied by decreased mRNA levels of CDK4, CKD6, MYC, CCND1, CCND2, PCNA, and CCNB, increased mRNA level of P53, and decreased protein levels of CDK4, MYC, and CCND1. Furthermore, PPARG interference affected the mRNA and protein abundances of CREB as well as the phosphorylation of CREB but not PKA. In conclusion, our data suggest that PPARG plays an important role in regulating E2 synthesis, cell apoptosis, and proliferation of goat GCs, including the CREB expression and phosphorylation. These results provide evidences for the in-depth study of PPARG in the regulation of goat GCs function.
Collapse
Affiliation(s)
- Jie Zhao
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yinying Xu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Hao Yu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xiaotong Li
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Wei Wang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Dagan Mao
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
4
|
Dai L, An D, Huang J, Xiao M, Li Z, Zhou B, Liu H, Xu J, Chen X, Ruan Y. Ovarian multi-omics analysis reveals key rate-limiting enzymes FASN, SCD5, FADS1, 3BHSD, and STAR as potential targets for regulating kidding traits in goats. Int J Biol Macromol 2024; 282:136737. [PMID: 39433193 DOI: 10.1016/j.ijbiomac.2024.136737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 08/29/2024] [Accepted: 10/18/2024] [Indexed: 10/23/2024]
Abstract
The kidding traits of goats are an important index of production. However, the molecular regulatory mechanisms of kidding traits in goats have not been fully elucidated. This study aimed to investigate the molecular regulatory network of kidding traits in goats. Multi-omics revealed the enrichment of 10 signaling pathways, with fatty acid biosynthesis, biosynthesis of unsaturated fatty acids, and steroid hormone biosynthesis pathways being closely related to reproduction. Interestingly, the key rate-limiting enzymes, fatty acid synthase (FASN), stearoyl-CoA desaturase 5 (SCD5), fatty acid desaturase 1 (FADS1), 3β-hydroxysteroid dehydrogenase/isomerase (3BHSD), and steroidogenic acute regulatory protein (STAR) enriched in these pathways regulate changes in reproduction-related metabolites. In interference experiments, it was observed that suppressing these key rate-limiting enzymes inhibited the expression of CYP19A1, ESR2, and FSHR. Furthermore, interference inhibited granulosa cell proliferation, caused cell cycle arrest, and promoted apoptosis. Thus, these results suggest that the specific markers of nanny goats with multiple kids are the key rate-limiting enzymes FASN, SCD5, FADS1, 3BHSD, and STAR. These findings may greatly enhance the understanding of regulatory mechanisms that govern goat parturition.
Collapse
Affiliation(s)
- Lingang Dai
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang 550025, China; Guizhou Provincial Key Laboratory of Animal Genetics, Breeding and Reproduction, Guizhou University, Guiyang 550025, China; College of Animal Science, Guizhou University, Guiyang 550025, China
| | - Dongwei An
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang 550025, China; Guizhou Provincial Key Laboratory of Animal Genetics, Breeding and Reproduction, Guizhou University, Guiyang 550025, China; College of Animal Science, Guizhou University, Guiyang 550025, China
| | - Jiajin Huang
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang 550025, China; Guizhou Provincial Key Laboratory of Animal Genetics, Breeding and Reproduction, Guizhou University, Guiyang 550025, China; College of Animal Science, Guizhou University, Guiyang 550025, China
| | - Meimei Xiao
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang 550025, China; Guizhou Provincial Key Laboratory of Animal Genetics, Breeding and Reproduction, Guizhou University, Guiyang 550025, China; College of Animal Science, Guizhou University, Guiyang 550025, China
| | - Ziyang Li
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang 550025, China; Guizhou Provincial Key Laboratory of Animal Genetics, Breeding and Reproduction, Guizhou University, Guiyang 550025, China; College of Animal Science, Guizhou University, Guiyang 550025, China
| | - Bo Zhou
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang 550025, China; Guizhou Provincial Key Laboratory of Animal Genetics, Breeding and Reproduction, Guizhou University, Guiyang 550025, China; College of Animal Science, Guizhou University, Guiyang 550025, China
| | - Huan Liu
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang 550025, China; Guizhou Provincial Key Laboratory of Animal Genetics, Breeding and Reproduction, Guizhou University, Guiyang 550025, China; College of Animal Science, Guizhou University, Guiyang 550025, China
| | - Jiali Xu
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang 550025, China; Guizhou Provincial Key Laboratory of Animal Genetics, Breeding and Reproduction, Guizhou University, Guiyang 550025, China; College of Animal Science, Guizhou University, Guiyang 550025, China
| | - Xiang Chen
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang 550025, China; Guizhou Provincial Key Laboratory of Animal Genetics, Breeding and Reproduction, Guizhou University, Guiyang 550025, China; College of Animal Science, Guizhou University, Guiyang 550025, China
| | - Yong Ruan
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang 550025, China; Guizhou Provincial Key Laboratory of Animal Genetics, Breeding and Reproduction, Guizhou University, Guiyang 550025, China; College of Animal Science, Guizhou University, Guiyang 550025, China.
| |
Collapse
|
5
|
Tao X, Rahimi M, Michaelis M, Görs S, Brenmoehl J, Vanselow J, Baddela VS. Saturated fatty acids inhibit unsaturated fatty acid induced glucose uptake involving GLUT10 and aerobic glycolysis in bovine granulosa cells. Sci Rep 2024; 14:9888. [PMID: 38688953 PMCID: PMC11061182 DOI: 10.1038/s41598-024-59883-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 04/16/2024] [Indexed: 05/02/2024] Open
Abstract
Fatty acids have been shown to modulate glucose metabolism in vitro and in vivo. However, there is still a need for substantial evidence and mechanistic understanding in many cell types whether both saturated and unsaturated fatty acids (SFAs and UFAs) pose a similar effect and, if not, what determines the net effect of fatty acid mixes on glucose metabolism. In the present study, we asked these questions by treating granulosa cells (GCs) with the most abundant non-esterified fatty acid species in bovine follicular fluid. Results revealed that oleic and alpha-linolenic acids (UFAs) significantly increased glucose consumption compared to palmitic and stearic acids (SFAs). A significant increase in lactate production, extracellular acidification rate, and decreased mitochondrial activity indicate glucose channeling through aerobic glycolysis in UFA treated GCs. We show that insulin independent glucose transporter GLUT10 is essential for UFA driven glucose consumption, and the induction of AKT and ERK signaling pathways necessary for GLUT10 expression. To mimic the physiological conditions, we co-treated GCs with mixes of SFAs and UFAs. Interestingly, co-treatments abolished the UFA induced glucose uptake and metabolism by inhibiting AKT and ERK phosphorylation and GLUT10 expression. These data suggest that the net effect of fatty acid induced glucose uptake in GCs is determined by SFAs under physiological conditions.
Collapse
Affiliation(s)
- Xuelian Tao
- Research Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196, Dummerstorf, Germany
| | - Maryam Rahimi
- Abteilung Biotechnologie und Reproduktion Landwirtschaftlicher Nutztiere, Georg-August-Universität Göttingen, 37037, Göttingen, Germany
| | - Marten Michaelis
- Research Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196, Dummerstorf, Germany
| | - Solvig Görs
- Research Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196, Dummerstorf, Germany
| | - Julia Brenmoehl
- Research Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196, Dummerstorf, Germany
| | - Jens Vanselow
- Research Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196, Dummerstorf, Germany
| | - Vijay Simha Baddela
- Research Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196, Dummerstorf, Germany.
| |
Collapse
|
6
|
Missio D, Leivas FG, Cibin F, Emanuelli T, Somacal S, Buss V, Gasperin B, Oliveira DED, Gonçalves PBD, Ferreira R. Vitamin E reduces the reactive oxygen species production in dominant follicle during the negative energy balance in cattle. Reprod Domest Anim 2023; 58:1662-1671. [PMID: 37743826 DOI: 10.1111/rda.14481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/07/2023] [Accepted: 09/14/2023] [Indexed: 09/26/2023]
Abstract
In the postpartum period, there is an increase in non-esterified fatty acids (NEFA) in both serum and follicular fluid (FF) of cattle. The increase in fatty acid concentration results in increased production of reactive oxygen species (ROS) that can compromise bovine fertility. The objectives of this study were to characterize the lipid profile found in the FF of cows experiencing induced negative energy balance (NEB) and to evaluate the effect of α-tocopherol in the prevention of oxidative stress in the serum and FF of cows. Twenty-nine beef cows were divided into groups: (1) control; (2) Fasting for 24 days; and (3) Fasting + VitE. Between D0 and D4 blood samples were taken to assess concentrations of NEFA, ROS production, total antioxidant capacity (FRAP), lipid peroxidation, and α-tocopherol (vitamin E). On D4, follicular aspiration was performed for analysis of FF from the dominant follicle. Our results demonstrate that fasting was effective in causing increased fat mobilization in animals. The increase in serum concentration of C18:1c9 was reflected in the FF of fasting cows. Serum α-tocopherol concentration was higher in the control and Fasting + VitE groups compared to the Fasting group. In FF, there was an increase of α-tocopherol in the Fasting + VitE group in comparison to Fasting cows. There was an increase in ROS production in the serum of fasting cows. ROS production in FF was higher in the Fasting compared to the Fasting + VitE group. Vitamin E has beneficial effects in reducing ROS production in the dominant follicle of cows in NEB.
Collapse
Affiliation(s)
- Daniele Missio
- Laboratory of Biotechnology of Reproduction, Federal University of Santa Maria, Santa Maria, Brazil
| | - Fabio Gallas Leivas
- Laboratory of Biotechnology of Reproduction, BIOTECH, Federal University of Pampa, Uruguaiana, Brazil
| | - Francielli Cibin
- Laboratory of Biotechnology of Reproduction, BIOTECH, Federal University of Pampa, Uruguaiana, Brazil
| | - Tatiana Emanuelli
- Department of Alimentary Technology and Science, Federal University of Santa Maria, Santa Maria, Brazil
| | - Sabrina Somacal
- Department of Alimentary Technology and Science, Federal University of Santa Maria, Santa Maria, Brazil
| | - Vanessa Buss
- Laboratory of Biotechnology of Reproduction, BIOTECH, Federal University of Pampa, Uruguaiana, Brazil
| | - Bernardo Gasperin
- Department of Animal Pathology, Federal University of Pelotas, Capão do Leão, Brazil
| | | | | | - Rogério Ferreira
- Department of Animal Science, Santa Catarina State University, Chapecó, Brazil
| |
Collapse
|
7
|
Lei Z, Ali I, Yang M, Yang C, Li Y, Li L. Non-Esterified Fatty Acid-Induced Apoptosis in Bovine Granulosa Cells via ROS-Activated PI3K/AKT/FoxO1 Pathway. Antioxidants (Basel) 2023; 12:antiox12020434. [PMID: 36829992 PMCID: PMC9952034 DOI: 10.3390/antiox12020434] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 02/05/2023] [Accepted: 02/07/2023] [Indexed: 02/12/2023] Open
Abstract
Non-esterified fatty acid (NEFA), one of negative energy balance (NEB)'s most well-known products, has a significant impact on cows' reproductive potential. Our study used an in vitro model to investigate the deleterious effects of NEFA on bovine granulosa cells (BGCs) and its underlying molecular mechanism. The results showed that high levels of NEFA led to the accumulation of reactive oxygen species (ROS), increased the expression of apoptosis-related factors such as Bcl2-Associated X/B-cell lymphoma-2 (Bax/Bcl-2) and Caspase-3, and down-regulated steroid synthesis-related genes such as sterol regulatory element binding protein 1 (SREBP-1), cytochrome P450c17 (CYP17), and cytochrome P450 aromatase (CYP19), to promote oxidative stress, cell apoptosis, and steroid hormone synthesis disorders in BGCs. In addition, NEFA significantly inhibited phosphatidylinositol 3-kinase (PI3K) and phosphorylated protein kinase B (p-AKT) activity and increased forkhead box O1 (FoxO1) expression. To further explore the role of the PI3K/AKT/FoxO1 signaling pathway in NEFA, we found that pretreatment with AKT-specific activator SC79 (5 mg/mL) for 2 h or transfection with FoxO1 knockdown siRNA in BGCs could alleviate the negative effects of NEFA treatment by decreasing Bax/Bcl-2 ratio and Caspase-3 expression, and upregulating SREBP-1, CYP17, and CYP19 expression. Meanwhile, SC79 significantly inhibited NEFA-induced dephosphorylation and massive nuclear translocation of FoxO1. Taken together, the NEFA induced oxidative stress, apoptosis, and steroid hormone synthesis disorders in BGCs by inhibiting the PI3K/AKT pathway that regulates FoxO1 phosphorylation and nuclear translocation. Our findings help to clarify the molecular mechanisms underlying the negative effects of high levels of NEFA on BGCs.
Collapse
Affiliation(s)
| | | | | | | | | | - Lian Li
- Correspondence: ; Tel.: +86-25-84395314
| |
Collapse
|
8
|
Baddela VS, Michaelis M, Sharma A, Plinski C, Viergutz T, Vanselow J. Estradiol production of granulosa cells is unaffected by the physiological mix of non-esterified fatty acids in follicular fluid. J Biol Chem 2022; 298:102477. [PMID: 36096202 PMCID: PMC9576879 DOI: 10.1016/j.jbc.2022.102477] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 09/06/2022] [Accepted: 09/07/2022] [Indexed: 11/25/2022] Open
Abstract
Ovarian cycle is controlled by circulating levels of the steroid hormone 17-β-estradiol, which is predominantly synthesized by the granulosa cells (GCs) of ovarian follicles. Our earlier studies showed that unsaturated fatty acids (USFs) downregulate and saturated fatty acids (SFAs) upregulate estradiol production in GCs. However, it was unclear whether pituitary gonadotropins induce accumulation of free fatty acids (FFAs) in the follicular fluid since follicle-stimulating hormone induces and luteinizing hormone inhibits estradiol production in the mammalian ovary. Interestingly, we show here the gas chromatography analysis of follicular fluid revealed no differential accumulation of FFAs between pre- and post-luteinizing hormone surge follicles. We therefore wondered how estradiol production is regulated in the physiological context, as USFs and SFAs are mutually present in the follicular fluid. We thus performed in vitro primary GC cultures with palmitate, palmitoleate, stearate, oleate, linoleate, and alpha-linolenate, representing >80% of the FFA fraction in the follicular fluid, and analyzed 62 different cell culture conditions to understand the regulation of estradiol biosynthesis under diverse FFA combinations. Our analyses showed co-supplementation of SFAs with USFs rescued estradiol production by restoring gonadotropin receptors and aromatase, antagonizing the inhibitory effects of USFs. Furthermore, transcriptome data of oleic acid–treated GCs indicated USFs induce the ERK and Akt signaling pathways. We show SFAs inhibit USF-induced ERK1/2 and Akt activation, wherein ERK1/2 acts as a negative regulator of estradiol synthesis. We propose SFAs are vital components of the follicular fluid, without which gonadotropin signaling and the ovarian cycle would probably be shattered by USFs.
Collapse
Affiliation(s)
- Vijay Simha Baddela
- Institute of Reproductive Biology, Research Institute for Farm Animal Biology (FBN), Wilhelm Stahl Allee 2, 18196 Dummerstorf, Germany.
| | - Marten Michaelis
- Institute of Reproductive Biology, Research Institute for Farm Animal Biology (FBN), Wilhelm Stahl Allee 2, 18196 Dummerstorf, Germany
| | - Arpna Sharma
- Institute of Reproductive Biology, Research Institute for Farm Animal Biology (FBN), Wilhelm Stahl Allee 2, 18196 Dummerstorf, Germany
| | - Christian Plinski
- Institute of Reproductive Biology, Research Institute for Farm Animal Biology (FBN), Wilhelm Stahl Allee 2, 18196 Dummerstorf, Germany
| | - Torsten Viergutz
- Institute of Reproductive Biology, Research Institute for Farm Animal Biology (FBN), Wilhelm Stahl Allee 2, 18196 Dummerstorf, Germany
| | - Jens Vanselow
- Institute of Reproductive Biology, Research Institute for Farm Animal Biology (FBN), Wilhelm Stahl Allee 2, 18196 Dummerstorf, Germany
| |
Collapse
|
9
|
Feugang JM, Ishak GM, Eggert MW, Arnold RD, Rivers OS, Willard ST, Ryan PL, Gastal EL. Intrafollicular injection of nanomolecules for advancing knowledge on folliculogenesis in livestock. Theriogenology 2022; 192:132-140. [DOI: 10.1016/j.theriogenology.2022.08.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 08/15/2022] [Accepted: 08/22/2022] [Indexed: 11/25/2022]
|
10
|
Marei WFA, De Bie J, Xhonneux I, Andries S, Britt JH, Leroy JLMR. Metabolic and antioxidant status during transition is associated with changes in the granulosa cell transcriptome in the preovulatory follicle in high-producing dairy cows at the time of breeding. J Dairy Sci 2022; 105:6956-6972. [PMID: 35840405 DOI: 10.3168/jds.2022-21928] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Accepted: 04/29/2022] [Indexed: 12/20/2022]
Abstract
In this study, we hypothesized that early postpartum (pp) metabolic and oxidative stress conditions in dairy cows (particularly those with severe negative energy balance, NEB) are associated with long-term changes in granulosa cell (GC) functions in the preovulatory follicle at the time of breeding. Blood samples were collected at wk 2 and wk 8 pp from 47 healthy multiparous cows. Follicular fluid (FF) and GC were collected from the preovulatory follicle after estrous synchronization at wk 8. Several metabolic and antioxidant parameters were measured in blood and FF, and their correlations were studied. Subsequently, 27 representative GC samples were selected for RNA sequencing analysis. The GC gene expression data of LH-responsive genes and the estradiol:progesterone ratio in FF were used to identify pre- and post-LH surge cohorts. We compared the transcriptomic profile of subgroups of cows within the highest and lowest quartiles (Q4 vs. Q1) of each parameter, focusing on the pre-LH surge cohort (n = 16, at least 3 in each subgroup). Differentially expressed genes (DEG: adjusted P-value < 0.05, 5% false discovery rate) were determined using DESeq2 analysis and were functionally annotated. Blood and FF β-carotene and vitamin E concentrations at wk 2, but not at wk 8, were associated with the most pronounced transcriptomic differences in the GC, with up to 341 DEG indicative for lower catabolism, increased oxidoreductase activity and signaling cascades that are known to enhance oocyte developmental competence, increased responsiveness to LH, and a higher steroidogenic activity. In contrast, elevated blood NEFA concentrations at wk 2 (and not at wk 8) were associated with a long-term carryover effect detectable in the GC transcriptome at wk 8 (64 DEG). These genes are related to response to lipids and ketones, oxidative stress, and immune responses, which suggests persistent cellular stress and oxidative damage. This effect was more pronounced in cows with antioxidant deficiencies at wk 8 (up to 148 DEG), with more genes involved in oxidative stress-dependent responses, apoptosis, autophagy and catabolic processes, and mitochondrial damage. Interestingly, within the severe NEB cows (high blood NEFA at wk 2), blood antioxidant concentrations (high vs. low) at wk 8 were associated with up to 194 DEG involved in activation of meiosis and other signaling pathways, indicating a better oocyte supportive capacity. This suggests that the cow antioxidant profile at the time of breeding might alleviate, at least in part, the effect of NEB on GC functions. In conclusion, these results provide further evidence that the metabolic and oxidative stress in dairy cows early postpartum can have long-term effects on GC functions in preovulatory follicles at the time of breeding. The interplay between the effects of antioxidants and NEFA illustrated here might be useful to develop intervention strategies to minimize the effect of severe NEB on fertility.
Collapse
Affiliation(s)
- Waleed F A Marei
- Gamete Research Centre, Department of Veterinary Sciences, University of Antwerp, 2610 Wilrijk, Belgium; Department of Theriogenology, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt.
| | - Jessie De Bie
- Gamete Research Centre, Department of Veterinary Sciences, University of Antwerp, 2610 Wilrijk, Belgium
| | - Inne Xhonneux
- Gamete Research Centre, Department of Veterinary Sciences, University of Antwerp, 2610 Wilrijk, Belgium
| | - Silke Andries
- Gamete Research Centre, Department of Veterinary Sciences, University of Antwerp, 2610 Wilrijk, Belgium
| | - Jack H Britt
- Department of Animal Science, North Carolina State University, Raleigh 27695-7621
| | - Jo L M R Leroy
- Gamete Research Centre, Department of Veterinary Sciences, University of Antwerp, 2610 Wilrijk, Belgium
| |
Collapse
|
11
|
Pedroza GH, Lanzon LF, Rabaglino MB, Walker WL, Vahmani P, Denicol AC. Exposure to non-esterified fatty acids in vitro results in changes in the ovarian and follicular environment in cattle. Anim Reprod Sci 2022; 238:106937. [DOI: 10.1016/j.anireprosci.2022.106937] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 01/21/2022] [Accepted: 01/30/2022] [Indexed: 02/08/2023]
|
12
|
Yenuganti VR, Koczan D, Vanselow J. Genome wide effects of oleic acid on cultured bovine granulosa cells: evidence for the activation of pathways favoring folliculo-luteal transition. BMC Genomics 2021; 22:486. [PMID: 34187362 PMCID: PMC8243882 DOI: 10.1186/s12864-021-07817-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 06/14/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Metabolic stress, as negative energy balance on one hand or obesity on the other hand can lead to increased levels of free fatty acids in the plasma and follicular fluid of animals and humans. In an earlier study, we showed that increased oleic acid (OA) concentrations affected the function of cultured bovine granulosa cells (GCs). Here, we focus on genome wide effects of increased OA concentrations. RESULTS Our data showed that 413 genes were affected, of which 197 were down- and 216 up-regulated. Specifically, the expression of FSH-regulated functional key genes, CCND2, LHCGR, INHA and CYP19A1 and 17-β-estradiol (E2) production were reduced by OA treatment, whereas the expression of the fatty acid transporter CD36 was increased and the morphology of the cells was changed due to lipid droplet accumulation. Bioinformatic analysis revealed that associated pathways of the putative upstream regulators "FSH" and "Cg (choriogonadotropin)" were inhibited and activated, respectively. Down-regulated genes are over-represented in GO terms "reproductive structure/system development", "ovulation cycle process", and "(positive) regulation of gonadotropin secretion", whereas up-regulated genes are involved in "circulatory system development", "vasculature development", "angiogenesis" or "extracellular matrix/structure organization". CONCLUSIONS From these data we conclude that besides inhibiting GC functionality, increased OA levels seemingly promote angiogenesis and tissue remodelling, thus suggestively initiating a premature fulliculo-luteal transition. In vivo this may lead to impeded folliculogenesis and ovulation, and cause sub-fertility.
Collapse
Affiliation(s)
- Vengala Rao Yenuganti
- Animal Biology Department, School of Life Sciences, University of Hyderabad, Hyderabad, Telagana, India.
| | - Dirk Koczan
- Institute for Immunology, University of Rostock, 18055, Rostock, Germany
| | - Jens Vanselow
- Institute of Reproductive Biology, Leibniz Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196, Dummerstorf, Germany.
| |
Collapse
|