1
|
Ataee H, Seraj M, Mahdavi R, Fardoost A, Shafiee A, Shamsi K, Fattahi M, Ebrahiminik H, Hoseinpour P, Sane S, Ghazimoghaddam M, Akbari ME, Abdolahad M. Impedance-based detection of cervical lymph-node involvement in thyroid cancer patients: a human model study. Surg Today 2025:10.1007/s00595-025-03033-x. [PMID: 40180633 DOI: 10.1007/s00595-025-03033-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 01/14/2025] [Indexed: 04/05/2025]
Abstract
PURPOSE Current diagnostic modalities for differentiating between benign and malignant cervical lymph nodes in patients with thyroid cancer are imprecise and time-consuming. The real-time intraoperative detection of malignancy in suspicious lesions could improve the medical management of these patients. This human study was undertaken to evaluate a precise, newly developed Electrical Lymph-Node Scanning (ELS) system to facilitate the effective treatment of cervical LNs in thyroid cancer patients. METHODS Using the ELS, we examined a collective 109 radiologically suspicious lymph nodes from 36 patients after dissection and compared the ELS results with the histopathological findings. RESULTS A total of 27 involved lymph nodes were correctly diagnosed, while 75 reactive or free lymph nodes were correctly identified as uninvolved lymph nodes by ELS (as 3 false negatives and 4 false positives) with total sensitivity and specificity of 90% and 94.9%, respectively. The corresponding negative and positive predictive values were 87.1% and 96.2%, respectively. CONCLUSIONS Results from this clinical study demonstrate the value of the ELS as a surgical assist adjunct for differentiating equivocal lesions during neck dissection surgery for patients with different types of thyroid cancer.
Collapse
Affiliation(s)
- Hossein Ataee
- Nano Bioelectronics Devices Lab (NBEL), Cancer Electronics Research Group, School of Electrical and Computer Engineering, Faculty of Engineering, University of Tehran, Tehran, Iran
- UT and TUMS Cancer Electronics Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Seraj
- Nano Bioelectronics Devices Lab (NBEL), Cancer Electronics Research Group, School of Electrical and Computer Engineering, Faculty of Engineering, University of Tehran, Tehran, Iran
- Cancer Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Reihane Mahdavi
- Nano Bioelectronics Devices Lab (NBEL), Cancer Electronics Research Group, School of Electrical and Computer Engineering, Faculty of Engineering, University of Tehran, Tehran, Iran
- UT and TUMS Cancer Electronics Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Fardoost
- Nano Bioelectronics Devices Lab (NBEL), Cancer Electronics Research Group, School of Electrical and Computer Engineering, Faculty of Engineering, University of Tehran, Tehran, Iran
| | - Abdollah Shafiee
- Nano Bioelectronics Devices Lab (NBEL), Cancer Electronics Research Group, School of Electrical and Computer Engineering, Faculty of Engineering, University of Tehran, Tehran, Iran
- Farmanieh Hospital, Tehran, Iran
| | - Khosro Shamsi
- Nano Bioelectronics Devices Lab (NBEL), Cancer Electronics Research Group, School of Electrical and Computer Engineering, Faculty of Engineering, University of Tehran, Tehran, Iran
- Cancer Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammadreza Fattahi
- UT and TUMS Cancer Electronics Research Center, Tehran University of Medical Sciences, Tehran, Iran
- Student Research Committee, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Surgical Oncology, Cancer Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Hojat Ebrahiminik
- Department of Interventional Radiology and Radiation Sciences Research Center, Aja University of Medical Sciences, Tehran, Iran
- Interventional Radiology Department, Tirad Imaging Institute, Tehran, Iran
| | - Parisa Hoseinpour
- Nano Bioelectronics Devices Lab (NBEL), Cancer Electronics Research Group, School of Electrical and Computer Engineering, Faculty of Engineering, University of Tehran, Tehran, Iran
- SEPAS Pathobiology Laboratory, Tehran, Iran
| | | | | | | | - Mohammad Abdolahad
- Nano Bioelectronics Devices Lab (NBEL), Cancer Electronics Research Group, School of Electrical and Computer Engineering, Faculty of Engineering, University of Tehran, Tehran, Iran.
- UT and TUMS Cancer Electronics Research Center, Tehran University of Medical Sciences, Tehran, Iran.
- Department of Surgical Oncology, Cancer Institute, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
2
|
Abbasvandi F, Mahdavi R, Bayat M, Hajighasemi F, Jahanbakhshi F, Aghaei F, Sami N, Khoundabi B, Ataee H, Yousefpour N, Hoseinpour P, Mousavi Kiasary SMS, Omrani Hashemi M, Shojaeian F, Akbari A, Bagherhosseini N, Moradi A, Akbari ME, Abdolahad M. Electrical lymph node scanning (ELS) system for real-time intra-operative detection of involved axillary lymph nodes in adjuvant breast cancer patients. Sci Rep 2024; 14:12900. [PMID: 38839807 PMCID: PMC11153595 DOI: 10.1038/s41598-024-61600-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 05/07/2024] [Indexed: 06/07/2024] Open
Abstract
Lymph node (LN) status is an essential prognostic factor in breast cancer (BC) patients, with an important role in the surgical and therapeutic plan. Recently, we have been developed a novel system for real-time intra-operative electrical LN scanning in BC patients. The ELS scores were calibrated by pathological evaluation of the LNs. Herein, we evaluated the efficacy of ELS in a prospective study for non-chemo-treated breast cancer patients. This is a prospective study in which ELS scores are blind for pathologists who declare the clearance or involvement of LNs based on permanent pathology as the gold standard. ELS and frozen-section (FS) pathology results were achieved intra-operatively, and samples were sent for the permanent pathology. The score of ELS did not affect the surgeons' decision, and the treatment approach was carried out based on FS pathology and pre-surgical data, such as imaging and probable biopsies. Patients were recruited from October 2021 through November 2022, and 381 lymph nodes of 97 patients were included in the study. In this study we recruited 38 patients (39.2%) with sentinel lymph node biopsy (SLNB) and 59 patients (60.8%) with ALND. Of the 381 LNs scored by ELS, 329 sentinel LNs underwent routine pathology, while others (n = 52) underwent both FS and permanent pathology. ELS showed a sensitivity of 91.4% for node-positive patients, decreasing to 84.8% when considering all LNs. Using ROC analysis, ELS diagnosis showed a significant AUC of 0.878 in relation to the permanent pathology gold standard. Comparison of ELS diagnosis for different tumor types and LN sizes demonstrated no significant differences, while increasing LN size correlated with enhanced ELS sensitivity. This study confirmed ELS's efficacy in real-time lymph node detection among non-chemo-treated breast cancer patients. The use of ELS's pathological scoring for intra-operative LN diagnosis, especially in the absence of FS pathology or for non-sentinel LN involvement, could improve prognosis and reduce complications by minimizing unnecessary dissection.
Collapse
Affiliation(s)
- Fereshteh Abbasvandi
- ATMP Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, P.O. Box 1517964311, Tehran, Iran
- Nano Bioelectronics Devices Lab, Cancer Electronics Research Group, School of Electrical and Computer Engineering, Faculty of Engineering, University of Tehran, Tehran, Iran
- Cancer Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Reihane Mahdavi
- Nano Bioelectronics Devices Lab, Cancer Electronics Research Group, School of Electrical and Computer Engineering, Faculty of Engineering, University of Tehran, Tehran, Iran
| | - Mahdis Bayat
- Nano Bioelectronics Devices Lab, Cancer Electronics Research Group, School of Electrical and Computer Engineering, Faculty of Engineering, University of Tehran, Tehran, Iran
| | - Farzane Hajighasemi
- Nano Bioelectronics Devices Lab, Cancer Electronics Research Group, School of Electrical and Computer Engineering, Faculty of Engineering, University of Tehran, Tehran, Iran
| | - Fahimeh Jahanbakhshi
- Nano Bioelectronics Devices Lab, Cancer Electronics Research Group, School of Electrical and Computer Engineering, Faculty of Engineering, University of Tehran, Tehran, Iran
| | - Faeze Aghaei
- Nano Bioelectronics Devices Lab, Cancer Electronics Research Group, School of Electrical and Computer Engineering, Faculty of Engineering, University of Tehran, Tehran, Iran
| | - Nafiseh Sami
- Nano Bioelectronics Devices Lab, Cancer Electronics Research Group, School of Electrical and Computer Engineering, Faculty of Engineering, University of Tehran, Tehran, Iran
- Student Research Committee, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Batoul Khoundabi
- Iran-Helal Institute of Applied Science and Technology, Red Crescent Society of Iran, Tehran, Iran
- Research Center for Health Management in Mass Gathering, Red Crescent Society of the Islamic Republic of Iran, Tehran, Iran
| | - Hossein Ataee
- Nano Bioelectronics Devices Lab, Cancer Electronics Research Group, School of Electrical and Computer Engineering, Faculty of Engineering, University of Tehran, Tehran, Iran
| | - Narges Yousefpour
- Nano Bioelectronics Devices Lab, Cancer Electronics Research Group, School of Electrical and Computer Engineering, Faculty of Engineering, University of Tehran, Tehran, Iran
| | - Parisa Hoseinpour
- ATMP Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, P.O. Box 1517964311, Tehran, Iran
- SEPAS Pathology Laboratory, Tehran, Iran
| | - Seyed Mohamad Sadegh Mousavi Kiasary
- Nano Bioelectronics Devices Lab, Cancer Electronics Research Group, School of Electrical and Computer Engineering, Faculty of Engineering, University of Tehran, Tehran, Iran
| | - Maryam Omrani Hashemi
- Cancer Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Shojaeian
- Nano Bioelectronics Devices Lab, Cancer Electronics Research Group, School of Electrical and Computer Engineering, Faculty of Engineering, University of Tehran, Tehran, Iran
| | - Atieh Akbari
- Cancer Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Najmeh Bagherhosseini
- Cancer Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Afshin Moradi
- Department of Pathology, Shohada Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Mohammad Abdolahad
- Nano Bioelectronics Devices Lab, Cancer Electronics Research Group, School of Electrical and Computer Engineering, Faculty of Engineering, University of Tehran, Tehran, Iran.
- Cancer Institute, Imam-Khomeini Hospital, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
3
|
Halonen S, Ovissi A, Boyd S, Kari J, Kronström K, Kosunen J, Lauren H, Numminen K, Sievänen H, Hyttinen J. Human in vivoliver and tumor bioimpedance measured with biopsy needle. Physiol Meas 2022; 43. [PMID: 35051907 DOI: 10.1088/1361-6579/ac4d38] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 01/20/2022] [Indexed: 11/11/2022]
Abstract
Objective:Liver biopsy is an essential procedure in cancer diagnostics but targeting the biopsy to the actual tumor tissue is challenging. Aim of this study was to evaluate the clinical feasibility of a novel bioimpedance biopsy needle system in liver biopsy and simultaneously to gatherin vivobioimpedance data from human liver and tumor tissues.Approach:We measured human liver and tumor impedance datain vivofrom 26 patients who underwent diagnostic ultrasound-guided liver biopsy. Our novel 18G core biopsy needle tip forms a bipolar electrode that was used to measure bioimpedance during the biopsy in real-time with frequencies from 1 kHz to 349 kHz. The needle tip location was determined by ultrasound. Also, the sampled tissue type was determined histologically.Main results:The bioimpedance values showed substantial variation between individual cases, and liver and tumor data overlapped each other. However, Mann-Whitney U test showed that the median bioimpedance values of liver and tumor tissue are significantly (p<0.05) different concerning the impedance magnitude at frequencies below 25 kHz and the phase angle at frequencies below 3 kHz and above 30 kHz.Significance:This study uniquely employed a real-time bioimpedance biopsy needle in clinical liver biopsies and reported the measured humanin vivoliver and tumor impedance data. Impedance is always device-dependent and therefore not directly comparable to measurements with other devices. Although the variation in tumor types prevented coherent tumor identification, our study provides preliminary evidence that tumor tissue differs from liver tissuein vivoand this association is frequency-dependent.
Collapse
Affiliation(s)
- Sanna Halonen
- R&D Department, Injeq, Biokatu 8, Tampere, 33520, FINLAND
| | - Ali Ovissi
- Department of Radiology, Meilahti Hospital, Haartmaninkatu 4, Helsinki, Uusimaa, 00029, FINLAND
| | - Sonja Boyd
- HUS Diagnostic Center, Helsinki University Hospital Pathology, PB 340, Helsinki, 00029, FINLAND
| | - Juho Kari
- R&D Department, Injeq, Biokatu 8, Tampere, 33520, FINLAND
| | | | - Juhani Kosunen
- Department of Radiology, Meilahti Hospital, Haartmaninkatu 4, Helsinki, Uusimaa, 00029, FINLAND
| | - Hanna Lauren
- Department of Radiology, Helsinki University Central Hospital Comprehensive Cancer Center, Haartmaninkatu 4, Helsinki, Uusimaa, 00029, FINLAND
| | - Kirsti Numminen
- Department of Radiology, Meilahti Hospital, Haartmaninkatu 4, Helsinki, Uusimaa, 00029, FINLAND
| | - Harri Sievänen
- R&D Department, Injeq, Biokatu 8, Tampere, 33520, FINLAND
| | - Jari Hyttinen
- Faculty of Medicine and Health Technology, Tampere University, Arvo Ylpön katu 34, Tampere, Pirkanmaa, 33520, FINLAND
| |
Collapse
|
4
|
Mahdavi R, Yousefpour N, Abbasvandi F, Ataee H, Hoseinpour P, Akbari ME, Parniani M, Delshad B, Avatefi M, Nourinejad Z, Abdolhosseini S, Mehrvarz S, Hajighasemi F, Abdolahad M. Intraoperative pathologically-calibrated diagnosis of lymph nodes involved by breast cancer cells based on electrical impedance spectroscopy; a prospective diagnostic human model study. Int J Surg 2021; 96:106166. [PMID: 34768024 DOI: 10.1016/j.ijsu.2021.106166] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 10/19/2021] [Accepted: 11/03/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND Nodal status evaluation is a crucial step in determining prognostic factors and managing treatment strategies for breast cancer patients. Preoperative (CNB), intraoperative (SLNB), and even postoperative techniques (Formalin-Fixed Paraffin-Embedded sectioning, FFPE) have definite limitations of precision or sometimes are time-consuming for the result declaration. The primary purpose of this prospective study is to provide a precise complementary system for distinguishing lymph nodes (LNs) involved by cancerous cells in breast cancer patients intraoperatively. METHODS The proposed system, Electrical Lymph Scoring(ELS), is designed based on the dielectric properties of the under-test LNs. The system has a needle-shaped 2-electrode probe entered into SLNs or ALNs dissected from patients through standard surgical guidelines. Impedance magnitude in f = 1 kH (Z1kHz) and Impedance Phase Slope in frequency ranges of 100 kHz-500 kHz (IPS) were then extracted from the impedance spectroscopy data in a cohort study of 77 breast cancer patients(totally 282 dissected LNs) who had been undergone surgery before (n = 55) or after (n = 22) chemical therapies (non-neoadjuvant or neoadjuvant chemotherapy). A new admittance parameter(Yn') also proposed for LN detection in neoadjuvant chemotherapy patients. RESULTS Considering the permanent pathology result as the gold standard checked by two independent expert pathologists, a significant correlation was observed between the presence of cancerous cells in LNs and individual ranges of the ELS electrical responses. Compared with normal LNs containing fatty ambient and immune cells, LNs involved by cancerous clusters would reduce the Z1kHz and increase the IPS. These changes correlate with fat metabolism by cancer cells due to their Fatty Acid Oxidation (FAO) in LN, which results in different dielectric properties between high and low-fat content of normal and cancerous LNs, respectively. CONCLUSIONS By finding the best correlation between our defined impedimetric parameters and pathological states of tested LNs, a real-time intraoperative detection approach was developed for highly-sensitive (92%, P<0.001) diagnosis of involved sentinel or axillary LNs. The impact of real-time intraoperative scoring of SLNs would make a pre-estimation about the necessity of excising further LNs to help the surgeon for less invasive surgery, especially in the absence of frozen-section equipment.
Collapse
Affiliation(s)
- Reihane Mahdavi
- Nano Bioelectronics Devices Lab, Cancer Electronics Research Group, School of Electrical and Computer Engineering, Faculty of Engineering, University of Tehran, Tehran, P.O. Box 14395/515, Iran Nano Electronic Center of Excellence, Nano Bio Electronics Devices Lab, School of Electrical and Computer Engineering, University of Tehran, Tehran, P.O. Box 14395/515, Iran ATMP Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, P.O. BOX 15179/64311, Tehran, Iran School of Electrical and Computer Engineering, Faculty of Engineering, Amirkabir University of Technology, Tehran, P.O. BOX 1591634311, Iran SEPAS Pathology Laboratory, P.O.Box: 1991945391, Tehran, Iran Cancer Research Center, Shahid Beheshti University of Medical Sciences, P.O. BOX 15179/64311, Tehran, Iran Pathology Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, P.O. BOX 15179/64311, Tehran, Iran Cancer Institute, Imam-Khomeini Hospital, Tehran University of Medical Sciences, P.O. BOX 13145-158, Tehran, Iran
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Luo X, Wang S, Sanchez B. A framework for modeling bioimpedance measurements of nonhomogeneous tissues: a theoretical and simulation study. Physiol Meas 2021; 42. [PMID: 33984840 DOI: 10.1088/1361-6579/ac010d] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 05/13/2021] [Indexed: 11/11/2022]
Abstract
Objective.Bioimpedance technology is experiencing an increased use to assess health in a wide range of new consumer, research and clinical applications. However, the interaction between tissues producing bioimpedance data is often unclear.Methods.This work provides a novel theoretical framework to model bioimpedance measurements of nonhomogeneous tissues. We consider five case studies to validate the usefulness of our approach against finite element model simulations.Results.Theoretical and FEM-simulated apparent resistance and reactance data were in good agreement, with a maximum relative errors <4% and <8%, respectively.Conclusion.The biophysics-driven framework developed provides compact analytical expressions to model nonhomogeneous bioimpedance measurements including multiple tissues with arbitrary shape and electrical properties. This work provides a new perspective to interpret nonhomogeneous bioimpedance measurements usingseries,parallel, andseries-parallelcircuit-like topology equivalents.Significance.Our framework is a new tool to better understand and describe complex nonhomogeneous biological measurements as, for example, cardiac, brain and respiratory applications using (non)invasive electrodes.
Collapse
Affiliation(s)
- Xuesong Luo
- Department of Automation Science and Electric Engineering, Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Beihang University, Beijing 100083, People's Republic of China.,Sanchez Research Lab, Department of Electrical and Computer Engineering, University of Utah, Salt Lake City, UT 84112-9206, United States of America
| | - Shaoping Wang
- Department of Automation Science and Electric Engineering, Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Beihang University, Beijing 100083, People's Republic of China
| | - Benjamin Sanchez
- Sanchez Research Lab, Department of Electrical and Computer Engineering, University of Utah, Salt Lake City, UT 84112-9206, United States of America
| |
Collapse
|