1
|
Verma D, Sarkar B, Singh J, Singh A, Mutsuddi M, Mukherjee A. Loss of non-muscle myosin II Zipper leads to apoptosis-induced compensatory proliferation in Drosophila. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2025; 1872:119939. [PMID: 40157509 DOI: 10.1016/j.bbamcr.2025.119939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 03/21/2025] [Accepted: 03/25/2025] [Indexed: 04/01/2025]
Abstract
Drosophila Non-muscle myosin II Zipper (Zip) belongs to a functionally divergent class of molecular motors that play a vital role in various cellular processes including cell adhesion, cell migration, cell protrusion, and maintenance of polarity via its cross-linking property with actin. To further determine its role in cell proliferation and apoptosis, we carried out Zip loss of function studies that led to compromised epithelial integrity in Drosophila wing imaginal discs as evident from the perturbed expression pattern of cell-cell junction proteins Cadherin, Actin, and Armadillo. Disruption of these adhesion proteins resulted in the cells undergoing apoptosis as evident from the increased level of effector caspase, cDcp-1. The induction of cell death due to the loss of function of Zip was accompanied by proliferation as apparent from increased PH3 staining. The control of apoptosis-induced compensatory proliferation lies under the caspase cascade. We carried out experiments that suggested that the apical caspase Dronc is responsible for the apoptosis-induced compensatory proliferation due to the loss of Zip function and not the effector caspase Drice/Dcp-1. Further, it was observed that Dronc leads to the subsequent activation of Jun N-terminal kinase pathway (JNK) pathway and Wingless (Wg) mitogen that diffuse to the neighboring cells and prompt them to undergo cell division. Taken together, our results suggest that loss of function of Zip leads to apoptosis-induced compensatory proliferation.
Collapse
Affiliation(s)
- Dipti Verma
- Department of Molecular and Human Genetics, Institute of Science, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India
| | - Bappi Sarkar
- Department of Molecular and Human Genetics, Institute of Science, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India
| | - Jyoti Singh
- Department of Molecular and Human Genetics, Institute of Science, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India
| | - Ankita Singh
- Department of Molecular and Human Genetics, Institute of Science, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India
| | - Mousumi Mutsuddi
- Department of Molecular and Human Genetics, Institute of Science, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India
| | - Ashim Mukherjee
- Department of Molecular and Human Genetics, Institute of Science, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India.
| |
Collapse
|
2
|
Park MA, Jacobson R, Genilo-Delgado M, Mohammadi A, Moran-Segura C, Alhassan S, Nakanishi Y, Permuth JB, Imanirad I, Dineen SP. The Transcriptomic Landscapes of Appendiceal Primary and Metastatic Tumors are Distinct. Ann Surg Oncol 2025; 32:3660-3671. [PMID: 39987388 DOI: 10.1245/s10434-025-16939-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 01/10/2025] [Indexed: 02/24/2025]
Abstract
BACKGROUND Improved understanding about the pathobiology of appendiceal cancers (AC) and resulting metastasis is required for the development of novel treatments. The tumor microenvironment in AC is heterogeneous and incompletely characterized. The objective of this study was to leverage spatial high-plex technology to evaluate the transcriptomic landscape of epithelial and stromal cells in primary AC tumors, adjacent normal appendix, and corresponding peritoneal metastasis. METHODS A tissue microarray (TMA) containing cores from 14 unique patients having matched primary tumor, adjacent normal appendix, and peritoneal metastases was analyzed with digital spatial profiling (NanoString, GeoMx) using pancytokeratin (PCK) to delineate stroma (PCK-) from epithelium (PCK+). Then RNA sequencing was performed to measure transcript abundance separately within the stromal and epithelial compartments. RESULTS Transcriptomic analysis demonstrated differences between tumor and stromal compartments in both primary tumor and metastatic sites. Primary and metastatic tumor stroma (PCK-) demonstrated greater expression of ribosomal biogenesis pathways than normal appendiceal tissue. Primary and metastatic tumors were generally similar with respect to transcription. However, within the epithelial compartment (PCK+), peritoneal metastases exhibited upregulated cytoskeletal and collagen metabolism pathways/genes compared with primary tumor. CONCLUSIONS The study data indicated that although appendiceal peritoneal disease is transcriptionally similar to the primary tumor, potentially important distinctions exist between metastatic and primary disease. Differences appear to be driven predominantly by changes in collagen metabolism at the peritoneal site. A better understanding of both tumor and stromal compartments of metastatic disease will be essential to improving therapeutic options, specifically systemic treatment, which is characteristically ineffective.
Collapse
Affiliation(s)
- Margaret A Park
- Department of Biostatistics and Bioinformatics, Moffitt Cancer Center, Tampa, FL, USA
- Department of GI Oncology, Moffitt Cancer Center, Tampa, FL, USA
| | - Richard Jacobson
- Department of GI Oncology, Moffitt Cancer Center, Tampa, FL, USA
| | | | - Amir Mohammadi
- Department of GI Oncology, Moffitt Cancer Center, Tampa, FL, USA
- Department of Cancer Epidemiology, Moffitt Cancer Center, Tampa, FL, USA
| | - Carlos Moran-Segura
- Advanced Analytical and Digital Laboratory, Moffitt Cancer Center, Tampa, FL, USA
| | - Solomon Alhassan
- Department of GI Oncology, Moffitt Cancer Center, Tampa, FL, USA
| | | | - Jennifer B Permuth
- Department of GI Oncology, Moffitt Cancer Center, Tampa, FL, USA
- Department of Cancer Epidemiology, Moffitt Cancer Center, Tampa, FL, USA
| | - Iman Imanirad
- Department of GI Oncology, Moffitt Cancer Center, Tampa, FL, USA
| | - Sean P Dineen
- Department of GI Oncology, Moffitt Cancer Center, Tampa, FL, USA.
| |
Collapse
|
3
|
Guha A, Sadeghi SA, Kunhiraman HH, Fang F, Wang Q, Rafieioskouei A, Grumelot S, Gharibi H, Saei AA, Sayadi M, Weintraub NL, Horibata S, Yang PCM, Bonakdarpour B, Ghassemi M, Sun L, Mahmoudi M. AI-Driven Prediction of Cardio-Oncology Biomarkers Through Protein Corona Analysis. CHEMICAL ENGINEERING JOURNAL (LAUSANNE, SWITZERLAND : 1996) 2025; 509:161134. [PMID: 40190726 PMCID: PMC11970620 DOI: 10.1016/j.cej.2025.161134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2025]
Abstract
Protein corona, a layer predominantly composed of proteins and other biomolecules that forms on nanoparticle surfaces upon interaction with biological fluids, has recently been extensively utilized to enhance the depth of plasma proteomics and biomarker discovery. In this study, we integrate protein corona profiling with mass spectrometry (MS)-based bottom-up proteomics (BUP), machine learning, and causality analysis to identify potential biomarkers in the field of cardio-oncology. We selected prostate cancer (PC) and atherosclerosis as model cardio-oncology diseases, given that PC is the most prevalent cancer among men in the United States and frequently coexists with atherosclerotic cardiovascular disease (ASCVD), which contributes to the progression of metastatic PC (mPC). Protein corona profiles were generated from 35 plasma samples categorized into four groups: mPC with ASCVD, nonmetastatic PC (nmPC) with ASCVD, mPC without ASCVD, and nmPC without ASCVD. MS-based BUP analysis identified 887 unique proteins within the protein corona. Gene Ontology (GO) analysis of the 260 proteins common to all samples revealed key plasma proteomic pathways significantly associated with ASCVD and mPC. Using Least Absolute Shrinkage and Selection Operator (LASSO) regularization, we isolated 22 proteins strongly associated with ASCVD or mPC, including chaperonin containing TCP1 subunit 7 (CCT7), which was common to both conditions. Automated formal reasoning and causality analysis of these 22 proteins identified thromboxane-A synthase 1 (TBXAS1) as a primary causal factor linked to both ASCVD and mPC. TBXAS1 plays a critical role in promoting platelet aggregation, vascular smooth muscle cell proliferation, endothelial dysfunction, and thrombosis. In this proof-of-concept study, CCT7 and TBXAS1 emerged as potential biomarkers for both ASCVD and mPC, suggesting their utility as dual biomarkers for early detection and targeted therapeutic interventions. By combining nanomedicine with advanced analytical methods, our integrated approach provides a robust framework for uncovering causal relationships between biomarkers and disease states.
Collapse
Affiliation(s)
- Avirup Guha
- Division of Cardiology, Department of Medicine, Medical College of Georgia at Augusta University, Augusta, GA, United States
- Cardio-Oncology Program, Medical College of Georgia at Augusta University, Augusta, GA, United States
| | | | - Harikrishnan Hyma Kunhiraman
- Division of Cardiology, Department of Medicine, Medical College of Georgia at Augusta University, Augusta, GA, United States
- Cardio-Oncology Program, Medical College of Georgia at Augusta University, Augusta, GA, United States
| | - Fei Fang
- Department of Chemistry, Michigan State University, East Lansing, MI, United States
| | - Qianyi Wang
- Department of Chemistry, Michigan State University, East Lansing, MI, United States
| | - Arshia Rafieioskouei
- Department of Computer Science and Engineering, Michigan State University, East Lansing, MI, United States
| | - Shaun Grumelot
- Precision Health Program, Michigan State University, East Lansing, MI, United States
- Department of Radiology, College of Human Medicine, Michigan State University, East Lansing, MI, United States
| | - Hassan Gharibi
- Division of Chemistry I, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Amir Ata Saei
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Maryam Sayadi
- Department of Biomedical Engineering, Michigan State University, East Lansing, MI, United States
| | - Neal L. Weintraub
- Division of Cardiology, Department of Medicine, Medical College of Georgia at Augusta University, Augusta, GA, United States
| | - Sachi Horibata
- Precision Health Program, Michigan State University, East Lansing, MI, United States
- Cell and Molecular Biology Program, Michigan State University, East Lansing, MI, United States
- Department of Pharmacology and Toxicology, College of Human Medicine, Michigan State University, East Lansing, MI, United States
| | - Phillip Chung-Ming Yang
- Division of Cardiovascular Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA, United States
- Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, United States
| | - Borzoo Bonakdarpour
- Department of Computer Science and Engineering, Michigan State University, East Lansing, MI, United States
| | - Mohammad Ghassemi
- Department of Computer Science and Engineering, Michigan State University, East Lansing, MI, United States
| | - Liangliang Sun
- Department of Chemistry, Michigan State University, East Lansing, MI, United States
| | - Morteza Mahmoudi
- Precision Health Program, Michigan State University, East Lansing, MI, United States
- Department of Radiology, College of Human Medicine, Michigan State University, East Lansing, MI, United States
| |
Collapse
|
4
|
MYL5 as a Novel Prognostic Marker is Associated with Immune Infiltrating in Breast Cancer: A Preliminary Study. Breast J 2023; 2023:9508632. [PMID: 36846347 PMCID: PMC9957649 DOI: 10.1155/2023/9508632] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 01/20/2023] [Accepted: 02/01/2023] [Indexed: 02/19/2023]
Abstract
Background Myosin light chain plays a vital regulatory function in a large-scale cellular physiological procedure, however, the role of myosin light chain 5 (MYL5) in breast cancer has not been reported. In this study, we aimed to elucidate the effects of MYL5 on clinical prognosis and immune cell infiltration, and further explore the potential mechanism in breast cancer patients. Methods In this study, we first explored the expression pattern and prognostic value of MYL5 in breast cancer across multiple databases, including Oncomine, TCGA, GTEx, GEPIA2, PrognoScan, and Kaplan-Meier Plotter. The correlations of MYL5 expression with immune cell infiltration and associational gene markers in breast cancer were analyzed by using the TIMER, TIMER2.0, and TISIDB databases. The enrichment and prognosis analysis of MYL5-related genes were implemented by using LinkOmics datasets. Results We found that there was a low expression of MYL5 in breast cancer than in corresponding normal tissue by analyzing the data from Oncomine and TCGA datasets. Furthermore, research showed the prognosis of the MYL5 high-expression group was better than the low-expression group in breast cancer patients. Furthermore, MYL5 expression is markedly related to the tumor-infiltrating immune cells (TIICs), including cancer-associated fibroblast, B cell, CD8+ T cell, CD4+ T cell, macrophage, neutrophil, and dendritic cell, and related to immune molecules as well as the associated gene markers of TIICs. Conclusion MYL5 can serve as a prognostic signature in breast cancer and is associated with immune infiltration. This study first offers a relatively comprehensive understanding of the oncogenic roles of MYL5 for breast cancer.
Collapse
|
5
|
Ngalim SH, Yusoff N, Johnson RR, Abdul Razak SR, Chen X, Hobbs JK, Lee YY. A review on mechanobiology of cell adhesion networks in different stages of sporadic colorectal cancer to explain its tumorigenesis. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2022; 175:63-72. [PMID: 36116549 DOI: 10.1016/j.pbiomolbio.2022.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 09/07/2022] [Accepted: 09/12/2022] [Indexed: 06/15/2023]
Abstract
Sporadic colorectal cancer (CRC) is strongly linked to extraneous factors, like poor diet and lifestyle, but not to inherent factors like familial genetics. The changes at the epigenomics and signalling pathways are known across the sporadic CRC stages. The catch is that temporal information of the onset, the feedback loop, and the crosstalk of signalling and noise are still unclear. This makes it challenging to diagnose and treat colon cancer effectively with no relapse. Various microbial cells and native cells of the colon, contribute to sporadic CRC development. These cells secrete autocrine and paracrine for their bioenergetics and communications with other cell types. Imbalances of the biochemicals affect the epithelial lining of colon. One side of this epithelial lining is interfacing the dense colon tissue, while the other side is exposed to microbiota and excrement from the lumen. Hence, the epithelial lining is prone to tumorigenesis due to the influence of both biochemical and mechanical cues from its complex surrounding. The role of physical transformations in tumorigenesis have been limitedly discussed. In this context, cellular and tissue structures, and force transductions are heavily regulated by cell adhesion networks. These networks include cell anchoring mechanism to the surrounding, cell structural integrity mechanism, and cell effector molecules. This review will focus on the progression of the sporadic CRC stages that are governed by the underlaying cell adhesion networks within the epithelial cells. Additionally, current and potential technologies and therapeutics that target cell adhesion networks for treatments of sporadic CRC will be incorporated.
Collapse
Affiliation(s)
- Siti Hawa Ngalim
- Advanced Medical and Dental Institute, Universiti Sains Malaysia (USM) Bertam, 13200 Kepala Batas, Penang, Malaysia.
| | - Norwahida Yusoff
- School of Mechanical Engineering, Universiti Sains Malaysia (USM) Engineering Campus, 14300 Nibong Tebal, Penang, Malaysia
| | - Rayzel Renitha Johnson
- Advanced Medical and Dental Institute, Universiti Sains Malaysia (USM) Bertam, 13200 Kepala Batas, Penang, Malaysia
| | - Siti Razila Abdul Razak
- Advanced Medical and Dental Institute, Universiti Sains Malaysia (USM) Bertam, 13200 Kepala Batas, Penang, Malaysia
| | - Xinyue Chen
- Department of Physics and Astronomy, University of Sheffield, Hounsfield Road, Sheffield, S3 7RH, United Kingdom
| | - Jamie K Hobbs
- Department of Physics and Astronomy, University of Sheffield, Hounsfield Road, Sheffield, S3 7RH, United Kingdom
| | - Yeong Yeh Lee
- School of Medical Sciences, Universiti Sains Malaysia (USM) Kubang Kerian, 16150 Kota Bharu, Kelantan, Malaysia
| |
Collapse
|
6
|
Naydenov NG, Lechuga S, Huang EH, Ivanov AI. Myosin Motors: Novel Regulators and Therapeutic Targets in Colorectal Cancer. Cancers (Basel) 2021; 13:741. [PMID: 33670106 PMCID: PMC7916823 DOI: 10.3390/cancers13040741] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 02/06/2021] [Accepted: 02/08/2021] [Indexed: 12/11/2022] Open
Abstract
Colorectal cancer (CRC) remains the third most common cause of cancer and the second most common cause of cancer deaths worldwide. Clinicians are largely faced with advanced and metastatic disease for which few interventions are available. One poorly understood aspect of CRC involves altered organization of the actin cytoskeleton, especially at the metastatic stage of the disease. Myosin motors are crucial regulators of actin cytoskeletal architecture and remodeling. They act as mechanosensors of the tumor environments and control key cellular processes linked to oncogenesis, including cell division, extracellular matrix adhesion and tissue invasion. Different myosins play either oncogenic or tumor suppressor roles in breast, lung and prostate cancer; however, little is known about their functions in CRC. This review focuses on the functional roles of myosins in colon cancer development. We discuss the most studied class of myosins, class II (conventional) myosins, as well as several classes (I, V, VI, X and XVIII) of unconventional myosins that have been linked to CRC development. Altered expression and mutations of these motors in clinical tumor samples and their roles in CRC growth and metastasis are described. We also evaluate the potential of using small molecular modulators of myosin activity to develop novel anticancer therapies.
Collapse
Affiliation(s)
- Nayden G. Naydenov
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA; (N.G.N.); (S.L.)
| | - Susana Lechuga
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA; (N.G.N.); (S.L.)
| | - Emina H. Huang
- Departments of Cancer Biology and Colorectal Surgery, Cleveland Clinic Foundation, Cleveland, OH 44195, USA;
| | - Andrei I. Ivanov
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA; (N.G.N.); (S.L.)
| |
Collapse
|
7
|
Abstract
Simple Summary Cell migration is an essential process from embryogenesis to cell death. This is tightly regulated by numerous proteins that help in proper functioning of the cell. In diseases like cancer, this process is deregulated and helps in the dissemination of tumor cells from the primary site to secondary sites initiating the process of metastasis. For metastasis to be efficient, cytoskeletal components like actin, myosin, and intermediate filaments and their associated proteins should co-ordinate in an orderly fashion leading to the formation of many cellular protrusions-like lamellipodia and filopodia and invadopodia. Knowledge of this process is the key to control metastasis of cancer cells that leads to death in 90% of the patients. The focus of this review is giving an overall understanding of these process, concentrating on the changes in protein association and regulation and how the tumor cells use it to their advantage. Since the expression of cytoskeletal proteins can be directly related to the degree of malignancy, knowledge about these proteins will provide powerful tools to improve both cancer prognosis and treatment. Abstract Successful metastasis depends on cell invasion, migration, host immune escape, extravasation, and angiogenesis. The process of cell invasion and migration relies on the dynamic changes taking place in the cytoskeletal components; actin, tubulin and intermediate filaments. This is possible due to the plasticity of the cytoskeleton and coordinated action of all the three, is crucial for the process of metastasis from the primary site. Changes in cellular architecture by internal clues will affect the cell functions leading to the formation of different protrusions like lamellipodia, filopodia, and invadopodia that help in cell migration eventually leading to metastasis, which is life threatening than the formation of neoplasms. Understanding the signaling mechanisms involved, will give a better insight of the changes during metastasis, which will eventually help targeting proteins for treatment resulting in reduced mortality and longer survival.
Collapse
|
8
|
Klingler-Hoffmann M, Mittal P, Hoffmann P. The Emerging Role of Cytoskeletal Proteins as Reliable Biomarkers. Proteomics 2019; 19:e1800483. [PMID: 31525818 DOI: 10.1002/pmic.201800483] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 07/12/2019] [Indexed: 12/26/2022]
Abstract
Cytoskeletal proteins are essential building blocks of cells. More than 100 cytoskeletal and cytoskeleton-associated proteins are known and for some, their function and regulation are understood in great detail. Apart from cell shape and support, they facilitate many processes such as intracellular signaling and transport, and cancer related processes such as proliferation, migration, and invasion. During the last decade, comparative proteomic studies have identified cytoskeletal proteins as in vitro markers for tumor progression and metastasis. Here, these results are summarized and a number of unrelated studies are highlighted, identifying the same cytoskeletal proteins as potential biomarkers. These findings might indicate that the abundance of these potential markers of tumor progression is associated with the biological outcome and are independent of the cancer origin. This correlates well with recently published results from the Cancer Genome Atlas, indicating that cancers show remarkable similarities in their analyzed molecular information, independent of their organ of origin. It is postulated that the quantification of cytoskeletal proteins in healthy tissues, tumors, in adjacent tissues, and in stroma, is a great source of molecular information, which might not only be used to classify tumors, but more importantly to predict patients' outcome or even best treatment choices.
Collapse
Affiliation(s)
- Manuela Klingler-Hoffmann
- Future Industries Institute, University of South Australia, Mawson Lakes Campus, Mawson Lakes, 5095, Australia
| | - Parul Mittal
- Adelaide Proteomics Centre, School of Biological Sciences, University of Adelaide, Adelaide, 5005, Australia
| | - Peter Hoffmann
- Future Industries Institute, University of South Australia, Mawson Lakes Campus, Mawson Lakes, 5095, Australia
| |
Collapse
|
9
|
Wiegering A, Rüther U, Gerhardt C. The ciliary protein Rpgrip1l in development and disease. Dev Biol 2018; 442:60-68. [DOI: 10.1016/j.ydbio.2018.07.024] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 07/13/2018] [Accepted: 07/28/2018] [Indexed: 12/28/2022]
|
10
|
Li YR, Yang WX. Myosins as fundamental components during tumorigenesis: diverse and indispensable. Oncotarget 2018; 7:46785-46812. [PMID: 27121062 PMCID: PMC5216836 DOI: 10.18632/oncotarget.8800] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2016] [Accepted: 04/10/2016] [Indexed: 12/11/2022] Open
Abstract
Myosin is a kind of actin-based motor protein. As the crucial functions of myosin during tumorigenesis have become increasingly apparent, the profile of myosin in the field of cancer research has also been growing. Eighteen distinct classes of myosins have been discovered in the past twenty years and constitute a diverse superfamily. Various myosins share similar structures. They all convert energy from ATP hydrolysis to exert mechanical stress upon interactions with microfilaments. Ongoing research is increasingly suggesting that at least seven kinds of myosins participate in the formation and development of cancer. Myosins play essential roles in cytokinesis failure, chromosomal and centrosomal amplification, multipolar spindle formation and DNA microsatellite instability. These are all prerequisites of tumor formation. Subsequently, myosins activate various processes of tumor invasion and metastasis development including cell migration, adhesion, protrusion formation, loss of cell polarity and suppression of apoptosis. In this review, we summarize the current understanding of the roles of myosins during tumorigenesis and discuss the factors and mechanisms which may regulate myosins in tumor progression. Furthermore, we put forward a completely new concept of “chromomyosin” to demonstrate the pivotal functions of myosins during karyokinesis and how this acts to optimize the functions of the members of the myosin superfamily.
Collapse
Affiliation(s)
- Yan-Ruide Li
- The Sperm Laboratory, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Wan-Xi Yang
- The Sperm Laboratory, College of Life Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
11
|
Li YR, Zhong A, Dong H, Ni LH, Tan FQ, Yang WX. Myosin Va plays essential roles in maintaining normal mitosis, enhancing tumor cell motility and viability. Oncotarget 2017; 8:54654-54671. [PMID: 28903372 PMCID: PMC5589611 DOI: 10.18632/oncotarget.17920] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2017] [Accepted: 05/03/2017] [Indexed: 12/14/2022] Open
Abstract
Myosin Va, a member of Class V myosin, functions in organelle motility, spindle formation, nuclear morphogenesis and cell motility. The purpose of this study is to explore the expression and localization of myosin Va in testicular cancer and prostate cancer, and its specific roles in tumor progression including cell division, migration and proliferation. We detected myosin Va in testicular and prostate tumor tissues using sqRT-PCR, western blot, and immunofluorescence. Tumor samples showed an increased expression of myosin Va, abnormal actin and myosin Va distribution. Immunofluorescence images during the cell cycle showed that myosin Va tended to gather at cytoplasm during anaphase but co-localized with nucleus during other phases, suggesting the roles of myosin Va in disassembly of spindle microtubule, movement of chromosomes and normal cytokinesis. In addition, multi-nucleation and aberrant nuclear morphology were observed in myosin Va-knockdown cells. Wounding assay and CCK-8-based cell counting were conducted to explore myosin Va roles in cell migration, viability and proliferation. Our results suggest that myosin Va plays essential roles in maintaining normal mitosis, enhancing tumor cell motility and viability, and these properties are the hallmark of tumor progression and metastasis development. Therefore, an increased understanding of myosin Va expression and function will assist in the development of future oncodiagnosis and -therapy.
Collapse
Affiliation(s)
- Yan-Ruide Li
- The Sperm Laboratory, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Ai Zhong
- The Sperm Laboratory, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Han Dong
- The Sperm Laboratory, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Lu-Han Ni
- The Sperm Laboratory, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Fu-Qing Tan
- The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Wan-Xi Yang
- The Sperm Laboratory, College of Life Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
12
|
Zhang X, Huang Z, Hu Y, Liu L. Knockdown of Myosin 6 inhibits proliferation of oral squamous cell carcinoma cells. J Oral Pathol Med 2016; 45:740-745. [PMID: 27561828 DOI: 10.1111/jop.12448] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/17/2016] [Indexed: 01/01/2023]
Abstract
BACKGROUND Oral squamous cell carcinoma (OSCC) accounts for 95% of all oral cancer with higher mortality and morbidity rates worldwide. However, the potential molecular mechanism of OSCC remains largely unclear. Myosin VI (MYO6) is a unique actin motor and reported to be overexpressed in several cancers. This study aims to examine the functional relationship between OSCC and MYO6. METHODS The mRNA expression of MYO6 was firstly investigated by analyzing data derived from Oncomine database. On the basis of the results, the expression of MYO6 was knocked down using lentivirus-delivered RNA interference in human OSCC cell line CAL27, as confirmed by qPCR and Western blot analysis. Stable MYO6 knockdown cells were employed to determine the effects of MYO6-silencing on cell growth by MTT, colony formation and cell cycle distribution and apoptosis by flow cytometry assay. Moreover, the expressions of cell apoptotic proteins were examined by Western blot analysis. RESULTS We first observed MYO6 was overexpressed in tongue squamous cell carcinoma TSCC belongs to OSCC, compared with normal tissues. For cellular analysis, shRNA sequences against MYO6 could efficiently reduce its expression in CAL27 cells. Knockdown of MYO6 significantly decreased cell proliferation, caused cell cycle arrest at G2/M phase, and promoted cell apoptosis. Moreover, cell apoptosis-associated proteins, caspase-3 and PARP, were obviously upregulated in CAL27 after MYO6-silencing. CONCLUSION MYO6 could play an essential role in the growth of OSCC cells via regulation of cell cycle progression and apoptosis.
Collapse
Affiliation(s)
- Xinyu Zhang
- Department of Oral-maxillofacial Head and Neck Surgery, Ninth People's Hospital, College of Stomatology, Shanghai Key Laboratory of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhiquan Huang
- Department of Oral-maxillofacial Head and Neck Surgery, Sun Yat-sen Memorial Hospital, Guang Zhou, China
| | - Yongjie Hu
- Department of Oral-maxillofacial Head and Neck Surgery, Ninth People's Hospital, College of Stomatology, Shanghai Key Laboratory of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Liu Liu
- Department of Oral-maxillofacial Head and Neck Surgery, Ninth People's Hospital, College of Stomatology, Shanghai Key Laboratory of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
13
|
Ziegler YS, Moresco JJ, Tu PG, Yates JR, Nardulli AM. Plasma membrane proteomics of human breast cancer cell lines identifies potential targets for breast cancer diagnosis and treatment. PLoS One 2014; 9:e102341. [PMID: 25029196 PMCID: PMC4100819 DOI: 10.1371/journal.pone.0102341] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Accepted: 06/16/2014] [Indexed: 01/06/2023] Open
Abstract
The use of broad spectrum chemotherapeutic agents to treat breast cancer results in substantial and debilitating side effects, necessitating the development of targeted therapies to limit tumor proliferation and prevent metastasis. In recent years, the list of approved targeted therapies has expanded, and it includes both monoclonal antibodies and small molecule inhibitors that interfere with key proteins involved in the uncontrolled growth and migration of cancer cells. The targeting of plasma membrane proteins has been most successful to date, and this is reflected in the large representation of these proteins as targets of newer therapies. In view of these facts, experiments were designed to investigate the plasma membrane proteome of a variety of human breast cancer cell lines representing hormone-responsive, ErbB2 over-expressing and triple negative cell types, as well as a benign control. Plasma membranes were isolated by using an aqueous two-phase system, and the resulting proteins were subjected to mass spectrometry analysis. Overall, each of the cell lines expressed some unique proteins, and a number of proteins were expressed in multiple cell lines, but in patterns that did not always follow traditional clinical definitions of breast cancer type. From our data, it can be deduced that most cancer cells possess multiple strategies to promote uncontrolled growth, reflected in aberrant expression of tyrosine kinases, cellular adhesion molecules, and structural proteins. Our data set provides a very rich and complex picture of plasma membrane proteins present on breast cancer cells, and the sorting and categorizing of this data provides interesting insights into the biology, classification, and potential treatment of this prevalent and debilitating disease.
Collapse
Affiliation(s)
- Yvonne S. Ziegler
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - James J. Moresco
- Department of Chemical Physiology, The Scripps Research Institute, La Jolla, California, United States of America
| | - Patricia G. Tu
- Department of Chemical Physiology, The Scripps Research Institute, La Jolla, California, United States of America
| | - John R. Yates
- Department of Chemical Physiology, The Scripps Research Institute, La Jolla, California, United States of America
| | - Ann M. Nardulli
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| |
Collapse
|
14
|
Exploring correlations in gene expression microarray data for maximum predictive-minimum redundancy biomarker selection and classification. Comput Biol Med 2013; 43:1437-43. [PMID: 24034735 DOI: 10.1016/j.compbiomed.2013.07.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2012] [Revised: 07/02/2013] [Accepted: 07/04/2013] [Indexed: 12/27/2022]
Abstract
An important issue in the analysis of gene expression microarray data is concerned with the extraction of valuable genetic interactions from high dimensional data sets containing gene expression levels collected for a small sample of assays. Past and ongoing research efforts have been focused on biomarker selection for phenotype classification. Usually, many genes convey useless information for classifying the outcome and should be removed from the analysis; on the other hand, some of them may be highly correlated, which reveals the presence of redundant expressed information. In this paper we propose a method for the selection of highly predictive genes having a low redundancy in their expression levels. The predictive accuracy of the selection is assessed by means of Classification and Regression Trees (CART) models which enable assessment of the performance of the selected genes for classifying the outcome variable and will also uncover complex genetic interactions. The method is illustrated throughout the paper using a public domain colon cancer gene expression data set.
Collapse
|
15
|
Tai CJ, Lee CH, Chen HC, Wang HK, Jiang MC, Su TC, Shen KH, Lin SH, Yeh CM, Chen CJ, Yeh KT, Chang CC. High nuclear expression of phosphorylated extracellular signal-regulated kinase in tumor cells in colorectal glands is associated with poor outcome in colorectal cancer. Ann Diagn Pathol 2012. [PMID: 23183114 DOI: 10.1016/j.anndiagpath.2012.09.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Extracellular signal-regulated kinase (ERK) is a major downstream transducer of Ras and plays an important role in transducing extracellular signals to the nuclei of cells. It is located in both the cytoplasm and the nucleus of cells. The nuclear localization of phosphorylated or activated ERK is involved in the invasive behavior of tumor cells. We studied the association between Ras mutation/ERK activation and the prognosis of patients with colorectal cancer. We analyzed 126 surgically resected colorectal cancer specimens for K-Ras mutation using direct sequencing. Activation/phosphorylation of ERK was assayed by immunohistochemistry with tissue microarray, and the staining intensity was analyzed using a semiquantitative scoring system. K-Ras mutations were detected in 32.5% (41/126) of the colorectal tumors. Colorectal glands are important functional organs in colorectal tissue and form the origin of colorectal carcinomas. Tissue microarray immunohistochemistry tests showed that tumors in colorectal cancer specimens were significantly stained for phospho-ERK (100%; 126/126), whereas nonneoplastic colorectal glands mainly showed faint phosphorylated ERK staining. High nuclear phospho-ERK expression in tumors was associated with highly invasive cancer stage and T status of the disease. Kaplan-Meier analysis showed that nuclear but not cytoplasmic phosphorylated ERK expression correlated with the patients' overall survival rate (P = .039). Colorectal adenomas including tubular adenomas and tubulovillous adenomas mainly showed weak cytoplasmic phospho-ERK expression. Our results suggest that immunohistologic analysis of phosphorylated ERK expression in colorectal glands may aid the diagnosis of colorectal cancer and that nuclear phosphorylated ERK might be a valuable prognostic marker for colorectal cancer.
Collapse
Affiliation(s)
- Cheng-Jeng Tai
- Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|