1
|
Langston JL, Moffett MC, Pennington MR, Myers TM. Pharmacokinetics and pharmacodynamics of standard nerve agent medical countermeasures in Göttingen Minipigs. Toxicol Lett 2024; 397:103-116. [PMID: 38703967 DOI: 10.1016/j.toxlet.2024.04.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 04/18/2024] [Accepted: 04/26/2024] [Indexed: 05/06/2024]
Abstract
Animal research continues to serve a critical role in the testing and development of medical countermeasures. The Göttingen minipig, developed for laboratory research, may provide many benefits for addressing research questions within chemical defense. Targeted development of the Göttingen minipig model could reduce reliance upon non-human primates, and improve study design, statistical power, and throughput to advance medical countermeasures for regulatory approval and fielding. In this vein, we completed foundational pharmacokinetics and physiological safety studies of intramuscularly administered atropine sulfate, pralidoxime chloride (2-PAM), and diazepam across a broad range of doses (1-6 autoinjector equivalent) using adult male Göttingen minipigs (n=11; n=4-8/study) surgically implanted with vascular access ports and telemetric devices to monitor cardiovascular, respiratory, arterial pressure, and temperature signals. Pharmacokinetic data were orderly and the concentration maximum mirrored available human data at comparably scaled doses clearly for atropine, moderately for 2-PAM, and poorly for diazepam. Time to peak concentration approximated 2, 7, and 20 min for atropine, 2-PAM, and diazepam, respectively, and the elimination half-life of these drugs approximated 2 hr (atropine), 3 hr (2-PAM), and 8 hr (diazepam). Atropine sulfate dose-dependently increased the magnitude and duration of tachycardia and decreased the PR and ST intervals (consistent with findings obtained from other species). Mild hypothermia was observed at the highest diazepam dose. Göttingen minipigs appear to provide a ready and appropriate large animal alternative to non-human primates, and further development and evaluation of novel nerve agent medical countermeasures and treatment strategies in this model are justified.
Collapse
Affiliation(s)
- Jeffrey L Langston
- United States Army Medical Research Institute of Chemical Defense, Medical Toxicology Research Division, Pharmaceutical Sciences Department, Aberdeen Proving Ground, MD 21010-5400, USA
| | - Mark C Moffett
- United States Army Medical Research Institute of Chemical Defense, Medical Toxicology Research Division, Pharmaceutical Sciences Department, Aberdeen Proving Ground, MD 21010-5400, USA
| | - M Ross Pennington
- United States Army Medical Research Institute of Chemical Defense, Medical Toxicology Research Division, Pharmaceutical Sciences Department, Aberdeen Proving Ground, MD 21010-5400, USA
| | - Todd M Myers
- United States Army Medical Research Institute of Chemical Defense, Medical Toxicology Research Division, Pharmaceutical Sciences Department, Aberdeen Proving Ground, MD 21010-5400, USA.
| |
Collapse
|
2
|
Pharmacokinetics of Tranexamic Acid Given as an Intramuscular Injection Compared to Intravenous Infusion in a Swine Model of Ongoing Hemorrhage. Shock 2021; 53:754-760. [PMID: 31389905 DOI: 10.1097/shk.0000000000001427] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
INTRODUCTION Tranexamic acid (TXA) improves survival in traumatic hemorrhage, but difficulty obtaining intravenous (IV) access may limit its use in austere environments, given its incompatibility with blood products. The bioavailability of intramuscular (IM) TXA in a shock state is unknown. We hypothesized that IM and IV administration have similar pharmacokinetics and ability to reverse in vitro hyperfibrinolysis in a swine-controlled hemorrhage model. METHODS Twelve Yorkshire cross swine were anesthetized, instrumented, and subjected to a 35% controlled hemorrhage, followed by resuscitation. During hemorrhage, they were randomized to receive a 1 g IV TXA infusion over 10 min, 1 g IM TXA in two 5 mL injections, or 10 mL normal saline IM injection as a placebo group to assess model adequacy. Serum TXA concentrations were determined using liquid chromatography-mass spectrometry, and plasma samples supplemented with tissue plasminogen activator (tPA) were analyzed by rotational thromboelastometry. RESULTS All animals achieved class III shock. There was no difference in the concentration-time areas under the curve between TXA given by either route. The absolute bioavailability of IM TXA was 97%. IV TXA resulted in a higher peak serum concentration during the infusion, with no subsequent differences. Both IV and IM TXA administration caused complete reversal of in vitro tPA-induced hyperfibrinolysis. CONCLUSION The pharmacokinetics of IM TXA were similar to IV TXA during hemorrhagic shock in our swine model. IV administration resulted in a higher serum concentration only during the infusion, but all levels were able to successfully correct in vitro hyperfibrinolysis. There was no difference in total body exposure to equal doses of TXA between the two routes of administration. IM TXA may prove beneficial in scenarios where difficulty establishing dedicated IV access could otherwise limit or delay its use.
Collapse
|
3
|
Mastenbrook J, Zamihovsky R, Brunken N, Olsen T. Intraosseous administration of hydroxocobalamin after enclosed structure fire cardiac arrest. BMJ Case Rep 2021; 14:14/3/e239523. [PMID: 33692053 PMCID: PMC7949448 DOI: 10.1136/bcr-2020-239523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Smoke inhalation is the most common cause of acute cyanide poisoning in the developed world. Hydroxocobalamin is an antidote for cyanide poisoning. There is little published about human intraosseous antidote administration. We present a case of intraosseous hydroxocobalamin administration in an adult smoke inhalation victim, found in cardiac arrest inside her burning manufactured home. Return of spontaneous circulation was achieved after 20 min of cardiopulmonary resuscitation. Five grams of hydroxocobalamin were subsequently given intraosseously. On hospital arrival, patient was found to have a respiratory-metabolic acidosis. She had red-coloured urine without haematuria, a known sequela of hydroxocobalamin administration. Patient's neurological status deteriorated, and she died 4 days after admission. This case highlights that intraosseously administered hydroxocobalamin seems to adequately flow into the marrow cavity and enter the circulatory system despite the non-compressible glass antidote vial. This appears to be only the second reported human case of intraosseous hydroxocobalamin administration.
Collapse
Affiliation(s)
- Joshua Mastenbrook
- Department of Emergency Medicine, Western Michigan University Homer Stryker MD School of Medicine, Kalamazoo, Michigan, USA
| | - Rachel Zamihovsky
- Department of Student Affairs, Western Michigan University Homer Stryker MD School of Medicine, Kalamazoo, Michigan, USA
| | - Nathan Brunken
- Department of Emergency Medicine, Western Michigan University Homer Stryker MD School of Medicine, Kalamazoo, Michigan, USA
| | - Thomas Olsen
- Department of Emergency Medicine, Western Michigan University Homer Stryker MD School of Medicine, Kalamazoo, Michigan, USA
| |
Collapse
|
4
|
Liu C, Zhu J, Hai B, Zhang W, Wang H, Leng H, Xu Y, Song C. Single Intraosseous Injection of Simvastatin Promotes Endothelial Progenitor Cell Mobilization, Neovascularization, and Wound Healing in Diabetic Rats. Plast Reconstr Surg 2020; 145:433-443. [DOI: 10.1097/prs.0000000000006502] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
5
|
McGarry KG, Schill KE, Winters TP, Lemmon EE, Sabourin CL, Harvilchuck JA, Moyer RA. Characterization of Cholinesterases From Multiple Large Animal Species for Medical Countermeasure Development Against Chemical Warfare Nerve Agents. Toxicol Sci 2019; 174:124-132. [DOI: 10.1093/toxsci/kfz250] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Abstract
Organophosphorus (OP) compounds, which include insecticides and chemical warfare nerve agents (CWNAs) such as sarin (GB) and VX, continue to be a global threat to both civilian and military populations. It is widely accepted that cholinesterase inhibition is the primary mechanism for acute OP toxicity. Disruption of cholinergic function through the inhibition of acetylcholinesterase (AChE) leads to the accumulation of the neurotransmitter acetylcholine. Excess acetylcholine at the synapse results in an overstimulation of cholinergic neurons which manifests in the common signs and symptoms of OP intoxication (miosis, increased secretions, seizures, convulsions, and respiratory failure). The primary therapeutic strategy employed in the United States to treat OP intoxication includes reactivation of inhibited AChE with the oxime pralidoxime (2-PAM) along with the muscarinic acetylcholine receptor antagonist atropine and the benzodiazepine, diazepam. CWNAs are also known to inhibit butyrylcholinesterase (BChE) without any apparent toxic effects. Therefore, BChE may be viewed as a “bioscavenger” that stoichiometrically binds CWNAs and removes them from circulation. The degree of inhibition of AChE and BChE and the effectiveness of 2-PAM are known to vary among species. Animal models are imperative for evaluating the efficacy of CWNA medical countermeasures, and a thorough characterization of available animal models is important for translating results to humans. Thus, the objective of this study was to compare the circulating levels of each of the cholinesterases as well as multiple kinetic properties (inhibition, reactivation, and aging rates) of both AChE and BChE derived from humans to AChE and BChE derived from commonly used large animal models.
Collapse
Affiliation(s)
| | | | | | - Erin E Lemmon
- Battelle Memorial Institute, Columbus, OH 43201, Ohio
| | | | | | | |
Collapse
|
6
|
Thompson A, Dunn M, Jefferson RD, Dissanayake K, Reed F, Gregson R, Greenhalgh S, Clutton RE, Blain PG, Thomas SH, Eddleston M. Modest and variable efficacy of pre-exposure hydroxocobalamin and dicobalt edetate in a porcine model of acute cyanide salt poisoning. Clin Toxicol (Phila) 2019; 58:190-200. [PMID: 31389254 PMCID: PMC7034532 DOI: 10.1080/15563650.2019.1628969] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
Background: Dicobalt edetate and hydroxocobalamin are widely used to treat hydrogen cyanide poisoning. However, comparative and quantitative efficacy data are lacking. Although post-exposure treatment is typical, it may be possible to administer these antidotes before exposure to first attenders entering a known site of cyanide release, as supplementary protection to their personal protective equipment.Methods: We established an anaesthetised Gottingen minipig model of lethal bolus potassium cyanide (KCN) injection to simulate high dose hydrogen cyanide inhalation. Doses were similar to human lethal doses of KCN. Dicobalt edetate and hydroxocobalamin were administered shortly before KCN and their effect on metabolic and cardiovascular variables and survival time were measured.Results: Increases in arterial lactate were similar after 0.08 and 0.12 mmol/kg KCN. KCN 0.08 mmol/kg was survived by 4/4 animals with moderate cardiovascular effects, while the 0.12 mmol/kg dose was lethal in 4/4 animals, with a mean time to euthanasia of 28.3 (SEM: 13.9) min. Administration of dicobalt edetate (0.021 mmol/kg, 8.6 mg/kg) or hydroxocobalamin (0.054 mmol/kg, 75 mg/kg) at clinically licenced doses had modest effect on lactate concentrations but increased survival after administration of KCN 0.12 mmol/kg (survival: dicobalt edetate 4/4, hydroxocobalamin 2/4) but not 0.15 mmol/kg (0/4 and 0/4, respectively). In a subsequent larger study, doubling the dose of hydroxocobalamin (0.108 mmol/kg, 150 mg/kg) was associated with a modest but inconsistent increased survival after 0.15 mmol/kg KCN (survival: control 0/8, 75 mg/kg 1/10, 150 mg/kg 3/10) likely due to variable pharmacokinetics.Conclusions: In this porcine study of cyanide exposure, with pre-exposure antidote administration, licenced doses of dicobalt edetate and hydroxocobalamin were effective at just lethal doses but ineffective at less than twice the estimated LD50. The efficacy of a rapidly-administered double-dose of hydroxocobalamin was limited by variable pharmacokinetics. In clinical poisoning scenarios, with delayed administration, the antidotes are likely to be even less effective. New antidotes are required for treatment of cyanide exposures appreciably above the minimum lethal dose.
Collapse
Affiliation(s)
- Adrian Thompson
- Department of Pharmacology, Toxicology, & Therapeutics, University/BHF Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK
| | - Michael Dunn
- Medical Toxicology Centre, University of Newcastle, Newcastle upon Tyne, UK
| | - Robert D Jefferson
- Medical Toxicology Centre, University of Newcastle, Newcastle upon Tyne, UK
| | - Kosala Dissanayake
- Department of Pharmacology, Toxicology, & Therapeutics, University/BHF Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK
| | - Frances Reed
- Wellcome Critical Care Laboratory for Large Animals, Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, UK
| | - Rachael Gregson
- Wellcome Critical Care Laboratory for Large Animals, Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, UK
| | - Stephen Greenhalgh
- Wellcome Critical Care Laboratory for Large Animals, Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, UK
| | - R Eddie Clutton
- Wellcome Critical Care Laboratory for Large Animals, Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, UK
| | - Peter G Blain
- Medical Toxicology Centre, University of Newcastle, Newcastle upon Tyne, UK
| | - Simon Hl Thomas
- Medical Toxicology Centre, University of Newcastle, Newcastle upon Tyne, UK
| | - Michael Eddleston
- Department of Pharmacology, Toxicology, & Therapeutics, University/BHF Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
7
|
Bowry R, Nour M, Kus T, Parker S, Stephenson J, Saver J, Grotta JC, Ostermayer D. Intraosseous Administration of Tissue Plasminogen Activator on a Mobile Stroke Unit. PREHOSP EMERG CARE 2018; 23:447-452. [DOI: 10.1080/10903127.2018.1526355] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
8
|
Stolbach A, Bebarta V, Beuhler M, Carstairs S, Nelson L, Wahl M, Wax PM, McKay C. ACMT Position Statement: Alternative or Contingency Countermeasures for Acetylcholinesterase Inhibiting Agents. J Med Toxicol 2018; 14:261-263. [PMID: 29667118 DOI: 10.1007/s13181-018-0658-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 03/08/2018] [Indexed: 11/25/2022] Open
Abstract
First responders and health care providers must prepare to provide care for patients poisoned by acetylcholinesterase (AchE) inhibitor chemical warfare agents or pesticides. However, pre-deployed medical countermeasures (MCMs) may not be sufficient due to production and delivery interruption, rapid depletion of contents during a response, expiration of MCM components, or lack of local availability of approved MCMs. To augment supplies of community-based and forward-deployed nerve agent countermeasures, the American College of Medical Toxicology (ACMT) supports several strategies: (1) The use of expired atropine, diazepam, and pralidoxime auto-injectors and vials if non-expired drugs are unavailable; and (2) Investigation, development, and identification of alternative countermeasures-commonly stocked drugs that are not approved for nerve agent poisoning but are in the same therapeutic class as approved drugs.
Collapse
Affiliation(s)
| | | | | | | | - Lewis Nelson
- Rutgers New Jersey Medical School, Newark, NJ, USA
| | | | - Paul M Wax
- University of Texas Southwestern Medical School, Dallas, TX, USA
| | - Charles McKay
- University of Connecticut School of Medicine, Farmington, CT, USA
| |
Collapse
|
9
|
Whitmore C, Cook AR, Mann T, Price ME, Emery E, Roughley N, Flint D, Stubbs S, Armstrong SJ, Rice H, Tattersall JEH. The efficacy of HI-6 DMS in a sustained infusion against percutaneous VX poisoning in the guinea-pig. Toxicol Lett 2017; 293:207-215. [PMID: 29129798 DOI: 10.1016/j.toxlet.2017.11.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 11/02/2017] [Accepted: 11/06/2017] [Indexed: 11/29/2022]
Abstract
Post-exposure nerve agent treatment usually includes administration of an oxime, which acts to restore function of the enzyme acetylcholinesterase (AChE). For immediate treatment of military personnel, this is usually administered with an autoinjector device, or devices containing the oxime such as pralidoxime, atropine and diazepam. In addition to the autoinjector, it is likely that personnel exposed to nerve agents, particularly by the percutaneous route, will require further treatment at medical facilities. As such, there is a need to understand the relationship between dose rate, plasma concentration, reactivation of AChE activity and efficacy, to provide supporting evidence for oxime infusions in nerve agent poisoning. Here, it has been demonstrated that intravenous infusion of HI-6, in combination with atropine, is efficacious against a percutaneous VX challenge in the conscious male Dunkin-Hartley guinea-pig. Inclusion of HI-6, in addition to atropine in the treatment, improved survival when compared to atropine alone. Additionally, erythrocyte AChE activity following poisoning was found to be dose dependent, with an increased dose rate of HI-6 (0.48mg/kg/min) resulting in increased AChE activity. As far as we are aware, this is the first study to correlate the pharmacokinetic profile of HI-6 with both its pharmacodynamic action of reactivating nerve agent inhibited AChE and with its efficacy against a persistent nerve agent exposure challenge in the same conscious animal.
Collapse
Affiliation(s)
- C Whitmore
- CBR (Chemical, Biological, Radiological), Dstl Porton Down, Salisbury, Wiltshire, SP4 0JQ, United Kingdom.
| | - A R Cook
- CBR (Chemical, Biological, Radiological), Dstl Porton Down, Salisbury, Wiltshire, SP4 0JQ, United Kingdom
| | - T Mann
- CBR (Chemical, Biological, Radiological), Dstl Porton Down, Salisbury, Wiltshire, SP4 0JQ, United Kingdom
| | - M E Price
- CBR (Chemical, Biological, Radiological), Dstl Porton Down, Salisbury, Wiltshire, SP4 0JQ, United Kingdom
| | - E Emery
- CBR (Chemical, Biological, Radiological), Dstl Porton Down, Salisbury, Wiltshire, SP4 0JQ, United Kingdom
| | - N Roughley
- CBR (Chemical, Biological, Radiological), Dstl Porton Down, Salisbury, Wiltshire, SP4 0JQ, United Kingdom
| | - D Flint
- CBR (Chemical, Biological, Radiological), Dstl Porton Down, Salisbury, Wiltshire, SP4 0JQ, United Kingdom
| | - S Stubbs
- CBR (Chemical, Biological, Radiological), Dstl Porton Down, Salisbury, Wiltshire, SP4 0JQ, United Kingdom
| | - S J Armstrong
- CBR (Chemical, Biological, Radiological), Dstl Porton Down, Salisbury, Wiltshire, SP4 0JQ, United Kingdom
| | - H Rice
- CBR (Chemical, Biological, Radiological), Dstl Porton Down, Salisbury, Wiltshire, SP4 0JQ, United Kingdom
| | - J E H Tattersall
- CBR (Chemical, Biological, Radiological), Dstl Porton Down, Salisbury, Wiltshire, SP4 0JQ, United Kingdom
| |
Collapse
|
10
|
Elliott A, Dubé PA, Cossette-Côté A, Patakfalvi L, Villeneuve E, Morris M, Gosselin S. Intraosseous administration of antidotes – a systematic review. Clin Toxicol (Phila) 2017. [DOI: 10.1080/15563650.2017.1337122] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Audrée Elliott
- Department of Environmental Health and Toxicology, Institut National de Santé Publique du Québec, Québec, QC, Canada
| | - Pierre-André Dubé
- Department of Environmental Health and Toxicology, Institut National de Santé Publique du Québec, Québec, QC, Canada
- Faculty of Pharmacy, Université Laval, QC, Canada
| | - Amélie Cossette-Côté
- Department of Pharmacy, Centre Intégré de Santé et de Services Sociaux du Bas-Saint-Laurent, Hôpital de Rimouski, Rimouski, QC, Canada
| | - Laura Patakfalvi
- Department of Family Medicine & Hospital Medicine, McGill University, Montreal, Canada
| | - Eric Villeneuve
- Department of Pharmacy, McGill University Health Centre, Montréal, Québec, Canada
| | - Martin Morris
- Schulich Library of Physical Sciences, Life Sciences and Engineering, McGill University, Montreal, Canada
| | - Sophie Gosselin
- Department of Medicine and Emergency Medicine, McGill University Health Centre, Montréal, Québec, Canada
- Centre antipoison du Québec, Province of Alberta Drug Information Service, Québec, Canada
| |
Collapse
|
11
|
Zhang W, Liu C, Hai B, Du G, Wang H, Leng H, Xu Y, Song C. A Convenient In Vivo Model Using Small Interfering RNA Silencing to Rapidly Assess Skeletal Gene Function. PLoS One 2016; 11:e0167222. [PMID: 27893850 PMCID: PMC5125699 DOI: 10.1371/journal.pone.0167222] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2016] [Accepted: 11/10/2016] [Indexed: 12/15/2022] Open
Abstract
It is difficult to study bone in vitro because it contains various cell types that engage in cross-talk. Bone biologically links various organs, and it has thus become increasingly evident that skeletal physiology must be studied in an integrative manner in an intact animal. We developed a model using local intraosseous small interfering RNA (siRNA) injection to rapidly assess the effects of a target gene on the local skeletal environment. In this model, 160-g male Sprague-Dawley rats were treated for 1-2 weeks. The left tibia received intraosseous injection of a parathyroid hormone 1 receptor (Pth1r) or insulin-like growth factor 1 receptor (Igf-1r) siRNA transfection complex loaded in poloxamer 407 hydrogel, and the right tibia received the same volume of control siRNA. All the tibias received an intraosseous injection of recombinant human parathyroid hormone (1-34) (rhPTH (1-34)) or insulin-like growth factor-1 (IGF-1). Calcein green and alizarin red were injected 6 and 2 days before euthanasia, respectively. IGF-1R and PTH1R expression levels were detected via RT-PCR assays and immunohistochemistry. Bone mineral density (BMD), microstructure, mineral apposition rates (MARs), and strength were determined by dual-energy X-ray absorptiometry, micro-CT, histology and biomechanical tests. The RT-PCR and immunohistochemistry results revealed that IGF-1R and PTH1R expression levels were dramatically diminished in the siRNA-treated left tibias compared to the right tibias (both p<0.05). Using poloxamer 407 hydrogel as a controlled-release system prolonged the silencing effect of a single dose of siRNA; the mRNA expression levels of IGF-1R were lower at two weeks than at one week (p<0.01). The BMD, bone microstructure parameters, MAR and bone strength were significantly decreased in the left tibias compared to the right tibias (all p<0.05). This simple and convenient local intraosseous siRNA injection model achieved gene silencing with very small quantities of siRNA over a short treatment period (≤7 days).
Collapse
Affiliation(s)
- Wen Zhang
- Department of Orthopaedics, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory of Spinal Diseases, Beijing, China
| | - Can Liu
- Department of Orthopaedics, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory of Spinal Diseases, Beijing, China
| | - Bao Hai
- Department of Orthopaedics, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory of Spinal Diseases, Beijing, China
| | - Guohong Du
- Department of Orthopaedics, Peking University Third Hospital, Beijing, China
| | - Hong Wang
- Department of Orthopaedics, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory of Spinal Diseases, Beijing, China
| | - Huijie Leng
- Department of Orthopaedics, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory of Spinal Diseases, Beijing, China
| | - Yingsheng Xu
- Department of Neurology, Peking University Third Hospital, Beijing, China
| | - Chunli Song
- Department of Orthopaedics, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory of Spinal Diseases, Beijing, China
- * E-mail:
| |
Collapse
|
12
|
Wille T, Neumaier K, Koller M, Ehinger C, Aggarwal N, Ashani Y, Goldsmith M, Sussman JL, Tawfik DS, Thiermann H, Worek F. Single treatment of VX poisoned guinea pigs with the phosphotriesterase mutant C23AL: Intraosseous versus intravenous injection. Toxicol Lett 2016; 258:198-206. [DOI: 10.1016/j.toxlet.2016.07.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 06/27/2016] [Accepted: 07/06/2016] [Indexed: 02/09/2023]
|
13
|
Uwaydah NI, Hoskins SL, Bruttig SP, Farrar H, Copper NC, Deyo DJ, Dubick MA, Kramer GC. Intramuscular versus Intraosseous Delivery of Nerve Agent Antidote Pralidoxime Chloride in Swine. PREHOSP EMERG CARE 2016; 20:485-92. [PMID: 27158860 DOI: 10.3109/10903127.2014.942479] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
OBJECTIVE Exposure to nerve agents requires prompt treatment. We hypothesized that intraosseous (IO) injections of drug antidotes into the vascularized bone marrow will provide a more rapid and effective means to treat exposure to nerve agents than standard intramuscular (IM) injections. We compared the pharmacokinetics of IM and IO administration of pralidoxime chloride (2-PAM Cl) during normovolemia and hypovolemia, as well as their combined administration during normovolemia in swine. METHODS Ten normovolemic swine were randomly administered 2 mL, 660 mg 2-PAM Cl via the IM or IO route and monitored for 180 minutes. IM versus IO also was compared in 8 hypovolemic swine bled to a mean arterial pressure of 50 mmHg. In a combined group, an IO injection was administered followed by an IM injection 60 minutes later. Blood samples were collected at times over a 180-minute period to calculate standard pharmacokinetic variables to compare the 2 routes of administration. RESULTS In the normovolemic swine, IM injection achieved therapeutic levels (4 μg/mL) in 2 minutes, whereas IO infusion achieved these levels in less than 15 seconds. 2-PAM-Cl concentrations fell below these levels at 60 minutes post-injection in both groups. In the hypovolemic swine, IM injection achieved therapeutic levels in 4 minutes compared to less than 15 seconds in the IO group. 2-PAM-Cl concentrations fell below therapeutic levels at 12 and 90 minutes post-injection in the IM and IO groups, respectively. In the combined IO-IM treatment, plasma levels remained above therapeutic levels for the entire experiment and had two concentration peaks that corresponded to IO and IM injections. CONCLUSIONS The IO route for the delivery of 2-PAM Cl provides a significant time and high initial blood concentrations advantage compared to the IM route for the prehospital treatment of nerve agent exposure even under hypovolemic conditions. The initial concentration peak associated with IO, but not IM, may provide greater initial therapy at the most critical time.
Collapse
|
14
|
Tan J, Fu X, Sun CG, Liu C, Zhang XH, Cui YY, Guo Q, Ma T, Wang H, Du GH, Yin X, Liu ZJ, Leng HJ, Xu YS, Song CL. A single CT-guided percutaneous intraosseous injection of thermosensitive simvastatin/poloxamer 407 hydrogel enhances vertebral bone formation in ovariectomized minipigs. Osteoporos Int 2016. [PMID: 26223190 DOI: 10.1007/s00198-015-3230-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
UNLABELLED The ultimate goal of osteoporosis treatment is prevention of fragile fracture. Local treatment targeting specific bone may decrease the incidence of osteoporotic fractures. We developed an injectable, thermosensitive simvastatin/poloxamer 407 hydrogel; a single CT-guided percutaneous intraosseous injection augmented vertebrae in ovariectomized minipigs. INTRODUCTION The greatest hazard associated with osteoporosis is local fragility fractures. An adjunct, local treatment might be helpful to decrease the incidence of osteoporotic fracture. Studies have found that simvastatin stimulates bone formation, but the skeletal bioavailability of orally administered is low. Directly delivering simvastatin to the specific bone that is prone to fractures may reinforce the target bone and reduce the incidence of fragility fractures. METHODS We developed an injectable, thermosensitive simvastatin/poloxamer 407 hydrogel, conducted scanning electron microscopy, rheological, and drug release analyses to evaluate the delivery system; injected it into the lumbar vertebrae of ovariectomized minipigs via minimally invasive CT-guided percutaneous vertebral injection. Three months later, BMD, microstructures, mineral apposition rates, and strength were determined by DXA, micro-CT, histology, and biomechanical test; expression of VEGF, BMP2, and osteocalcin were analyzed by immunohistochemistry and Western blots. RESULTS Poloxamer 407 is an effective controlled delivery system for intraosseous-injected simvastatin. A single injection of the simvastatin/poloxamer 407 hydrogel significantly increased BMD, bone microstructure, and strength; the bone volume fraction and trabecular thickness increased nearly 150 %, bone strength almost doubled compared with controls (all P < 0.01); and induced higher expression of VEGF, BMP2, and osteocalcin. CONCLUSIONS CT-guided percutaneous vertebral injection of a single simvastatin/poloxamer 407 thermosensitive hydrogel promotes bone formation in ovariectomized minipigs. The underlying mechanism appears to involve the higher expression of VEGF and BMP-2.
Collapse
MESH Headings
- Absorptiometry, Photon/methods
- Animals
- Bone Density/drug effects
- Bone Morphogenetic Protein 2/metabolism
- Chemistry, Physical
- Drug Combinations
- Drug Delivery Systems
- Drug Evaluation, Preclinical/methods
- Female
- Hydrogel, Polyethylene Glycol Dimethacrylate
- Injections, Spinal
- Lumbar Vertebrae/diagnostic imaging
- Lumbar Vertebrae/metabolism
- Lumbar Vertebrae/physiopathology
- Microscopy, Electron, Scanning
- Osteogenesis/drug effects
- Osteoporosis/diagnostic imaging
- Osteoporosis/drug therapy
- Osteoporosis/physiopathology
- Ovariectomy
- Poloxamer/administration & dosage
- Poloxamer/chemistry
- Poloxamer/pharmacology
- Poloxamer/therapeutic use
- Radiography, Interventional
- Rheology
- Simvastatin/administration & dosage
- Simvastatin/pharmacology
- Simvastatin/therapeutic use
- Swine
- Swine, Miniature
- Tomography, X-Ray Computed
- Vascular Endothelial Growth Factor A/metabolism
Collapse
Affiliation(s)
- J Tan
- Department of Orthopedics, Peking University Third Hospital, Beijing, 100191, China
| | - X Fu
- Department of Orthopedics, Peking University Third Hospital, Beijing, 100191, China
| | - C G Sun
- Department of Orthopedics, Peking University Third Hospital, Beijing, 100191, China
- Beijing Key Laboratory of Spinal Diseases, Beijing, 100191, China
| | - C Liu
- Department of Radiology, Peking University Third Hospital, Beijing, 100191, China
| | - X H Zhang
- Department of Pharmacology, Peking University Third Hospital, Beijing, 100191, China
| | - Y Y Cui
- Department of Orthopedics, Peking University Third Hospital, Beijing, 100191, China
| | - Q Guo
- Department of Neurology, Peking University Third Hospital, Beijing, 100191, China
| | - T Ma
- Department of Orthopedics, Peking University Third Hospital, Beijing, 100191, China
| | - H Wang
- Department of Orthopedics, Peking University Third Hospital, Beijing, 100191, China
- Beijing Key Laboratory of Spinal Diseases, Beijing, 100191, China
| | - G H Du
- Department of Orthopedics, Peking University Third Hospital, Beijing, 100191, China
- Beijing Key Laboratory of Spinal Diseases, Beijing, 100191, China
| | - X Yin
- Department of Orthopedics, Peking University Third Hospital, Beijing, 100191, China
- Beijing Key Laboratory of Spinal Diseases, Beijing, 100191, China
| | - Z J Liu
- Department of Orthopedics, Peking University Third Hospital, Beijing, 100191, China
- Beijing Key Laboratory of Spinal Diseases, Beijing, 100191, China
| | - H J Leng
- Department of Orthopedics, Peking University Third Hospital, Beijing, 100191, China
- Beijing Key Laboratory of Spinal Diseases, Beijing, 100191, China
| | - Y S Xu
- Department of Neurology, Peking University Third Hospital, Beijing, 100191, China
| | - C L Song
- Department of Orthopedics, Peking University Third Hospital, Beijing, 100191, China.
- Beijing Key Laboratory of Spinal Diseases, Beijing, 100191, China.
| |
Collapse
|
15
|
Eisenkraft A, Falk A. The possible role of intravenous lipid emulsion in the treatment of chemical warfare agent poisoning. Toxicol Rep 2016; 3:202-210. [PMID: 28959540 PMCID: PMC5615427 DOI: 10.1016/j.toxrep.2015.12.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Revised: 11/29/2015] [Accepted: 12/24/2015] [Indexed: 12/19/2022] Open
Abstract
Organophosphates (OPs) are cholinesterase inhibitors that lead to a characteristic toxidrome of hypersecretion, miosis, dyspnea, respiratory insufficiency, convulsions and, without proper and early antidotal treatment, death. Most of these compounds are highly lipophilic. Sulfur mustard is a toxic lipophilic alkylating agent, exerting its damage through alkylation of cellular macromolecules (e.g., DNA, proteins) and intense activation of pro-inflammatory pathways. Currently approved antidotes against OPs include the peripheral anticholinergic drug atropine and an oxime that reactivates the inhibited cholinesterase. Benzodiazepines are used to stop organophosphate-induced seizures. Despite these approved drugs, efforts have been made to introduce other medical countermeasures in order to attenuate both the short-term and long-term clinical effects following exposure. Currently, there is no antidote against sulfur mustard poisoning. Intravenous lipid emulsions are used as a source of calories in parenteral nutrition. In recent years, efficacy of lipid emulsions has been shown in the treatment of poisoning by fat-soluble compounds in animal models as well as clinically in humans. In this review we discuss the usefulness of intravenous lipid emulsions as an adjunct to the in-hospital treatment of chemical warfare agent poisoning.
Collapse
Affiliation(s)
- Arik Eisenkraft
- NBC Protection Division, IMOD, Israel.,Israel Defense Forces Medical Corps, Israel.,The Institute for Research in Military Medicine, The Faculty of Medicine, The Hebrew University, Jerusalem, Israel
| | | |
Collapse
|
16
|
Chambers JE, Meek EC, Bennett JP, Bennett WS, Chambers HW, Leach CA, Pringle RB, Wills RW. Novel substituted phenoxyalkyl pyridinium oximes enhance survival and attenuate seizure-like behavior of rats receiving lethal levels of nerve agent surrogates. Toxicology 2015; 339:51-57. [PMID: 26705700 DOI: 10.1016/j.tox.2015.12.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Revised: 12/03/2015] [Accepted: 12/11/2015] [Indexed: 11/16/2022]
Abstract
Novel substituted phenoxyalkyl pyridinium oximes, previously shown to reactivate brain cholinesterase in rats treated with high sublethal dosages of surrogates of sarin and VX, were tested for their ability to prevent mortality from lethal doses of these two surrogates. Rats were treated subcutaneously with 0.6mg/kg nitrophenyl isopropyl methylphosphonate (NIMP; sarin surrogate) or 0.65mg/kg nitrophenyl ethyl methylphosphonate (NEMP; VX surrogate), dosages that were lethal within 24h to all tested rats when they received only 0.65mg/kg atropine at the time of initiation of seizure-like behavior (about 30min). If 146mmol/kg 2-PAM (human equivalent dosage) was also administered, 40% and 33% survival was obtained with NIMP and NEMP, respectively, while the novel Oximes 1 and 20 provided 65% and 55% survival for NIMP and 75 and 65% for NEMP, respectively. In addition, both novel oximes resulted in a highly significant decrease in time to cessation of seizure-like behavior compared to 2-PAM during the first 8h of observation. Brain cholinesterase inhibition was slightly less in novel oxime treated rats compared to 2-PAM in the 24h survivors. The lethality data indicate that 24h survival is improved by two of the novel oximes compared to 2-PAM. The cessation of seizure-like behavior data strongly suggest that these novel oximes are able to penetrate the blood-brain barrier and can combat the hypercholinergic activity that results in seizures. Therefore this oxime platform has exceptional promise as therapy that could both prevent nerve agent-induced lethality and attenuate nerve agent-induced seizures.
Collapse
Affiliation(s)
- Janice E Chambers
- Center for Environmental Health Sciences, Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, P.O. Box 6100, Mississippi State, MS 39762, USA.
| | - Edward C Meek
- Center for Environmental Health Sciences, Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, P.O. Box 6100, Mississippi State, MS 39762, USA.
| | - Joshua P Bennett
- Center for Environmental Health Sciences, Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, P.O. Box 6100, Mississippi State, MS 39762, USA.
| | - W Shane Bennett
- Center for Environmental Health Sciences, Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, P.O. Box 6100, Mississippi State, MS 39762, USA.
| | - Howard W Chambers
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University, P.O. Box 9775, Mississippi State, MS 39762, USA.
| | - C Andrew Leach
- Center for Environmental Health Sciences, Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, P.O. Box 6100, Mississippi State, MS 39762, USA.
| | - Ronald B Pringle
- Center for Environmental Health Sciences, Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, P.O. Box 6100, Mississippi State, MS 39762, USA.
| | - Robert W Wills
- Department of Pathobiology/Population Medicine, College of Veterinary Medicine, Mississippi State University, P.O. Box 6100, Mississippi State, MS 39762, USA.
| |
Collapse
|
17
|
Hill SL, Thomas SHL, Flecknell PA, Thomas AA, Morris CM, Henderson D, Dunn M, Blain PG. Rapid and equivalent systemic bioavailability of the antidotes HI-6 and dicobalt edetate via the intraosseous and intravenous routes. Emerg Med J 2014; 32:626-31. [PMID: 25414476 DOI: 10.1136/emermed-2014-204171] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Accepted: 10/11/2014] [Indexed: 11/04/2022]
Abstract
BACKGROUND Rapid and effective administration of antidotes by emergency medical responders is needed to improve the survival of patients severely poisoned after deliberate release of chemical weapons, but intravenous access is difficult to obtain while wearing personal protective equipment and in casualties with circulatory collapse. To test the hypothesis that rapid and substantial bioavailability of the antidotes HI-6 oxime and dicobalt edetate can be achieved via the intraosseous (IO) route, plasma concentration-time profiles of these antidotes were compared after administration by the intravenous and IO routes in a minipig animal model. METHODS 12 male Göttingen minipigs were randomly allocated to receive 7.14 mg/kg of HI-6 (by rapid bolus) then 4.28 mg/kg of dicobalt edetate (over 1 min) via the intravenous or IO route. Plasma concentrations of each antidote were measured over 360 min following administration and plasma concentration-time profiles plotted for each drug by each route. RESULTS Peak HI-6 and cobalt concentrations occurred within 2 min of administration by both the intravenous and IO routes. Mean areas under the concentration-time curves (SD) to the end of the experiment (area under the concentration-time curve, AUC (0-t)) for cobalt were 430 (47, intravenous) and 445 (40, IO) μg-min/mL (mean difference 15, 95% CI -41 to 70, p=0.568) and for HI-6 were 2739 (1038, intravenous) and 2772 (1629, IO) μg-min/mL (mean difference 0.33, 95% CI -1724 to 1790, p=0.97). Increases in heart rate (by 50 beats/min intravenous and 27 beats/min IO) and BP, (by 67/58 mm Hg intravenous and 78/59 mm Hg IO), were observed after dicobalt edetate, consistent with the known adverse effects of this antidote. DISCUSSION This study demonstrates rapid and similar systemic bioavailability of HI-6 and dicobalt edetate when given by the IO and intravenous routes. IO delivery of these antidotes is appropriate in the acute management of patients with organophosphate and cyanide intoxication when the intravenous route is impractical.
Collapse
Affiliation(s)
- Simon L Hill
- Medical Toxicology Research Centre, Institute of Cellular Medicine, Newcastle University, Newcastle, UK
| | - Simon H L Thomas
- Medical Toxicology Research Centre, Institute of Cellular Medicine, Newcastle University, Newcastle, UK
| | | | | | - Chris M Morris
- Medical Toxicology Research Centre, Institute of Cellular Medicine, Newcastle University, Newcastle, UK
| | - David Henderson
- Medical Toxicology Research Centre, Institute of Cellular Medicine, Newcastle University, Newcastle, UK
| | - Michael Dunn
- Medical Toxicology Research Centre, Institute of Cellular Medicine, Newcastle University, Newcastle, UK
| | - Peter G Blain
- Medical Toxicology Research Centre, Institute of Cellular Medicine, Newcastle University, Newcastle, UK
| |
Collapse
|
18
|
Bebarta VS, Pitotti RL, Boudreau S, Tanen DA. Intraosseous versus intravenous infusion of hydroxocobalamin for the treatment of acute severe cyanide toxicity in a Swine model. Acad Emerg Med 2014; 21:1203-11. [PMID: 25377396 DOI: 10.1111/acem.12518] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Revised: 06/09/2014] [Accepted: 06/29/2014] [Indexed: 02/05/2023]
Abstract
OBJECTIVES Easily administrated cyanide antidotes are needed for first responders, military troops, and emergency department staff after cyanide exposure in mass casualty incidents or due to smoke inhalation during fires involving many victims. Hydroxocobalamin has proven to be an effective antidote, but cannot be given intramuscularly because the volume of diluent needed is too large. Thus, intraosseous (IO) infusion may be an alternative, as it is simple and has been recommended for the administration of other resuscitation drugs. The primary objective of this study was to compare the efficacy of IO delivery of hydroxocobalamin to intravenous (IV) injection for the management of acute cyanide toxicity in a well-described porcine model. METHODS Twenty-four swine (45 to 55 kg) were anesthetized, intubated, and instrumented with continuous mean arterial pressure (MAP) and cardiac output monitoring. Cyanide was continuously infused until severe hypotension (50% of baseline MAP), followed by IO or IV hydroxocobalamin treatment. Animals were randomly assigned to receive IV (150 mg/kg) or IO (150 mg/kg) hydroxocobalamin and monitored for 60 minutes after start of antidotal infusion. The primary outcome measure was the change in MAP after antidotal treatment from onset of hypotension (time zero) to 60 minutes. A sample size of 12 animals per group was determined by group size analysis based on power of 80% to detect a one standard deviation of the mean MAP between the groups with an alpha of 0.05. Whole blood cyanide, lactate, pH, nitrotyrosine (nitric oxide marker) levels, cerebral and renal near infrared spectrometry (NIRS) oxygenation, and inflammatory markers were also measured. Repeated-measures analysis of variance was used to determine statistically significant changes between groups over time. RESULTS At baseline and at the point of hypotension, physiologic parameters were similar between groups. At the conclusion of the study, 10 out of 12 animals in the IV group and 10 out of 12 in IO group survived (p = 1.0). Both groups demonstrated a similar return to baseline MAP (p = 0.997). Cardiac output, oxygen saturation, and systemic vascular resistance were also found to be similar between groups (p > 0.4), and no difference was detected between bicarbonate, pH, and lactate levels (p > 0.8). Cyanide levels were undetectable after the hydroxocobalamin infusion throughout the study in both groups (p = 1.0). Cerebral and renal NIRS oxygenation decreased in parallel to MAP during cyanide infusion and increased after antidote infusion in both groups. Serum nitrotyrosine increased during cyanide infusion in all animals and then decreased in both study arms after hydroxocobalamin infusion (p > 0.5). Serum cytokines increased starting at cyanide infusion and no difference was detected between groups (tumor necrosis factor-α, interleukin [IL]-1β, IL-6, and IL-10). CONCLUSIONS The authors found no difference in the efficacy of IV versus IO hydroxocobalamin in the treatment of severe cyanide toxicity in a validated porcine model.
Collapse
Affiliation(s)
- Vikhyat S. Bebarta
- Medical Toxicology San Antonio Military Medical Center, and Enroute Care Research Center U.S. Army, Institute of Surgical Research San Antonio TX
| | - Rebecca L. Pitotti
- The Department of Emergency Medicine San Antonio Military Medical Center San Antonio TX
| | - Susan Boudreau
- The Department of Emergency Medicine San Antonio Military Medical Center San Antonio TX
| | - David A. Tanen
- The David Geffen School of Medicine at UCLA Harbor–UCLA Medical Center Los Angeles CA
| |
Collapse
|
19
|
Abstract
Nerve agents are extremely toxic and are some of the most lethal substances on earth. This group of chemicals consists of sarin, cyclosarin, soman, tabun, VX, and VR. It is currently unknown how many countries possess these chemicals and in what quantities. These agents work through altering the transmission and breakdown of acetylcholine by binding to, and inactivating, acetylcholinesterase. This results in an uncontrolled and overwhelming stimulation of both muscarinic and nicotinic receptors. Receptor activation at these sites can lead to a wide variety of clinical symptoms, with death frequently resulting from pulmonary edema. Antidotal therapy in this setting largely consists of atropine, pralidoxime, and benzodiazepines, all of which must be administered emergently to limit the progression of symptoms and prevent the enzyme inactivation from becoming permanent. This article reviews the mechanism of action of the nerve agents and their effects on the human body, the currently available therapies to mitigate their impact, and important therapeutic considerations for health care practitioners in the emergency department.
Collapse
|
20
|
Mitchell BL, Bhandari RK, Bebarta VS, Rockwood GA, Boss GR, Logue BA. Toxicokinetic profiles of α-ketoglutarate cyanohydrin, a cyanide detoxification product, following exposure to potassium cyanide. Toxicol Lett 2013; 222:83-9. [DOI: 10.1016/j.toxlet.2013.07.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Revised: 07/05/2013] [Accepted: 07/07/2013] [Indexed: 11/29/2022]
|