1
|
Zahrae Radi F, Bencheikh N, Anarghou H, Bouhrim M, Alqahtani AS, Hawwal MF, Noman OM, Bnouham M, Zair T. Quality control, phytochemical profile, and biological activities of Crataegus monogyna Jacq. and Crataegus laciniata Ucria fruits aqueous extracts. Saudi Pharm J 2023; 31:101753. [PMID: 37705878 PMCID: PMC10495647 DOI: 10.1016/j.jsps.2023.101753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Accepted: 08/17/2023] [Indexed: 09/15/2023] Open
Abstract
The current study aimed to evaluate the phytochemical composition, quality control, and antioxidant, antibacterial, antifungal, antihyperglycemic activities, and toxicity assessment of Crataegus monogyna Jacq (C. monogyna) and Crataegus laciniata Ucria (C. laciniata) fruits aqueous extracts. The quality control of the plant material revealed that it is free of heavy metals and the acidity and ash parameters comply with international standards. HPLC-DAD analysis revealed the presence of eight phenolic compounds in the C. monogyna extract and nine compounds in the C. laciniata extract, with coumaric acid present only in the C. laciniata extract. According to the findings, both extracts are high in total polyphenols, total flavonoids, and condensed tannins. The results of the antioxidant activity revealed that our extracts have significant effects against 2, 2-diphényl 1-picrylhydrazyle (DPPH), and Ferric Reducing Antioxidant Power (FRAP). The antibacterial test revealed that the two extracts tested were effective against four bacterial strains, including Staphylococcus aureus, Escherichia coli, Enterobacter cloacae, and Shigella dysenteria, but were ineffective against Salmonella typhi, and Acinetobacter baumanii. In addition, extracts from both plants showed remarkable antihyperglycemic activity with no acute toxicity. In conclusion, the extracts studied could be a good source of bioactive molecules with antioxidant, antimicrobial, and anti-diabetic activity for pharmaceutical applications.
Collapse
Affiliation(s)
- Fatima Zahrae Radi
- Research Team of Chemistry of Bioactive Molecules and the Environment, Laboratory of Innovative Materials and Biotechnology of Natural Resources, Faculty of Sciences, Moulay Ismail University of Meknes, B.P. 11201 Zitoune, Meknes 50070, Morocco
| | - Noureddine Bencheikh
- Laboratory of Bioressources, Biotechnology, Ethnopharmacology and Health, Department of Biology, Faculty of Sciences, University Mohammed First, Boulevard Mohamed VI BP 717, Oujda 60000, Morocco
| | - Hammou Anarghou
- Laboratory of Biological Engineering, Team of Functional and Pathological Biology, University Sultan Moulay Slimane, Faculty of Sciences and Technology, Beni Mellal, Morocco
| | - Mohamed Bouhrim
- Laboratory of Biological Engineering, Team of Functional and Pathological Biology, University Sultan Moulay Slimane, Faculty of Sciences and Technology, Beni Mellal, Morocco
- Laboratories TBC, Laboratory of Pharmacology, Pharmacokinetics and Clinical Pharmacy, Faculty of Pharmacy, University of Lille, Lille, France
| | - Ali S. Alqahtani
- Department of Pharmacognosy, College of Pharmacy, King Saud University, PO Box 2457, Riyadh 11451, Saudi Arabia
| | - Mohammed F. Hawwal
- Department of Pharmacognosy, College of Pharmacy, King Saud University, PO Box 2457, Riyadh 11451, Saudi Arabia
| | - Omar M. Noman
- Department of Pharmacognosy, College of Pharmacy, King Saud University, PO Box 2457, Riyadh 11451, Saudi Arabia
| | - Mohamed Bnouham
- Laboratory of Bioressources, Biotechnology, Ethnopharmacology and Health, Department of Biology, Faculty of Sciences, University Mohammed First, Boulevard Mohamed VI BP 717, Oujda 60000, Morocco
| | - Touriya Zair
- Research Team of Chemistry of Bioactive Molecules and the Environment, Laboratory of Innovative Materials and Biotechnology of Natural Resources, Faculty of Sciences, Moulay Ismail University of Meknes, B.P. 11201 Zitoune, Meknes 50070, Morocco
| |
Collapse
|
2
|
Belahmadi MSO, Charchar N, Abdessemed A, Gherib A. Impact of petroleum refinery on aquatic ecosystem of Skikda Bay (Algeria): Diversity and abundance of viable bacterial strains. MARINE POLLUTION BULLETIN 2023; 188:114704. [PMID: 36860027 DOI: 10.1016/j.marpolbul.2023.114704] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 01/30/2023] [Accepted: 02/01/2023] [Indexed: 06/18/2023]
Abstract
This paper reports a study on the impact of petroleum refinery effluents on the bacterial load and diversity of the aquatic ecosystem in Skikda Bay (Algeria). The results showed a large spatiotemporal variation in the isolated bacterial species. This difference between stations and seasons could be attributed to environmental factors and to the pollution rate at the different sampling sites. Statistical analysis results showed that physicochemical parameters such as pH, electrical conductivity and salinity have a very significant effect on the microbial load (p < 0.001), while hydrocarbon pollution has a significant effect on the diversity of bacterial species (p < 0.05). In total 75 bacteria were isolated from six sampling sites during the four seasons. A significant spatiotemporal richness and diversity was observed in water samples. A total of 42 strains belonging to 18 bacterial genera were identified. Most of these genera belong to the class of Proteobacteria.
Collapse
Affiliation(s)
| | - Nabil Charchar
- Biotechnology Research Centre, BPE 73, Ali Mendjeli, Nouvelle Ville, 25000 Constantine, Algeria
| | - Ala Abdessemed
- Biotechnology Research Centre, BPE 73, Ali Mendjeli, Nouvelle Ville, 25000 Constantine, Algeria
| | - Abdelfettah Gherib
- Biotechnology Research Centre, BPE 73, Ali Mendjeli, Nouvelle Ville, 25000 Constantine, Algeria
| |
Collapse
|
3
|
Revisiting Species Identification within the Enterobacter cloacae Complex by Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry. Microbiol Spectr 2021; 9:e0066121. [PMID: 34378957 PMCID: PMC8552640 DOI: 10.1128/spectrum.00661-21] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) is commonly used by clinical microbiology laboratories to identify pathogens, despite some limitations of the technique. The Enterobacter cloacae complex (ECC) taxonomy has recently been expanded, leading to uncertain identification of some species within the ECC when commercial MALDI-TOF MS is used. This technique is especially unsuited in the case of E. hormaechei, the main species responsible for infections and one of the most prone, within the ECC, to acquire antibiotic resistance. Hence, rapid and reliable identification at the species level could improve patient management. Here, we evaluated the performance of the Bruker Microflex MALDI-TOF MS instrument to identify ECC isolates using two databases and algorithms in comparison to the hsp60 gene sequencing reference method: the Bruker database included in the MALDI Biotyper software and an extensive online database coupled to an original Mass Spectrometric Identification (MSI) algorithm. Among a panel of 94 ECC isolates tested in triplicate, the online database coupled to MSI software allowed the highest rate of identification at the species level (92%) compared to the MALDI Biotyper database (25%), especially for the species E. hormaechei (97% versus 20%). We show that by creating a database of MALDI-TOF reference spectral profiles with a high number of representatives associated with the performant MSI software, we were able to substantially improve the identification of the E. cloacae complex members, with only 8% of isolates misidentified at the species level. This online database is available through a free online MSI application (https://msi.happy-dev.fr/). IMPORTANCE Creation of a database of MALDI-TOF reference spectral profiles with a high number of representatives associated with the performant MSI software enables substantial improvement in identification of E. cloacae complex members. Moreover, this online database is available through a free online MSI application (https://msi.happy-dev.fr/).
Collapse
|
4
|
Cefepime use: A need for antimicrobial stewardship. Infect Dis Now 2021; 51:445-450. [PMID: 33960301 DOI: 10.1016/j.idnow.2020.10.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 07/30/2020] [Accepted: 10/29/2020] [Indexed: 11/22/2022]
Abstract
OBJECTIVES Unlike other 3GCs, Cefepime is a cephalosporin that has, in animal model studies, shown a low risk of selecting resistant mutants. It also enables carbapenems to be saved in treatment of Pseudomonasaeruginosa and the CESP group (Citrobacter, Enterobacter, Serratia and Providencia, as well as the genus Klebsiellaaerogenes, Morganella and Hafnia), consequently producing cephalosporinase. We aimed to determine whether its prescription in a French teaching hospital met criteria for proper use. PATIENTS AND METHODS We conducted a retrospective study of proper cefepime use between March 1st, 2018 and February 28th, 2019, to assess indication, antimicrobial stewardship, dosing schedule, microbiological documentation, reevaluation, and treatment duration. Prescriptions were then compared to local guidelines established from international literature. RESULTS Out of 142 cefepime prescriptions, 97.2% were prescribed as validated according to indication. The duration of the documented treatments matched the guidelines for 56.5% of patients, dosage was adapted to the indication for 77.4% and to kidney function for 97.2%. Bacteriological documentation was performed in all cases and an antibiogram was generated in 99.2% of cases. The treatment was reassessed between 48 and 72h and between the 7th and 10th day for 44.2% and 60.9% of the prescriptions respectively. The antimicrobial stewardship team managed half of the prescriptions. Only 13.4% of prescriptions met all criteria for proper use. CONCLUSION Notwithstanding a highly sizable majority of validated indications, a very small proportion of cefepime prescriptions met all the criteria for proper use. In the context of increased cefepime consumption, which is favored by its increased place in the latest recommendations published in 2019, proper use of cefepime prescriptions needs to be more effectively promoted.
Collapse
|
5
|
Khémiri I, Essghaier B, Sadfi-Zouaoui N, Bitri L. Antioxidant and Antimicrobial Potentials of Seed Oil from Carthamus tinctorius L. in the Management of Skin Injuries. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:4103418. [PMID: 33204394 PMCID: PMC7661123 DOI: 10.1155/2020/4103418] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 10/20/2020] [Indexed: 12/13/2022]
Abstract
Infection of skin injuries by pathogenic microbial strains is generally associated if not treated with a lasting wound bed oxidative stress status, a delay in healing process, and even wound chronicity with several human health complications. The aim of the current study was to explore the antioxidant and antimicrobial potentialities of safflower (Carthamus tinctorius L.) extracted oil from seeds by cold pressing which would be beneficial in the management of skin wounds. Antioxidant capacity of the oil was evaluated (scavenging ability against 1,1-diphenyl-2-picrylhydrazyl radical (DPPH) and 2,2'-azino-bis 3-ethylbenzothiazoline-6-sulfonic acid (ABTS), and ferric reducing antioxidant power (FRAP)). Total phenolic, total flavonoid, total carotenoid, and total chlorophyll contents were determined. Antimicrobial activities of safflower oil were tested against 10 skin pathogenic microorganisms: 4 bacterial strains (Escherichia coli, Enterobacter cloacae, Staphylococcus aureus, and Streptococcus agalactiae), 3 yeast species strains (Candida albicans, Candida parapsilosis, and Candida sake), and 3 fungi species (Aspergillus niger, Penicillium digitatum, and Fusarium oxysporum). A notable antioxidant capacity was demonstrated for the tested oil that exhibited moreover high antibacterial effects by both bacteriostatic and bactericidal pathways including lysozyme activity. An antifungal effect was further observed on the spore's germination. Safflower oil could be considered as a good natural alternative remedy in the management of skin wounds and their possible microbial infections.
Collapse
Affiliation(s)
- Ikram Khémiri
- Unité de Physiologie des Systèmes de Régulations et des Adaptations, Faculté des Sciences de Tunis, Université de Tunis El Manar, Campus Universitaire, 2092 Tunis, Tunisia
| | - Badiaa Essghaier
- Laboratoire de Mycologie, Pathologies et Biomarqueurs, Faculté des Sciences de Tunis, Université de Tunis El Manar, Campus Universitaire, 2092 Tunis, Tunisia
| | - Najla Sadfi-Zouaoui
- Laboratoire de Mycologie, Pathologies et Biomarqueurs, Faculté des Sciences de Tunis, Université de Tunis El Manar, Campus Universitaire, 2092 Tunis, Tunisia
| | - Lotfi Bitri
- Unité de Physiologie des Systèmes de Régulations et des Adaptations, Faculté des Sciences de Tunis, Université de Tunis El Manar, Campus Universitaire, 2092 Tunis, Tunisia
| |
Collapse
|