1
|
Castellan M, Zamperin G, Foiani G, Zorzan M, Priore MF, Drzewnioková P, Melchiotti E, Vascellari M, Monne I, Crovella S, Leopardi S, De Benedictis P. Immunological findings of West Caucasian bat virus in an accidental host. J Virol 2025; 99:e0191424. [PMID: 39846740 PMCID: PMC11853057 DOI: 10.1128/jvi.01914-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Accepted: 12/09/2024] [Indexed: 01/24/2025] Open
Abstract
The Lyssavirus genus includes seventeen viral species able to cause rabies, an acute and almost invariably fatal encephalomyelitis of mammals. Rabies virus (RABV), which represents the type species of the genus, is a multi-host pathogen that over the years has undergone multiple events of host-switching, thus occupying several geographical and ecological niches. In contrast, non-RABV lyssaviruses are mainly confined within a single natural host with rare spillover events. In this scenario, unveiling the mechanisms underlying the host immune response against a virus is crucial to understand the dynamics of infection and to predict the probability of colonization/adaptation to a new target species. Presently, the host response to lyssaviruses has only been partially explored, with the majority of data extrapolated from RABV infection. West Caucasian bat virus (WCBV), a divergent lyssavirus, has recently been associated with a spillover event to a domestic cat, raising concern about the risks to public health due to the circulation of the virus in its natural host. Through this study we have investigated the immune response determined by the WCBV versus two widely known lyssaviruses. We selected the Syrian hamster as representative of an accidental host, and chose the intramuscular route in order to mimic the natural infection. In hamsters, WCBV was highly pathogenic, determining 100% lethality and mild encephalitis. In comparison with Duvenhage virus (DUVV) and RABV, we found that WCBV displayed an intermediate ability to promote cellular antiviral response, produce pro-inflammatory cytokines, and recruit and activate lymphocytes in the hamsters' central nervous system. IMPORTANCE Although all lyssaviruses cause fatal encephalomyelitis in mammals, they display a different host tropism and pathogenicity, with the ecology of Rabies virus (RABV) continually evolving and adapting to new host species. In 2020, West Caucasian bat virus (WCBV) was identified as the causative agent of rabies in a domestic cat in Italy. This event raised concerns about its public health consequences, due to the absence of biologicals against the infection. Our study investigates the host immune response triggered by WCBV in comparison with a pathogenic strain of RABV and the low pathogenic Duvenhage lyssavirus (DUVV), as a proxy to understand the mechanisms leading to lyssavirus spillover and pathogenicity. We overall confirm that previous evidence indicating an inverse relationship between lyssavirus pathogenicity and immune response is applicable for WCBV as well. Importantly, this work represents the first transcriptomic analysis of the WCBV interaction in the central nervous system with an accidental host.
Collapse
Affiliation(s)
- Martina Castellan
- Laboratory for Emerging Viral Zoonoses, WOAH Reference Laboratory for Rabies, FAO and National Reference Centre for Rabies, Department for Research and Innovation, Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro, Italy
| | - Gianpiero Zamperin
- Viral Genomics and Transcriptomics Laboratory, Department for Research and Innovation, Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro, Italy
| | - Greta Foiani
- Laboratory of Histopathology, Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro, Italy
| | - Maira Zorzan
- Laboratory for Emerging Viral Zoonoses, WOAH Reference Laboratory for Rabies, FAO and National Reference Centre for Rabies, Department for Research and Innovation, Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro, Italy
| | - Maria Francesca Priore
- Laboratory for Emerging Viral Zoonoses, WOAH Reference Laboratory for Rabies, FAO and National Reference Centre for Rabies, Department for Research and Innovation, Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro, Italy
| | - Petra Drzewnioková
- Laboratory for Emerging Viral Zoonoses, WOAH Reference Laboratory for Rabies, FAO and National Reference Centre for Rabies, Department for Research and Innovation, Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro, Italy
| | - Erica Melchiotti
- Laboratory of Histopathology, Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro, Italy
| | - Marta Vascellari
- Laboratory of Histopathology, Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro, Italy
| | - Isabella Monne
- Viral Genomics and Transcriptomics Laboratory, Department for Research and Innovation, Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro, Italy
| | - Sergio Crovella
- Laboratory of Animal Research Center (LARC), Qatar University, Doha, Qatar
| | - Stefania Leopardi
- Laboratory for Emerging Viral Zoonoses, WOAH Reference Laboratory for Rabies, FAO and National Reference Centre for Rabies, Department for Research and Innovation, Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro, Italy
| | - Paola De Benedictis
- Laboratory for Emerging Viral Zoonoses, WOAH Reference Laboratory for Rabies, FAO and National Reference Centre for Rabies, Department for Research and Innovation, Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro, Italy
| |
Collapse
|
2
|
Harazim M, Perrot J, Varet H, Bourhy H, Lannoy J, Pikula J, Seidlová V, Dacheux L, Martínková N. Transcriptomic responses of bat cells to European bat lyssavirus 1 infection under conditions simulating euthermia and hibernation. BMC Immunol 2023; 24:7. [PMID: 37085747 PMCID: PMC10120247 DOI: 10.1186/s12865-023-00542-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 03/31/2023] [Indexed: 04/23/2023] Open
Abstract
BACKGROUND Coevolution between pathogens and their hosts decreases host morbidity and mortality. Bats host and can tolerate viruses which can be lethal to other vertebrate orders, including humans. Bat adaptations to infection include localized immune response, early pathogen sensing, high interferon expression without pathogen stimulation, and regulated inflammatory response. The immune reaction is costly, and bats suppress high-cost metabolism during torpor. In the temperate zone, bats hibernate in winter, utilizing a specific behavioural adaptation to survive detrimental environmental conditions and lack of energy resources. Hibernation torpor involves major physiological changes that pose an additional challenge to bat-pathogen coexistence. Here, we compared bat cellular reaction to viral challenge under conditions simulating hibernation, evaluating the changes between torpor and euthermia. RESULTS We infected the olfactory nerve-derived cell culture of Myotis myotis with an endemic bat pathogen, European bat lyssavirus 1 (EBLV-1). After infection, the bat cells were cultivated at two different temperatures, 37 °C and 5 °C, to examine the cell response during conditions simulating euthermia and torpor, respectively. The mRNA isolated from the cells was sequenced and analysed for differential gene expression attributable to the temperature and/or infection treatment. In conditions simulating euthermia, infected bat cells produce an excess signalling by multitude of pathways involved in apoptosis and immune regulation influencing proliferation of regulatory cell types which can, in synergy with other produced cytokines, contribute to viral tolerance. We found no up- or down-regulated genes expressed in infected cells cultivated at conditions simulating torpor compared to non-infected cells cultivated under the same conditions. When studying the reaction of uninfected cells to the temperature treatment, bat cells show an increased production of heat shock proteins (HSPs) with chaperone activity, improving the bat's ability to repair molecular structures damaged due to the stress related to the temperature change. CONCLUSIONS The lack of bat cell reaction to infection in conditions simulating hibernation may contribute to the virus tolerance or persistence in bats. Together with the cell damage repair mechanisms induced in response to hibernation, the immune regulation may promote bats' ability to act as reservoirs of zoonotic viruses such as lyssaviruses.
Collapse
Affiliation(s)
- Markéta Harazim
- Institute of Vertebrate Biology, Czech Academy of Sciences, Květná 8, 60300, Brno, Czechia.
- Department of Botany and Zoology, Masaryk University, Kotlářská 2, 61137, Brno, Czechia.
| | - Juliette Perrot
- Institut Pasteur, Université Paris Cité Lyssavirus, Epidemiology and Neuropathology Unit, 28 rue du Docteur Roux, 75724, Paris Cedex 15, France
| | - Hugo Varet
- Institut Pasteur, Université Paris Cité Bioinformatics and Biostatistics Hub, 28 rue du Docteur Roux, 75724, Paris Cedex 15, France
| | - Hervé Bourhy
- Institut Pasteur, Université Paris Cité Lyssavirus, Epidemiology and Neuropathology Unit, 28 rue du Docteur Roux, 75724, Paris Cedex 15, France
| | - Julien Lannoy
- Institut Pasteur, Université Paris Cité Lyssavirus, Epidemiology and Neuropathology Unit, 28 rue du Docteur Roux, 75724, Paris Cedex 15, France
| | - Jiri Pikula
- Department of Ecology and Diseases of Zoo Animals, Game, Fish and Bees, University of Veterinary Sciences Brno, Palackého třída 1946/1, 61242, Brno, Czechia
| | - Veronika Seidlová
- Department of Ecology and Diseases of Zoo Animals, Game, Fish and Bees, University of Veterinary Sciences Brno, Palackého třída 1946/1, 61242, Brno, Czechia
| | - Laurent Dacheux
- Institut Pasteur, Université Paris Cité Lyssavirus, Epidemiology and Neuropathology Unit, 28 rue du Docteur Roux, 75724, Paris Cedex 15, France
| | - Natália Martínková
- Institute of Vertebrate Biology, Czech Academy of Sciences, Květná 8, 60300, Brno, Czechia
- RECETOX, Masaryk University, Kotlářská 2, 61137, Brno, Czechia
| |
Collapse
|
3
|
Motta GH, Guimarães LP, Fernandes ER, Guedes F, de Sá LRM, Dos Ramos Silva S, Ribeiro OG, Katz ISS. Rabies virus isolated from insectivorous bats induces different inflammatory responses in experimental model. J Neuroimmunol 2022; 373:577974. [PMID: 36270078 DOI: 10.1016/j.jneuroim.2022.577974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 09/18/2022] [Accepted: 09/28/2022] [Indexed: 01/12/2023]
Abstract
Rabies virus (RABV) is a neurotropic virus that causes fatal neuroinflammation in mammals. The insectivorous bat RABV strains are less pathogenic for mice than strains associated with other reservoirs. We characterized the tissue inflammatory response in the CNS of RABV isolated from insectivorous bats. Eptesicus furinalis (EPBRV)-infected mice had a robust inflammatory response and a greater amount of IL-1β, IL-6 and TNF-α, while Myotis nigricans (MNBRV)-infected mice showed a higher expression of IL-17 and greater activation of IFN-β. New approaches to understand the inflammatory response to different mechanisms of action may provide insights for the development of novel therapies for rabies.
Collapse
Affiliation(s)
| | | | | | - Fernanda Guedes
- Pasteur Institute, Av. Paulista 393, São Paulo CEP 01311-000, Brazil
| | | | | | - Orlando Garcia Ribeiro
- Laboratory of Immunogenetics, Butantan Institute, Av. Vital Brasil 1500, São Paulo CEP 05503-900, Brazil
| | | |
Collapse
|
4
|
Peng C, Zhang D, Li C, Li Y, Zhang H, Li N, Xiao P. Rhinolophus sinicus virome revealed multiple novel mosquito-borne zoonotic viruses. Front Cell Infect Microbiol 2022; 12:960507. [PMID: 36304937 PMCID: PMC9592836 DOI: 10.3389/fcimb.2022.960507] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 09/23/2022] [Indexed: 12/05/2022] Open
Abstract
To exploit the Rhinolophus sinicus–specific virome, 29 Rhinolophus sinicus were gathered in Lincang, China. Enriched viral sequences of 22 virus families were acquired by metavirome techniques. Hereby, the part of virome in Rhinolophus sinicus, including Chikungunya virus (CHIKV), Getah virus, and Japanese encephalitis virus (JEV) were validated by PCR. Five CHIKV viral sequences were amplified, among which CHIKV-China/B2016C-1 shared the highest homology to CHIKV isolated from Italy in 2007, with the genotype as African ECS. Eight JEV viral sequences were amplified, of which JEV-China/B2016E-1 shared the highest homology with at least 91.3% nt identity with the JEV sequence found in South Korea in 1988 and was classified as genotype III. Notably, JEV was isolated for the first time in Rhinolophus sinicus. The newly isolated JEV-China/B2016-1 could increase infectivity while passaging in Vero cells from BHK-21 cells. Overall, the research sheds insight into the diversity and viral susceptibility dynamics of the virome in Rhinolophus sinicus and reveals new light on the ecology of other important viral hosts.
Collapse
Affiliation(s)
- Chengcheng Peng
- Wenzhou Key Laboratory for Virology and Immunology, Institute of Virology, Wenzhou University, Wenzhou, China
| | - Duo Zhang
- Wenzhou Key Laboratory for Virology and Immunology, Institute of Virology, Wenzhou University, Wenzhou, China
| | - Chenghui Li
- College of Agriculture, Yanbian University, Yanji, China
| | - Yiquan Li
- Academician Workstation of Jilin Province, Changchun University of Chinese Medicine, Changchun, China
| | - He Zhang
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Nan Li
- Wenzhou Key Laboratory for Virology and Immunology, Institute of Virology, Wenzhou University, Wenzhou, China
- *Correspondence: Nan Li, ; Pengpeng Xiao,
| | - Pengpeng Xiao
- Wenzhou Key Laboratory for Virology and Immunology, Institute of Virology, Wenzhou University, Wenzhou, China
- *Correspondence: Nan Li, ; Pengpeng Xiao,
| |
Collapse
|
5
|
Different but Not Unique: Deciphering the Immunity of the Jamaican Fruit Bat by Studying Its Viriome. Viruses 2022; 14:v14020238. [PMID: 35215832 PMCID: PMC8879847 DOI: 10.3390/v14020238] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 01/20/2022] [Accepted: 01/23/2022] [Indexed: 02/04/2023] Open
Abstract
A specialized and fine-tuned immune response of bats upon infection with viruses is believed to provide the basis for a “friendly” coexistence with these pathogens, which are often lethal for humans and other mammals. First insights into the immunity of bats suggest that bats have evolved to possess their own strategies to cope with viral infections. Yet, the molecular details for this innocuous coexistence remain poorly described and bat infection models are the key to unveiling these secrets. In Jamaican fruit bats (Artibeus jamaicensis), a New World bat species, infection experiments with its (putative) natural viral pathogens Tacaribe virus (TCRV), rabies virus (RABV), and the bat influenza A virus (IAV) H18N11, have contributed to an accurate, though still incomplete, representation of the bat-imposed immunity. Surprisingly, though many aspects of their innate and adaptive immune responses differ from that of the human immune response, such as a contraction of the IFN locus and reduction in the number of immunoglobulin subclasses, variations could also be observed between Jamaican fruit bats and other bat species.
Collapse
|
6
|
Nyctinomops laticaudatus bat-associated Rabies virus causes disease with a shorter clinical period and has lower pathogenic potential than strains isolated from wild canids. Arch Virol 2019; 164:2469-2477. [PMID: 31297587 DOI: 10.1007/s00705-019-04335-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 06/02/2019] [Indexed: 10/26/2022]
Abstract
Rabies is a lethal viral disease that can affect a wide range of mammals. Currently, Rabies virus (RABV) in some European and American countries is maintained primarily in wild species. The regulation of viral replication is one of the critical mechanisms involved in RABV pathogenesis. However, the relationship between replication and the pathogenesis of RABV isolated from wild animals remains poorly understood. In the present study, we evaluated the pathogenicity of the street viruses Nyctinomops laticaudatus bat-associated RABV (NYBRV) and Cerdocyon thous canid-associated RABV (CECRV). Infection of mice with NYBRV led to 33% mortality with rapid disease evolution and marked histopathological changes in the CNS. In contrast, infection with CECRV led to 67% mortality and caused mild neuropathological lesions. The proportion of RABV antigen was significantly higher in the cytoplasm of neuronal cells of the cerebral cortex and in the meninges of mice infected with CECRV and NYBRV, respectively. Moreover, the replication rate of NYBRV was significantly higher (p < 0.001) than that of CECRV in neuroblastoma cells. However, CECRV replicated to a significantly higher titer in epithelial cells. Our results indicate that NYBRV infection results in rapid disease progression accompanied by frequent and intense histopathological alterations in the CNS in mice, and in a high replication rate in neuroblastoma cells. Although, CECRV is more pathogenic in mice, it caused milder histopathological changes in the CNS and replicated more efficiently in epithelial cells. Our data point to a correlation between clinical aspects of disease and the replication of RABV in different cell lines.
Collapse
|
7
|
Ducrocq J, Proulx JF, Lévesque B, De Serres G, Wood H, Lemire M. Assessment of naturally acquired neutralizing antibodies against rabies Lyssavirus in a subset of Nunavik's Inuit population considered most at risk of being exposed to rabid animals. Zoonoses Public Health 2019; 66:533-539. [PMID: 30688040 DOI: 10.1111/zph.12561] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 12/05/2018] [Accepted: 12/06/2018] [Indexed: 11/28/2022]
Abstract
Contact with infected saliva through the bite of a rabid animal is the main route of infection with the rabies Lyssavirus in humans. Although a few individuals have survived the infection, rabies remains the most lethal zoonotic infection worldwide. Over the last century, the dogma that rabies is invariably fatal has been challenged by the survival and recovery of infected animals. In humans, 11 studies have found rabies virus-specific antibodies in unvaccinated individuals exposed to rabies virus reservoir species, suggesting the possibility of asymptomatic rabies virus infection, contact with non-infectious virus or exposure to the virus without viral replication. Two of these studies were conducted in Arctic hunters. Considering the extensive exposure of Nunavik's Inuit to potentially infected animals through hunting, trapping, skinning and the preparation of Arctic carnivores, we analysed archived serum samples from the 2004 Nunavik Inuit Health Survey for the presence of rabies virus-neutralizing antibodies (rVNA) in this sub-population. A total of 196 participants who were considered at highest risk for exposure to rabies virus were targeted. Serum samples were tested for the presence of rVNA using a variation of the fluorescent antibody virus neutralization test, an assay recommended for the quantification of neutralizing antibody titres following vaccination. Our study identified two seropositive individuals among the 196 participants but a review of their medical record and a phone interview revealed previous vaccination. Our results do not provide evidence for naturally acquired rVNA in Nunavik's Inuit population.
Collapse
Affiliation(s)
- Julie Ducrocq
- Département de médecine sociale et préventive, Université Laval, Québec City, Québec, Canada.,Axe des populations et pratiques optimales en santé, Centre de recherche du CHU de Québec, Québec City, Québec, Canada
| | - Jean-François Proulx
- Direction de santé publique, Régie régionale de la santé et des services sociaux du Nunavik, Kuujjuaq, Québec, Canada
| | - Benoît Lévesque
- Département de médecine sociale et préventive, Université Laval, Québec City, Québec, Canada.,Axe des populations et pratiques optimales en santé, Centre de recherche du CHU de Québec, Québec City, Québec, Canada.,Direction de la santé environnementale et de la toxicologie, Institut national de santé publique du Québec, Québec City, Québec, Canada
| | - Gaston De Serres
- Département de médecine sociale et préventive, Université Laval, Québec City, Québec, Canada.,Direction des risques biologiques et santé au travail, Institut national de santé publique du Québec, Québec City, Québec, Canada
| | - Heidi Wood
- Public Health Agency of Canada, Winnipeg, Manitoba, Canada
| | - Mélanie Lemire
- Département de médecine sociale et préventive, Université Laval, Québec City, Québec, Canada.,Axe des populations et pratiques optimales en santé, Centre de recherche du CHU de Québec, Québec City, Québec, Canada
| |
Collapse
|