1
|
Chen N, Zhang B. The Strategies Used by Animal Viruses to Antagonize Host Antiviral Innate Immunity: New Clues for Developing Live Attenuated Vaccines (LAVs). Vaccines (Basel) 2025; 13:46. [PMID: 39852825 PMCID: PMC11768843 DOI: 10.3390/vaccines13010046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 12/31/2024] [Accepted: 01/06/2025] [Indexed: 01/26/2025] Open
Abstract
As an essential type of vaccine, live attenuated vaccines (LAVs) play a crucial role in animal disease prevention and control. Nevertheless, developing LAVs faces the challenge of balancing safety and efficacy. Understanding the mechanisms animal viruses use to antagonize host antiviral innate immunity may help to precisely regulate vaccine strains and maintain strong immunogenicity while reducing their pathogenicity. It may improve the safety and efficacy of LAVs, as well as provide a more reliable means for the prevention and control of infectious livestock diseases. Therefore, exploring viral antagonistic mechanisms is a significant clue for developing LAVs, which helps to explore more viral virulence factors (as new vaccine targets) and provides a vital theoretical basis and technical support for vaccine development. Among animal viruses, ASFV, PRRSV, PRV, CSFV, FMDV, PCV, PPV, and AIV are some typical representatives. It is crucial to conduct in-depth research and summarize the antagonistic strategies of these typical animal viruses. Studies have indicated that animal viruses may antagonize the antiviral innate immunity by directly or indirectly blocking the antiviral signaling pathways. In addition, viruses also do this by antagonizing host restriction factors targeting the viral replication cycle. Beyond that, viruses may antagonize via regulating apoptosis, metabolic pathways, and stress granule formation. A summary of viral antagonistic mechanisms might provide a new theoretical basis for understanding the pathogenic mechanism of animal viruses and developing LAVs based on antagonistic mechanisms and viral virulence factors.
Collapse
Affiliation(s)
- Na Chen
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Engineering Laboratory of Animal Immunity of Jiangsu Province, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China;
| | - Baoge Zhang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
2
|
Molinero M, Perez-Pons M, González J, Barbé F, de Gonzalo-Calvo D. Decoding viral and host microRNA signatures in airway-derived biosamples: Insights for biomarker discovery in viral respiratory infections. Biomed Pharmacother 2024; 177:116984. [PMID: 38908203 DOI: 10.1016/j.biopha.2024.116984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 06/12/2024] [Accepted: 06/15/2024] [Indexed: 06/24/2024] Open
Abstract
The global public health crisis caused by the COVID-19 pandemic has intensified the global concern regarding viral respiratory tract infections. Despite their considerable impact on health, society and the economy, effective management of these conditions remains a significant challenge. Integrating high-throughput analyses is pivotal for early detection, prognostication of adverse outcomes, elucidating pathogenetic pathways and developing therapeutic approaches. In recent years, microRNAs (miRNAs), a subset of small noncoding RNAs (ncRNAs), have emerged as promising tools for molecular phenotyping. Current evidence suggests that miRNAs could serve as innovative biological markers, aiding in informed medical decision-making. The cost-effective quantification of miRNAs in standardized samples using techniques routinely employed in clinical laboratories has become feasible. In this context, samples obtained from the airways represent a valuable source of information due to their direct exposure to the infectious agent and host response within the respiratory tract. This review explores viral and host miRNA profiling in airway-derived biosamples as a source of molecular information to guide patient management, with a specific emphasis on SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Marta Molinero
- Translational Research in Respiratory Medicine, University Hospital Arnau de Vilanova and Santa Maria, IRBLleida, Lleida, Spain; CIBER of Respiratory Diseases (CIBERES), Institute of Health Carlos III, Madrid, Spain
| | - Manel Perez-Pons
- Translational Research in Respiratory Medicine, University Hospital Arnau de Vilanova and Santa Maria, IRBLleida, Lleida, Spain; CIBER of Respiratory Diseases (CIBERES), Institute of Health Carlos III, Madrid, Spain
| | - Jessica González
- Translational Research in Respiratory Medicine, University Hospital Arnau de Vilanova and Santa Maria, IRBLleida, Lleida, Spain; CIBER of Respiratory Diseases (CIBERES), Institute of Health Carlos III, Madrid, Spain
| | - Ferran Barbé
- Translational Research in Respiratory Medicine, University Hospital Arnau de Vilanova and Santa Maria, IRBLleida, Lleida, Spain; CIBER of Respiratory Diseases (CIBERES), Institute of Health Carlos III, Madrid, Spain
| | - David de Gonzalo-Calvo
- Translational Research in Respiratory Medicine, University Hospital Arnau de Vilanova and Santa Maria, IRBLleida, Lleida, Spain; CIBER of Respiratory Diseases (CIBERES), Institute of Health Carlos III, Madrid, Spain.
| |
Collapse
|
3
|
Brogaard L, Heegaard PMH, Larsen LE, Skovgaard K. Pulmonary MicroRNA expression after heterologous challenge with swine influenza A virus (H1N2) in immunized and non-immunized pigs. Virology 2024; 596:110117. [PMID: 38797064 DOI: 10.1016/j.virol.2024.110117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 05/15/2024] [Accepted: 05/21/2024] [Indexed: 05/29/2024]
Abstract
MicroRNAs (miRNAs) contribute to post-transcriptional modulation of the host response during influenza A virus (IAV) infection and may be involved in shaping disease severity. Differential disease severity was achieved in two groups of pigs by immunization of one group with a commercial swine IAV vaccine prior to heterologous IAV (H1N2) challenge of both groups. Lung tissue was harvested 1, 3, and 14 days after challenge and miRNA expression was quantified. Gene Ontology term enrichment analysis was employed to examine the functional relevance of genes potentially regulated by differentially expressed miRNAs in pigs with varying degrees of disease severity following IAV infection. Results suggested that the miRNA response associated with less severe disease may modulate host mechanisms essential for viral life cycle, e.g. transcription, translation, and protein trafficking. During more severe disease, miRNA-mediated regulation may focus on dampening virus-specific processes e.g. virion assembly and viral protein processing, and controlling host metabolism.
Collapse
Affiliation(s)
- Louise Brogaard
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark.
| | - Peter M H Heegaard
- Department of Health Technology, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Lars E Larsen
- Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Kerstin Skovgaard
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| |
Collapse
|
4
|
Yang M, Ma L, Su R, Guo R, Zhou N, Liu M, Wu J, Wang Y, Hao Y. The Extract of Scutellaria baicalensis Attenuates the Pattern Recognition Receptor Pathway Activation Induced by Influenza A Virus in Macrophages. Viruses 2023; 15:1524. [PMID: 37515209 PMCID: PMC10384909 DOI: 10.3390/v15071524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 06/23/2023] [Accepted: 06/28/2023] [Indexed: 07/30/2023] Open
Abstract
The dual strategy of inhibiting the viral life cycle and reducing the host inflammatory response should be considered in the development of therapeutic drugs for influenza A virus (IAV). In this study, an extract of Scutellaria baicalinase (SBE) containing seven flavonoids was identified to exert both antiviral and anti-inflammatory effects in macrophages infected with IAV. We performed transcriptome analysis using high-throughput RNA sequencing and identified 315 genes whose transcription levels were increased after IAV infection but were able to be decreased after SBE intervention. Combined with Gene Ontology (GO) and Kyoto encyclopedia of genes and genomes (KEGG) enrichment analysis, these genes were mainly involved in TLR3/7/8, RIG-I/MDA5, NLRP3 and cGAS pattern recognition receptor (PRR)-mediated signaling pathways. SBE inhibited the transcription of essential genes in the above pathways and nuclear translocation of NF-κB p65 as confirmed by RT-qPCR and immunofluorescence, respectively, indicating that SBE reversed PR8-induced over-activation of the PRR signaling pathway and inflammation in macrophages. This study provides an experimental basis for applying Scutellaria baicalensis and its main effects in the clinical treatment of viral pneumonia. It also provides novel targets for screening and developing novel drugs to prevent and treat IAV infectious diseases.
Collapse
Affiliation(s)
- Mingrui Yang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Luyao Ma
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Rina Su
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Rui Guo
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Na Zhou
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Menghua Liu
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Jun Wu
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Yi Wang
- Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Yu Hao
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 102488, China
| |
Collapse
|
5
|
Chen N, Zhang B, Deng L, Liang B, Ping J. Virus-host interaction networks as new antiviral drug targets for IAV and SARS-CoV-2. Emerg Microbes Infect 2022; 11:1371-1389. [PMID: 35476817 PMCID: PMC9132403 DOI: 10.1080/22221751.2022.2071175] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Currently, SARS-CoV-2, especially the Omicron strain, is ravaging the world and even co-infecting human beings with IAV, which is a serious threat to human public health. As of yet, no specific antiviral drug has been discovered for SARS-CoV-2. This requires deeper understandings of the molecular mechanisms of SARS-CoV-2-host interaction, to explore antiviral drug targets and provide theoretical basis for developing anti-SARS-CoV-2 drugs. This article discussed IAV, which has been comprehensively studied and is expected to provide the most important reference value for the SARS-CoV-2 study apart from members of the Coronaviridae family. We wish to establish a theoretical system for the studies on virus-host interaction. Previous studies have shown that host PRRs recognize RNAs of IAV or SARS-CoV-2 and then activate innate immune signaling pathways to induce the expression of host restriction factors, such as ISGs, to ultimately inhibit viral replication. Meanwhile, viruses have also evolved various regulatory mechanisms to antagonize host innate immunity at transcriptional, translational, post-translational modification, and epigenetic levels. Besides, viruses can hijack supportive host factors for their replication. Notably, the race between host antiviral innate immunity and viral antagonism of host innate immunity forms virus-host interaction networks. Additionally, the viral replication cycle is co-regulated by proteins, ncRNAs, sugars, lipids, hormones, and inorganic salts. Given this, we updated the mappings of antiviral drug targets based on virus-host interaction networks and proposed an innovative idea that virus-host interaction networks as new antiviral drug targets for IAV and SARS-CoV-2 from the perspectives of viral immunology and systems biology.
Collapse
Affiliation(s)
- Na Chen
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Engineering Laboratory of Animal Immunity of Jiangsu Province, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, People's Republic of China
| | - Baoge Zhang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, People's Republic of China
| | - Lulu Deng
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Engineering Laboratory of Animal Immunity of Jiangsu Province, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, People's Republic of China
| | - Bing Liang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Engineering Laboratory of Animal Immunity of Jiangsu Province, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, People's Republic of China
| | - Jihui Ping
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Engineering Laboratory of Animal Immunity of Jiangsu Province, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, People's Republic of China
| |
Collapse
|
6
|
Arisan ED, Dart DA, Grant GH, Dalby A, Kancagi DD, Turan RD, Yurtsever B, Karakus GS, Ovali E, Lange S, Uysal-Onganer P. microRNA 1307 Is a Potential Target for SARS-CoV-2 Infection: An in Vitro Model. ACS OMEGA 2022; 7:38003-38014. [PMID: 36275122 PMCID: PMC9578367 DOI: 10.1021/acsomega.2c05245] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 09/30/2022] [Indexed: 06/16/2023]
Abstract
microRNAs (miRs) are proposed as critical molecular targets in SARS-CoV-2 infection. Our recent in silico studies identified seven SARS-CoV-2 specific miR-like sequences, which are highly conserved with humans, including miR-1307-3p, with critical roles in COVID-19. In this current study, Vero cells were infected with SARS-CoV-2, and miR expression profiles were thereafter confirmed by qRT-PCR. miR-1307-3p was the most highly expressed miR in the infected cells; we, therefore, transiently inhibited its expression in both infected and uninfected cells. The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) cell proliferation assay assessed cell viability following SARS-CoV-2 infection, identifying that miR-1307 expression is inversely correlated with cell viability. Lastly, changes in miR-1307-dependent pathways were analyzed through a detailed miRNOME and associated in silico analysis. In addition to our previously identified miRs, including miR-1307-3p, the upregulation of miR-193a-5p, miR-5100, and miR-23a-5p and downregulation of miR-130b-5p, miR34a-5p, miR-505-3p, miR181a-2-3p, miR-1271-5p, miR-598-3p, miR-34c-3p, and miR-129-5p were also established in Vero cells related to general lung disease-related genes following SARS-CoV-2 infection. Targeted anti-miR-1307-3p treatment rescued cell viability in infection when compared to SARS CoV-2 mediated cell cytotoxicity only. We furthermore identified by in silico analysis that miR-1307-3p is conserved in all SARS-CoV-2 sequences/strains, except in the BA.2 variant, possibly contributing to the lower disease severity of this variant, which warrants further investigation. Small RNA seq analysis was next used to evaluate alterations in the miRNOME, following miR-1307-3p manipulation, identifying critical pathobiological pathways linked to SARS-CoV-2 infection-mediated upregulation of this miR. On the basis of our findings, miRNAs like miR-1307-3p play a critical role in SARS-CoV-2 infection, including via effects on disease progression and severity.
Collapse
Affiliation(s)
- Elif Damla Arisan
- Gebze
Technical University, Institute of Biotechnology, Gebze, Kocaeli 41400, Turkiye
| | - D. Alwyn Dart
- Institute
of Medical and Biomedical Education, St
George’s University of London, Cranmer Terrace, Tooting, London SW17
0RE, United Kingdom
| | - Guy H. Grant
- School
of Life Sciences, University of Bedfordshire, Park Square, Luton LU1
3JU, United Kingdom
| | - Andrew Dalby
- School
of Life Sciences, University of Westminster, London W1W 6UW, United Kingdom
| | | | - Raife Dilek Turan
- Acibadem
Labcell Cellular Therapy Laboratory, İstanbul 34457, Turkiye
- Yeditepe
University, Institute of Biotechnology, İstanbul 34755, Turkiye
| | - Bulut Yurtsever
- Acibadem
Labcell Cellular Therapy Laboratory, İstanbul 34457, Turkiye
| | - Gozde Sir Karakus
- Acibadem
Labcell Cellular Therapy Laboratory, İstanbul 34457, Turkiye
| | - Ercument Ovali
- Acibadem
Labcell Cellular Therapy Laboratory, İstanbul 34457, Turkiye
| | - Sigrun Lange
- Tissue
Architecture and Regeneration Research Group, School of Life Sciences, University of Westminster, London W1W 6UW, United Kingdom
| | - Pinar Uysal-Onganer
- Cancer
Research Group, School of Life Sciences, University of Westminster, London W1W 6UW, United Kingdom
| |
Collapse
|
7
|
Saengchoowong S, Nimsamer P, Khongnomnan K, Poomipak W, Praianantathavorn K, Rattanaburi S, Poovorawan Y, Zhang Q, Payungporn S. Enhancing the yield of seasonal influenza viruses through manipulation of microRNAs in Madin-Darby canine kidney cells. Exp Biol Med (Maywood) 2022; 247:1335-1349. [PMID: 35666095 PMCID: PMC9442458 DOI: 10.1177/15353702221098340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Accepted: 04/15/2022] [Indexed: 02/03/2023] Open
Abstract
Annual influenza vaccine is recommended to reduce the occurrence of seasonal influenza and its complications. Thus far, Madin-Darby canine kidney (MDCK) cell line has been used to manufacture cell-based influenza vaccines. Even though host microRNAs may facilitate viral replication, the interaction between MDCK cells-derived microRNAs and seasonal influenza viruses has been less frequently investigated. Therefore, this study highlighted microRNA profiles of MDCK cells to increase the yield of seasonal influenza virus production by manipulating cellular microRNAs. MDCK cells were infected with influenza A or B virus at a multiplicity of infection (MOI) of 0.01, and microRNA collections were then subjected to MiSeq (Illumina) Sequencing. The validated profiles revealed that cfa-miR-340, cfa-miR-146b, cfa-miR-197, and cfa-miR-215 were the most frequently upregulated microRNAs. The effect of candidate microRNA inhibition and overexpression on viral replication was determined using reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and enzyme-linked immunosorbent assay (ELISA). The hybridization pattern between candidate miRNAs and viral genes was performed using miRBase and RNAhybrid web-based programs. Moreover, the predicted microRNA-binding sites were validated by a 3'-UTR reporter assay. The results indicated that cfa-miR-146b could directly target the PB1 gene of A/pH1N1 and the PA gene of B/Yamagata. Furthermore, cfa-miR-215 could silence the PB1 gene of A/pH1N1 and the PB1 gene of B/Victoria. However, the PB2 gene of the A/H3N2 virus was silenced by cfa-miR-197. In addition, the HA and NA sequences of influenza viruses harvested from the cell cultures treated with microRNA inhibitors were analyzed. The sequencing results revealed no difference in the antigenic HA and NA sequences between viruses isolated from the cells treated with microRNA inhibitors and the parental viruses. In conclusion, these findings suggested that MDCK cell-derived microRNAs target viral genes in a strain-specific manner for suppressing viral replication. Conversely, the use of such microRNA inhibitors may facilitate the production of influenza viruses.
Collapse
Affiliation(s)
- Suthat Saengchoowong
- Joint Chulalongkorn
University-University of Liverpool Doctoral Program in Biomedical Sciences and
Biotechnology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330,
Thailand
- Faculty of Veterinary Medicine and
Applied Zoology, HRH Princess Chulabhorn College of Medical Science, Chulabhorn
Royal Academy, Bangkok 10210, Thailand
| | - Pattaraporn Nimsamer
- Research Unit of Systems Microbiology,
Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok
10330, Thailand
| | - Kritsada Khongnomnan
- Research Unit of Systems Microbiology,
Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok
10330, Thailand
| | - Witthaya Poomipak
- Research Affairs, Faculty of Medicine,
Chulalongkorn University, Bangkok 10330, Thailand
| | - Kesmanee Praianantathavorn
- Research Unit of Systems Microbiology,
Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok
10330, Thailand
| | - Somruthai Rattanaburi
- Research Unit of Systems Microbiology,
Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok
10330, Thailand
| | - Yong Poovorawan
- Center of Excellence in Clinical
Virology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330,
Thailand
| | - Qibo Zhang
- Department of Clinical Infection,
Microbiology and Immunology, Institute of Infection, Veterinary and Ecological
Sciences, University of Liverpool, Liverpool L69 7BE, UK
| | - Sunchai Payungporn
- Research Unit of Systems Microbiology,
Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok
10330, Thailand
| |
Collapse
|
8
|
Kooshkaki O, Asghari A, Mahdavi R, Azarkar G, Parsamanesh N. Potential of MicroRNAs As Biomarkers and Therapeutic Targets in Respiratory Viruses: A Literature Review. DNA Cell Biol 2022; 41:544-563. [PMID: 35699380 DOI: 10.1089/dna.2021.1101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
MicroRNAs (miRNAs) are small noncoding RNAs that regulate gene expression through recognition of cognate sequences and interference of transcriptional, translational, or epigenetic processes. Hundreds of miRNA genes have been found in diverse viruses, and many of these are phylogenetically conserved. Respiratory viruses are the most frequent causative agents of disease in humans, with a significant impact on morbidity and mortality worldwide. Recently, the role of miRNAs in respiratory viral gene regulation, as well as host gene regulation during disease progression, has become a field of interest. This review highlighted the importance of various miRNAs and their potential role in fighting with respiratory viruses as therapeutic molecules with a focus on COVID-19.
Collapse
Affiliation(s)
- Omid Kooshkaki
- Department of Hematology, Student Research Committee, Birjand University of Medical Sciences, Birjand, Iran
| | - Arghavan Asghari
- Department of Hematology, Student Research Committee, Birjand University of Medical Sciences, Birjand, Iran.,Department of Hematology, Infectious Diseases Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Reza Mahdavi
- Department of Hematology, Kerman University of Medical Sciences, Kerman, Iran
| | - Ghodsiyeh Azarkar
- Department of Hematology, Infectious Diseases Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Negin Parsamanesh
- Department of Hematology, Zanjan Metabolic Diseases Research Center, Zanjan University of Medical Science, Zanjan, Iran
| |
Collapse
|
9
|
Lei L, Cheng A, Wang M, Jia R. The Influence of Host miRNA Binding to RNA Within RNA Viruses on Virus Multiplication. Front Cell Infect Microbiol 2022; 12:802149. [PMID: 35531344 PMCID: PMC9069554 DOI: 10.3389/fcimb.2022.802149] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 03/14/2022] [Indexed: 11/13/2022] Open
Abstract
microRNAs (miRNAs), non-coding RNAs about 22 nt long, regulate the post-transcription expression of genes to influence many cellular processes. The expression of host miRNAs is affected by virus invasion, which also affects virus replication. Increasing evidence has demonstrated that miRNA influences RNA virus multiplication by binding directly to the RNA virus genome. Here, the knowledge relating to miRNAs’ relationships between host miRNAs and RNA viruses are discussed.
Collapse
Affiliation(s)
- Lin Lei
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Anchun Cheng
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Mingshu Wang
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Renyong Jia
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- *Correspondence: Renyong Jia,
| |
Collapse
|
10
|
Liao Y, Guo S, Liu G, Qiu Z, Wang J, Yang D, Tian X, Qiao Z, Ma Z, Liu Z. Host Non-Coding RNA Regulates Influenza A Virus Replication. Viruses 2021; 14:v14010051. [PMID: 35062254 PMCID: PMC8779696 DOI: 10.3390/v14010051] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 12/21/2021] [Accepted: 12/21/2021] [Indexed: 12/12/2022] Open
Abstract
Outbreaks of influenza, caused by the influenza A virus (IAV), occur almost every year in various regions worldwide, seriously endangering human health. Studies have shown that host non-coding RNA is an important regulator of host-virus interactions in the process of IAV infection. In this paper, we comprehensively analyzed the research progress on host non-coding RNAs with regard to the regulation of IAV replication. According to the regulation mode of host non-coding RNAs, the signal pathways involved, and the specific target genes, we found that a large number of host non-coding RNAs directly targeted the PB1 and PB2 proteins of IAV. Nonstructural protein 1 and other key genes regulate the replication of IAV and indirectly participate in the regulation of the retinoic acid-induced gene I-like receptor signaling pathway, toll-like receptor signaling pathway, Janus kinase signal transducer and activator of transcription signaling pathway, and other major intracellular viral response signaling pathways to regulate the replication of IAV. Based on the above findings, we mapped the regulatory network of host non-coding RNAs in the innate immune response to the influenza virus. These findings will provide a more comprehensive understanding of the function and mechanism of host non-coding RNAs in the cellular anti-virus response as well as clues to the mechanism of cell-virus interactions and the discovery of antiviral drug targets.
Collapse
Affiliation(s)
- Yuejiao Liao
- Gansu Tech Innovation Center of Animal Cell, Biomedical Research Center, Northwest Minzu University, Lanzhou 730030, China; (Y.L.); (S.G.); (G.L.); (Z.Q.); (J.W.); (D.Y.); (Z.Q.); (Z.M.)
- Life Science and Engineering College, Northwest Minzu University, Lanzhou 730030, China;
| | - Shouqing Guo
- Gansu Tech Innovation Center of Animal Cell, Biomedical Research Center, Northwest Minzu University, Lanzhou 730030, China; (Y.L.); (S.G.); (G.L.); (Z.Q.); (J.W.); (D.Y.); (Z.Q.); (Z.M.)
- Life Science and Engineering College, Northwest Minzu University, Lanzhou 730030, China;
| | - Geng Liu
- Gansu Tech Innovation Center of Animal Cell, Biomedical Research Center, Northwest Minzu University, Lanzhou 730030, China; (Y.L.); (S.G.); (G.L.); (Z.Q.); (J.W.); (D.Y.); (Z.Q.); (Z.M.)
- Life Science and Engineering College, Northwest Minzu University, Lanzhou 730030, China;
| | - Zhenyu Qiu
- Gansu Tech Innovation Center of Animal Cell, Biomedical Research Center, Northwest Minzu University, Lanzhou 730030, China; (Y.L.); (S.G.); (G.L.); (Z.Q.); (J.W.); (D.Y.); (Z.Q.); (Z.M.)
- Life Science and Engineering College, Northwest Minzu University, Lanzhou 730030, China;
| | - Jiamin Wang
- Gansu Tech Innovation Center of Animal Cell, Biomedical Research Center, Northwest Minzu University, Lanzhou 730030, China; (Y.L.); (S.G.); (G.L.); (Z.Q.); (J.W.); (D.Y.); (Z.Q.); (Z.M.)
- Key Laboratory of Biotechnology & Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou 730030, China
| | - Di Yang
- Gansu Tech Innovation Center of Animal Cell, Biomedical Research Center, Northwest Minzu University, Lanzhou 730030, China; (Y.L.); (S.G.); (G.L.); (Z.Q.); (J.W.); (D.Y.); (Z.Q.); (Z.M.)
- Key Laboratory of Biotechnology & Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou 730030, China
| | - Xiaojing Tian
- Life Science and Engineering College, Northwest Minzu University, Lanzhou 730030, China;
- Key Laboratory of Biotechnology & Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou 730030, China
| | - Ziling Qiao
- Gansu Tech Innovation Center of Animal Cell, Biomedical Research Center, Northwest Minzu University, Lanzhou 730030, China; (Y.L.); (S.G.); (G.L.); (Z.Q.); (J.W.); (D.Y.); (Z.Q.); (Z.M.)
- Key Laboratory of Biotechnology & Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou 730030, China
| | - Zhongren Ma
- Gansu Tech Innovation Center of Animal Cell, Biomedical Research Center, Northwest Minzu University, Lanzhou 730030, China; (Y.L.); (S.G.); (G.L.); (Z.Q.); (J.W.); (D.Y.); (Z.Q.); (Z.M.)
- Key Laboratory of Biotechnology & Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou 730030, China
| | - Zhenbin Liu
- Gansu Tech Innovation Center of Animal Cell, Biomedical Research Center, Northwest Minzu University, Lanzhou 730030, China; (Y.L.); (S.G.); (G.L.); (Z.Q.); (J.W.); (D.Y.); (Z.Q.); (Z.M.)
- Key Laboratory of Biotechnology & Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou 730030, China
- Correspondence:
| |
Collapse
|
11
|
Valle-Millares D, Brochado-Kith Ó, Gómez-Sanz A, Martín-Carbonero L, Ryan P, De Los Santos I, Castro JM, Troya J, Mayoral-Muñoz M, Cuevas G, Martínez-Román P, Sanz-Sanz J, Muñoz-Muñoz M, Jiménez-Sousa MÁ, Resino S, Briz V, Fernández-Rodríguez A. HCV eradication with DAAs differently affects HIV males and females: A whole miRNA sequencing characterization. Biomed Pharmacother 2021; 145:112405. [PMID: 34781145 DOI: 10.1016/j.biopha.2021.112405] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 10/31/2021] [Accepted: 11/03/2021] [Indexed: 12/12/2022] Open
Abstract
Gender-specific consequences after HCV eradication are unexplored. MicroRNAs (miRNAs) play a crucial role in the immune response against viral infections. However, few have highlighted miRNA role in sex-biased disease or therapy response. We aim to assess gender differences reflected in the miRNA expression of HIV/HCV-coinfected patients who achieve sustained virological response (SVR) with direct acting antivirals (DAAs). We conducted a prospective study of miRNA expression in PBMCs from 28 chronic HIV/HCV-coinfected patients (HIV/HCV) at baseline and after achieving SVR with DAAs. Sixteen HIV-monoinfected patients (HIV) and 36 healthy controls (HC) were used as controls. Identification of significant differentially expressed (SDE) miRNAs was performed with generalized linear model and mixed GLMs. We also explored putative dysregulated biological pathways. At baseline, the HIV/HCV patients showed differences in the miRNA profile concerning the HIV group (165 and 102 SDE miRNAs for males and females, respectively). Gender-stratified analysis of HIV/HCV group at baseline versus at SVR achievement showed higher differences in males (80 SDE miRNAs) than in females (55 SDE miRNAs). After SVR, HIV/HCV group showed similar values to HIV individuals, especially in females (1 SDE miRNA). However, ten miRNAs in males remained dysregulated, which were mainly involved in cancer, fatty acid, and inflammatory pathways. Taken together, our results show gender-biased dysregulation in the miRNA expression profile of PBMCs after HCV eradication with DAAs. These differences were normalized in females, while miRNA profile and their target-related pathways in males lack of normalization, which may be related to a high-risk of developing liver-related complications.
Collapse
Affiliation(s)
- Daniel Valle-Millares
- Unit of Viral Infection and Immunity, National Center for Microbiology, Institute of Health Carlos III, Majadahonda, Madrid, Spain
| | - Óscar Brochado-Kith
- Unit of Viral Infection and Immunity, National Center for Microbiology, Institute of Health Carlos III, Majadahonda, Madrid, Spain
| | - Alicia Gómez-Sanz
- Unit of Viral Infection and Immunity, National Center for Microbiology, Institute of Health Carlos III, Majadahonda, Madrid, Spain
| | | | - Pablo Ryan
- Internal Medicine Service, Infanta Leonor Teaching Hospital, Madrid, Spain
| | - Ignacio De Los Santos
- Servicio de Medicina Interna-Infecciosas, Hospital Universitario de La Princesa, Madrid, Spain
| | - Juan M Castro
- Hospital La Paz Institute for Health Research (IdiPAZ), Madrid, Spain
| | - Jesús Troya
- Internal Medicine Service, Infanta Leonor Teaching Hospital, Madrid, Spain
| | | | - Guillermo Cuevas
- Internal Medicine Service, Infanta Leonor Teaching Hospital, Madrid, Spain
| | - Paula Martínez-Román
- Unit of Viral Infection and Immunity, National Center for Microbiology, Institute of Health Carlos III, Majadahonda, Madrid, Spain
| | - Jesús Sanz-Sanz
- Servicio de Medicina Interna-Infecciosas, Hospital Universitario de La Princesa, Madrid, Spain
| | - María Muñoz-Muñoz
- Department of Animal Breeding, Instituto Nacional de Investigación y Alimentación Agraria y Alimentaria (INIA), Madrid, Spain
| | - María Á Jiménez-Sousa
- Unit of Viral Infection and Immunity, National Center for Microbiology, Institute of Health Carlos III, Majadahonda, Madrid, Spain
| | - Salvador Resino
- Unit of Viral Infection and Immunity, National Center for Microbiology, Institute of Health Carlos III, Majadahonda, Madrid, Spain
| | - Verónica Briz
- Laboratory of Reference and Research on Viral Hepatitis, National Center for Microbiology, Institute of Health Carlos III, Majadahonda, Madrid, Spain
| | - Amanda Fernández-Rodríguez
- Unit of Viral Infection and Immunity, National Center for Microbiology, Institute of Health Carlos III, Majadahonda, Madrid, Spain; Department of Medicine, Alfonso X el Sabio, Villanueva de la Cañada, 28691 Madrid, Spain.
| |
Collapse
|
12
|
Barreda-Manso MA, Nieto-Díaz M, Soto A, Muñoz-Galdeano T, Reigada D, Maza RM. In Silico and In Vitro Analyses Validate Human MicroRNAs Targeting the SARS-CoV-2 3'-UTR. Int J Mol Sci 2021; 22:6094. [PMID: 34198800 PMCID: PMC8201247 DOI: 10.3390/ijms22116094] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 05/24/2021] [Accepted: 05/29/2021] [Indexed: 02/06/2023] Open
Abstract
COVID-19 pandemic is caused by betacoronavirus SARS-CoV-2. The genome of this virus is composed of a single strand of RNA with 5' and 3'-UTR flanking a region of protein-coding ORFs closely resembling cells' mRNAs. MicroRNAs are endogenous post-transcriptional regulators that target mRNA to modulate protein expression and mediate cellular functions, including antiviral defense. In the present study, we carried out a bioinformatics screening to search for endogenous human microRNAs targeting the 3'-UTR of SARS-CoV-2. Results from the computational techniques allowed us to identify 10 potential candidates. The capacity of 3 of them, together with hsa-miR-138-5p, to target the SARS-CoV-2 3'-UTR was validated in vitro by gene reporter assays. Available information indicates that two of these microRNAs, namely, hsa-miR-3941 and hsa-miR-138-5p, combine effective targeting of SARS-CoV-2 genome with complementary antiviral or protective effects in the host cells that make them potential candidates for therapeutic treatment of most, if not all, COVID-19 variants known to date. All information obtained while conducting the present analysis is available at Open Science Framework repository.
Collapse
Affiliation(s)
| | - Manuel Nieto-Díaz
- Molecular Neuroprotection Group, Research Unit, National Hospital for Paraplegics (SESCAM), 45071 Toledo, Spain; (M.A.B.-M.); (A.S.); (T.M.-G.); (D.R.)
| | | | | | | | - Rodrigo M. Maza
- Molecular Neuroprotection Group, Research Unit, National Hospital for Paraplegics (SESCAM), 45071 Toledo, Spain; (M.A.B.-M.); (A.S.); (T.M.-G.); (D.R.)
| |
Collapse
|
13
|
Abstract
COVID-19 is characterized by a wide range of clinical manifestations, from asymptomatic to extremely severe. At the onset of the pandemic, it became clear that old age and chronic illness were the major risk factors. However, they do not fully explain the variety of symptoms and complications of the SARS-COV-2 coronavirus infection. The research on genetic risk factors for COVID-19 is still at its early stages. A number of mutations and polymorphisms have been identified that affect the structure and stability of proteins factors of susceptibility to SARS-COV-2 infection, as well as a predisposition to the development of respiratory failure and the need for intensive care. Most of the identified genetic factors are related to the function of the immune system. On the other hand, the genetic polymorphism of the virus itself affects the COVID-19 spread and severity of its course . The genome of the virus accumulates mutations and evolves towards increasing contagiousness, replicative ability and evasion from the host's immune system. Genetic determinants of the COVID-19 infection are potential therapeutic targets. Studying them will provide information for the development of drugs and vaccines to combat the pandemic.
Collapse
|
14
|
Heydarzadeh S, Ranjbar M, Karimi F, Seif F, Alivand MR. Overview of host miRNA properties and their association with epigenetics, long non-coding RNAs, and Xeno-infectious factors. Cell Biosci 2021; 11:43. [PMID: 33632341 PMCID: PMC7905430 DOI: 10.1186/s13578-021-00552-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 02/06/2021] [Indexed: 12/19/2022] Open
Abstract
MicroRNA-derived structures play impressive roles in various biological processes. So dysregulation of miRNAs can lead to different human diseases. Recent studies have extended our comprehension of the control of miRNA function and features. Here, we overview some remarkable miRNA properties that have potential implications for the miRNA functions, including different variants of a miRNA called isomiRs, miRNA arm selection/arm switching, and the effect of these factors on miRNA target selection. Besides, we review some aspects of miRNA interactions such as the interaction between epigenetics and miRNA (different miRNAs and their related processing enzymes are epigenetically regulated by multiple DNA methylation enzymes. moreover, DNA methylation could be controlled by diverse mechanisms related to miRNAs), direct and indirect crosstalk between miRNA and lnc (Long Non-Coding) RNAs as a further approach to conduct intercellular regulation called "competing endogenous RNA" (ceRNA) that is involved in the pathogenesis of different diseases, and the interaction of miRNA activities and some Xeno-infectious (virus/bacteria/parasite) factors, which result in modulation of the pathogenesis of infections. This review provides some related studies to a better understanding of miRNA involvement mechanisms and overcoming the complexity of related diseases that may be applicable and useful to prognostic, diagnostic, therapeutic purposes and personalized medicine in the future.
Collapse
Affiliation(s)
- Samaneh Heydarzadeh
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Maryam Ranjbar
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Farokh Karimi
- Department of Biotechnology, Faculty of Science, University of Maragheh, Maragheh, Iran
| | - Farhad Seif
- Department of Immunology and Allergy, Academic Center for Education, Culture, and Research (ACECR), Tehran, Iran
- Neuroscience Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Alivand
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
15
|
Chan AP, Choi Y, Schork NJ. Conserved Genomic Terminals of SARS-CoV-2 as Coevolving Functional Elements and Potential Therapeutic Targets. mSphere 2020; 5:e00754-20. [PMID: 33239366 PMCID: PMC7690956 DOI: 10.1128/msphere.00754-20] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 11/05/2020] [Indexed: 12/14/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has infected over 40 million people worldwide, with over 1 million deaths as of October 2020 and with multiple efforts in the development and testing of antiviral drugs and vaccines under way. In order to gain insights into SARS-CoV-2 evolution and drug targets, we investigated how and to what extent the SARS-CoV-2 genome sequence differs from those of other well-characterized human and animal coronavirus genomes, as well as how polymorphic SARS-CoV-2 genomes are generally. We ultimately sought to identify features in the SARS-CoV-2 genome that may contribute to its viral replication, host pathogenicity, and vulnerabilities. Our analyses suggest the presence of unique sequence signatures in the 3' untranslated region (3'-UTR) of betacoronavirus lineage B, which phylogenetically encompasses SARS-CoV-2 and SARS-CoV as well as multiple groups of bat and animal coronaviruses. In addition, we identified genome-wide patterns of variation across different SARS-CoV-2 strains that likely reflect the effects of selection. Finally, we provide evidence for a possible host-microRNA-mediated interaction between the 3'-UTR and human microRNA hsa-miR-1307-3p based on the results of multiple computational target prediction analyses and an assessment of similar interactions involving the influenza A H1N1 virus. This interaction also suggests a possible survival mechanism, whereby a mutation in the SARS-CoV-2 3'-UTR leads to a weakened host immune response. The potential roles of host microRNAs in SARS-CoV-2 replication and infection and the exploitation of conserved features in the 3'-UTR as therapeutic targets warrant further investigation.IMPORTANCE The coronavirus disease 2019 (COVID-19) outbreak is having a dramatic global effect on public health and the economy. As of October 2020, SARS-CoV-2 has been detected in over 189 countries, has infected over 40 million people, and is responsible for more than 1 million deaths. The genome of SARS-CoV-2 is small but complex, and its functions and interactions with human host factors are being studied extensively. The significance of our study is that, using extensive SARS-CoV-2 genome analysis techniques, we identified potential interacting human host microRNA targets that share similarity with those of influenza A virus H1N1. Our study results will allow the development of virus-host interaction models that will enhance our understanding of SARS-CoV-2 pathogenesis and motivate the exploitation of both the interacting viral and host factors as therapeutic targets.
Collapse
Affiliation(s)
- Agnes P Chan
- The Translational Genomics Research Institute (TGen), Phoenix, Arizona, USA
| | - Yongwook Choi
- The Translational Genomics Research Institute (TGen), Phoenix, Arizona, USA
| | - Nicholas J Schork
- The Translational Genomics Research Institute (TGen), Phoenix, Arizona, USA
- Department of Population Sciences, The City of Hope National Medical Center, Duarte, California, USA
- Department of Molecular and Cell Biology, The City of Hope National Medical Center, Duarte, California, USA
| |
Collapse
|
16
|
Szabat M, Lorent D, Czapik T, Tomaszewska M, Kierzek E, Kierzek R. RNA Secondary Structure as a First Step for Rational Design of the Oligonucleotides towards Inhibition of Influenza A Virus Replication. Pathogens 2020; 9:pathogens9110925. [PMID: 33171815 PMCID: PMC7694947 DOI: 10.3390/pathogens9110925] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 11/05/2020] [Accepted: 11/05/2020] [Indexed: 02/06/2023] Open
Abstract
Influenza is an important research subject around the world because of its threat to humanity. Influenza A virus (IAV) causes seasonal epidemics and sporadic, but dangerous pandemics. A rapid antigen changes and recombination of the viral RNA genome contribute to the reduced effectiveness of vaccination and anti-influenza drugs. Hence, there is a necessity to develop new antiviral drugs and strategies to limit the influenza spread. IAV is a single-stranded negative sense RNA virus with a genome (viral RNA—vRNA) consisting of eight segments. Segments within influenza virion are assembled into viral ribonucleoprotein (vRNP) complexes that are independent transcription-replication units. Each step in the influenza life cycle is regulated by the RNA and is dependent on its interplay and dynamics. Therefore, viral RNA can be a proper target to design novel therapeutics. Here, we briefly described examples of anti-influenza strategies based on the antisense oligonucleotide (ASO), small interfering RNA (siRNA), microRNA (miRNA) and catalytic nucleic acids. In particular we focused on the vRNA structure-function relationship as well as presented the advantages of using secondary structure information in predicting therapeutic targets and the potential future of this field.
Collapse
|
17
|
Chan AP, Choi Y, Schork NJ. Conserved Genomic Terminals of SARS-CoV-2 as Co-evolving Functional Elements and Potential Therapeutic Targets. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2020:2020.07.06.190207. [PMID: 32676601 PMCID: PMC7359523 DOI: 10.1101/2020.07.06.190207] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
To identify features in the genome of the SARS-CoV-2 pathogen responsible for the COVID-19 pandemic that may contribute to its viral replication, host pathogenicity, and vulnerabilities, we investigated how and to what extent the SARS-CoV-2 genome sequence differs from other well-characterized human and animal coronavirus genomes. Our analyses suggest the presence of unique sequence signatures in the 3'-untranslated region (UTR) of betacoronavirus lineage B, which phylogenetically encompasses SARS-CoV-2, SARS-CoV, as well as multiple groups of bat and animal coronaviruses. In addition, we identified genome-wide patterns of variation across different SARS-CoV-2 strains that likely reflect the effects of selection. Finally, we provide evidence for a possible host microRNA-mediated interaction between the 3'-UTR and human microRNA hsa-miR-1307-3p based on predicted, yet extensive, complementary base-pairings and similar interactions involving the Influenza A H1N1 virus. This interaction also suggests a possible survival mechanism, whereby a mutation in the SARS-CoV-2 3'-UTR leads to a weakened host immune response. The potential roles of host microRNAs in SARS-CoV-2 replication and infection, and the exploitation of conserved features in the 3'-UTR as therapeutic targets warrant further investigation.
Collapse
Affiliation(s)
- Agnes. P. Chan
- The Translational Genomics Research Institute (TGen), Phoenix, AZ
| | - Yongwook Choi
- The Translational Genomics Research Institute (TGen), Phoenix, AZ
| | - Nicholas J. Schork
- The Translational Genomics Research Institute (TGen), Phoenix, AZ
- Departments of Population Sciences and Molecular and Cell Biology, The City of Hope National Medical Center, Duarte, CA
| |
Collapse
|