1
|
Lago-Baameiro N, Camino T, Vazquez-Durán A, Sueiro A, Couto I, Santos F, Baltar J, Falcón-Pérez JM, Pardo M. Intra and inter-organ communication through extracellular vesicles in obesity: functional role of obesesomes and steatosomes. J Transl Med 2025; 23:207. [PMID: 39979938 PMCID: PMC11844161 DOI: 10.1186/s12967-024-06024-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 12/22/2024] [Indexed: 02/22/2025] Open
Abstract
BACKGROUND Extracellular vesicles (EVs) represent a sophisticated mechanism of intercellular communication that is implicated in health and disease. Specifically, the role of EVs in metabolic regulation and their implications in metabolic pathologies, such as obesity and its comorbidities, remain unclear. METHODS Extracellular vesicles (EVs) were isolated through serial ultracentrifugation from murine adipocytes treated with palmitate or oleic acid, whole visceral and subcutaneous adipose tissue (obesesomes) of bariatric surgery obese donors, and human hepatocytes under steatosis (steatosomes) for functional in vitro experiments. Functional effects on inflammation and glucose and lipid metabolism of target cells (human and murine macrophages and hepatocytes) were assessed using ELISA, RT-PCR, and immunodetection. Isolated EVs from human steatotic (steatosomes) and control hepatocytes (hepatosomes) were characterized for quantity, size, and tetraspanin profile by NTA and Single Particle Interferometric Reflectance Imaging Sensor (SP-IRIS), and their protein cargo analyzed by qualitative (DDA) and quantitative (DIA-SWATH) proteomics using LC-MS/MS. Proteins identified by proteomics were validated by capturing EVs on functionalized chips by SP-IRIS. RESULTS AND CONCLUSIONS In this study, we investigated the role of EVs in the local communication between obese adipocytes and immune cells within adipose tissue, and the interaction of steatotic and healthy hepatocytes in the context of fatty liver disease progression. Furthermore, we analyzed obese adipose tissue-to-liver interactions through EV-obesesomes to elucidate their role in obesity-associated hepatic metabolic dysregulation. Our findings reveal that obesesomes promote inflammation and the secretion of pro-inflammatory cytokines upon interaction with macrophages, exerting a significant impact on reducing insulin resistance and altering lipid and glucose metabolism upon interaction with hepatocytes; in both cases, EVs from palmitate-loaded adipocytes and obesesomes from human visceral adipose depots demonstrated the most deleterious effect. Additionally, EVs secreted by steatotic hepatocytes (steatosomes) induced insulin resistance and altered lipid and glucose metabolism in healthy hepatocytes, suggesting their involvement in MASLD development. Proteomic analysis of steatosomes revealed that these vesicles contain liver disease-associated proteins, rendering them significant repositories of real-time biomarkers for the early stages and progression of MASLD.
Collapse
Affiliation(s)
- N Lago-Baameiro
- Grupo Obesidómica, Área de Endocrinología, Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Complexo Hospitalario Universitario de Santiago de Compostela/SERGAS, Santiago de Compostela, Travesía da Choupana s/n, 15706, Santiago de Compostela, A Coruña, Spain
| | - T Camino
- Grupo Obesidómica, Área de Endocrinología, Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Complexo Hospitalario Universitario de Santiago de Compostela/SERGAS, Santiago de Compostela, Travesía da Choupana s/n, 15706, Santiago de Compostela, A Coruña, Spain
| | - A Vazquez-Durán
- Grupo Obesidómica, Área de Endocrinología, Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Complexo Hospitalario Universitario de Santiago de Compostela/SERGAS, Santiago de Compostela, Travesía da Choupana s/n, 15706, Santiago de Compostela, A Coruña, Spain
| | - A Sueiro
- Grupo Endocrinología Molecular y Celular, Instituto de Investigación Sanitaria de Santiago (IDIS), Complexo Hospitalario Universitario de Santiago de Compostela/SERGAS, Santiago de Compostela, Spain
| | - I Couto
- Grupo Obesidómica, Área de Endocrinología, Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Complexo Hospitalario Universitario de Santiago de Compostela/SERGAS, Santiago de Compostela, Travesía da Choupana s/n, 15706, Santiago de Compostela, A Coruña, Spain
- Servicio de Cirugía Plástica y Reparadora, Complexo Hospitalario Universitario de Santiago de Compostela/SERGAS, Santiago de Compostela, Spain
| | - F Santos
- Grupo Obesidómica, Área de Endocrinología, Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Complexo Hospitalario Universitario de Santiago de Compostela/SERGAS, Santiago de Compostela, Travesía da Choupana s/n, 15706, Santiago de Compostela, A Coruña, Spain
- Servicio de Cirugía General, Complexo Hospitalario Universitario de Santiago de Compostela/SERGAS, Santiago de Compostela, Spain
| | - J Baltar
- Grupo Obesidómica, Área de Endocrinología, Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Complexo Hospitalario Universitario de Santiago de Compostela/SERGAS, Santiago de Compostela, Travesía da Choupana s/n, 15706, Santiago de Compostela, A Coruña, Spain
- Servicio de Cirugía General, Complexo Hospitalario Universitario de Santiago de Compostela/SERGAS, Santiago de Compostela, Spain
| | - J M Falcón-Pérez
- Exosomes Laboratory and Metabolomics Platform, CIC bioGUNE-BRTA, CIBERehd, Derio, Spain
- IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| | - M Pardo
- Grupo Obesidómica, Área de Endocrinología, Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Complexo Hospitalario Universitario de Santiago de Compostela/SERGAS, Santiago de Compostela, Travesía da Choupana s/n, 15706, Santiago de Compostela, A Coruña, Spain.
- CIBER Fisiopatología Obesidad y Nutrición, Instituto de Salud Carlos III, Santiago de Compostela, Spain.
| |
Collapse
|
2
|
Lim K, Han SH, Han S, Lee JY, Choi HS, Choi D, Ryu CJ. A monoclonal antibody recognizing CD98 on human embryonic stem cells shows anti-tumor activity in hepatocellular carcinoma xenografts. Cancer Immunol Immunother 2024; 73:231. [PMID: 39261363 PMCID: PMC11390997 DOI: 10.1007/s00262-024-03827-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Accepted: 09/03/2024] [Indexed: 09/13/2024]
Abstract
CD98, also known as SLC3A2, is a multifunctional cell surface molecule consisting of amino acid transporters. CD98 is ubiquitously expressed in many types of tissues, but expressed at higher levels in cancerous tissues than in normal tissues. CD98 is also upregulated in most hepatocellular carcinoma (HCC) patients; however, the function of CD98 in HCC cells has been little studied. In this study, we generated a panel of monoclonal antibodies (MAbs) against surface proteins on human embryonic stem cells (hESCs). NPB15, one of the MAbs, bound to hESCs and various cancer cells, including HCC cells and non-small cell lung carcinoma (NSCLC) cells, but not to peripheral blood mononuclear cells (PBMCs) and primary hepatocytes. Immunoprecipitation and mass spectrometry identified the target antigen of NPB15 as CD98. CD98 depletion decreased cell proliferation, clonogenic survival, and migration and induced apoptosis in HCC cells. In addition, CD98 depletion decreased the expression of cancer stem cell (CSC) markers in HCC cells. In tumorsphere cultures, the expression of CD98 interacting with NPB15 was significantly increased, as were known CSC markers. After cell sorting by NPB15, cells with high expression of CD98 (CD98-high) showed higher clonogenic survival than cells with low expression of CD98 (CD98-low) in HCC cells, suggesting CD98 as a potential CSC marker on HCC cells. The chimeric version of NPB15 was able to induce antibody-dependent cellular cytotoxicity (ADCC) against HCC cells in vitro. NPB15 injection showed antitumor activity in an HCC xenograft mouse model. The results suggest that NPB15 may be developed as a therapeutic antibody for HCC patients.
Collapse
Affiliation(s)
- Keunpyo Lim
- Department of Integrative Bioscience and Biotechnology, Institute of Bioscience, Sejong University, Seoul, 05006, Republic of Korea
| | - San Ha Han
- Department of Integrative Bioscience and Biotechnology, Institute of Bioscience, Sejong University, Seoul, 05006, Republic of Korea
| | - Sein Han
- Department of Integrative Bioscience and Biotechnology, Institute of Bioscience, Sejong University, Seoul, 05006, Republic of Korea
| | - Ji Yoon Lee
- Department of Integrative Bioscience and Biotechnology, Institute of Bioscience, Sejong University, Seoul, 05006, Republic of Korea
| | - Hong Seo Choi
- Department of Integrative Bioscience and Biotechnology, Institute of Bioscience, Sejong University, Seoul, 05006, Republic of Korea
| | - Dongho Choi
- Department of Surgery, Hanyang University College of Medicine, Seoul, 04763, Republic of Korea
| | - Chun Jeih Ryu
- Department of Integrative Bioscience and Biotechnology, Institute of Bioscience, Sejong University, Seoul, 05006, Republic of Korea.
| |
Collapse
|
3
|
An anti-CD98 antibody displaying pH-dependent Fc-mediated tumour-specific activity against multiple cancers in CD98-humanized mice. Nat Biomed Eng 2023; 7:8-23. [PMID: 36424464 DOI: 10.1038/s41551-022-00956-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 09/27/2022] [Indexed: 11/27/2022]
Abstract
The cell-surface glycoprotein CD98-a subunit of the LAT1/CD98 amino acid transporter-is an attractive target for cancer immunotherapies, but its widespread expression has hampered the development of CD98-targeting antibody therapeutics. Here we report that an anti-CD98 antibody, identified via the screening of phage-display libraries of CD98 single-chain variable fragments with mutated complementarity-determining regions, preserves the physiological function of CD98 and elicits broad-spectrum crystallizable-fragment (Fc)-mediated anti-tumour activity (requiring Fcγ receptors for immunoglobulins, macrophages, dendritic cells and CD8+ T cells, as well as other components of the innate and adaptive immune systems) in multiple xenograft and syngeneic tumour models established in CD98-humanized mice. We also show that a variant of the anti-CD98 antibody with pH-dependent binding, generated by solving the structure of the antibody-CD98 complex, displayed enhanced tumour-specific activity and pharmacokinetics. pH-dependent antibody variants targeting widely expressed antigens may lead to superior therapeutic outcomes.
Collapse
|
4
|
Šrajer Gajdošik M, Kovač Peić A, Begić M, Grbčić P, Brilliant KE, Hixson DC, Josić D. Possible Role of Extracellular Vesicles in Hepatotoxicity of Acetaminophen. Int J Mol Sci 2022; 23:8870. [PMID: 36012131 PMCID: PMC9408656 DOI: 10.3390/ijms23168870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 07/29/2022] [Accepted: 08/05/2022] [Indexed: 11/16/2022] Open
Abstract
We examined proteomic profiles of rat liver extracellular vesicles (EVs) shed following treatment with a sub-toxic dose (500 mg/kg) of the pain reliever drug, acetaminophen (APAP). EVs representing the entire complement of hepatic cells were isolated after perfusion of the intact liver and analyzed with LC-MS/MS. The investigation was focused on revealing the function and cellular origin of identified EVs proteins shed by different parenchymal and non-parenchymal liver cells and their possible role in an early response of this organ to a toxic environment. Comparison of EV proteomic profiles from control and APAP-treated animals revealed significant differences. Alpha-1-macroglobulin and members of the cytochrome P450 superfamily were highly abundant proteins in EVs shed by the normal liver. In contrast, proteins like aminopeptidase N, metalloreductase STEAP4, different surface antigens like CD14 and CD45, and most members of the annexin family were detected only in EVs that were shed by livers of APAP-treated animals. In EVs from treated livers, there was almost a complete disappearance of members of the cytochrome P450 superfamily and a major decrease in other enzymes involved in the detoxification of xenobiotics. Additionally, there were proteins that predominated in non-parenchymal liver cells and in the extracellular matrix, like fibronectin, receptor-type tyrosine-protein phosphatase C, and endothelial type gp91. These differences indicate that even treatment with a sub-toxic concentration of APAP initiates dramatic perturbation in the function of this vital organ.
Collapse
Affiliation(s)
| | | | - Marija Begić
- Faculty of Medicine, University Juraj Dobrila of Pula, 52100 Pula, Croatia
| | - Petra Grbčić
- Faculty of Medicine, University Juraj Dobrila of Pula, 52100 Pula, Croatia
| | - Kate E. Brilliant
- Proteomics Core, COBRE CCRD, Rhode Island Hospital, Providence, RI 02903, USA
- Warren Alpert Medical School, Brown University, Providence, RI 02903, USA
| | - Douglas C. Hixson
- Proteomics Core, COBRE CCRD, Rhode Island Hospital, Providence, RI 02903, USA
- Warren Alpert Medical School, Brown University, Providence, RI 02903, USA
| | - Djuro Josić
- Faculty of Medicine, University Juraj Dobrila of Pula, 52100 Pula, Croatia
- Warren Alpert Medical School, Brown University, Providence, RI 02903, USA
| |
Collapse
|
5
|
Cheng W, Chen Y, Li S, Lee T, Lee T, Higa S, Chung C, Kao Y, Chen S, Chen Y. Galectin-3 enhances atrial remodelling and arrhythmogenesis through CD98 signalling. Acta Physiol (Oxf) 2022; 234:e13784. [PMID: 34995420 DOI: 10.1111/apha.13784] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 10/09/2021] [Accepted: 01/02/2022] [Indexed: 12/18/2022]
Abstract
AIM Galectin-3 (Gal-3) is a biomarker of atrial fibrillation (AF) that mediates atrial inflammation. CD98 is the membrane surface receptor for Gal-3. Nevertheless, the role of the Gal-3/CD98 axis in atrial arrhythmogenesis is unclear. In this study, we investigated the effects of Gal-3/CD98 signalling on atrial pathogenesis. METHODS Whole cell patch clamp and western blotting were used to analyse calcium/potassium homeostasis and calcium-related signalling in Gal-3-administrated HL-1 atrial cardiomyocytes with/without CD98 neutralized antibodies. Telemetry electrocardiographic recording, Masson's trichrome staining and immunohistochemistry staining of atrium were obtained from mice having received tail-vein injections with Gal-3. RESULTS Gal-3-treated HL-1 myocytes had a shorter action potential duration, smaller L-type calcium current, increased sarcoplasmic reticulum (SR) calcium content, Na+ /Ca2+ exchanger (NCX) current, transient outward potassium current, and ultrarapid delayed rectifier potassium current than control cells had. Gal-3-treated HL-1 myocytes had greater levels of SR Ca2+ ATPase, NCX, Nav1.5, and NLR family pyrin domain containing 3 (NLRP3) expression and increased calcium/calmodulin-dependent protein kinase II (CaMKII), ryanodine receptor 2 (RyR2), and nuclear factor kappa B (NF-κB) phosphorylation than control cells had. Gal-3-mediated activation of CaMKII/RyR2 pathway was diminished in the cotreatment of anti-CD98 antibodies. Mice that were injected with Gal-3 had more atrial ectopic beats, increased atrial fibrosis, and activated NF-κB/NLRP3 signalling than did control mice (nonspecific immunoglobulin) or mice treated with Gal-3 and anti-CD98 antibodies. CONCLUSION Gal-3 recombinant protein administration increases atrial fibrosis and arrhythmogenesis through CD98 signalling. Targeting Gal-3/CD98 axis might be a novel therapeutic strategy for patients with AF and high Gal-3 levels.
Collapse
Affiliation(s)
- Wan‐Li Cheng
- Division of Cardiovascular Surgery Department of Surgery Wan Fang Hospital Taipei Medical University Taipei Taiwan
- Division of Cardiovascular Surgery Department of Surgery School of Medicine College of Medicine Taipei Medical University Taipei Taiwan
- Cardiovascular Research Center Wan Fang Hospital Taipei Medical University Taipei Taiwan
| | - Yao‐Chang Chen
- Department of Biomedical Engineering National Defense Medical Center Taipei Taiwan
| | - Shao‐Jung Li
- Division of Cardiovascular Surgery Department of Surgery Wan Fang Hospital Taipei Medical University Taipei Taiwan
- Division of Cardiovascular Surgery Department of Surgery School of Medicine College of Medicine Taipei Medical University Taipei Taiwan
- Cardiovascular Research Center Wan Fang Hospital Taipei Medical University Taipei Taiwan
| | - Ting‐I Lee
- Division of Endocrinology and Metabolism Department of Internal Medicine School of Medicine College of Medicine Taipei Medical University Taipei Taiwan
- Division of Endocrinology and Metabolism Department of Internal Medicine Wan Fang Hospital Taipei Medical University Taipei Taiwan
- Department of General Medicine School of Medicine College of Medicine Taipei Medical University Taipei Taiwan
| | - Ting‐Wei Lee
- Division of Endocrinology and Metabolism Department of Internal Medicine School of Medicine College of Medicine Taipei Medical University Taipei Taiwan
- Division of Endocrinology and Metabolism Department of Internal Medicine Wan Fang Hospital Taipei Medical University Taipei Taiwan
| | - Satoshi Higa
- Cardiac Electrophysiology and Pacing Laboratory Division of Cardiovascular Medicine Makiminato Central Hospital Urasoe Japan
| | - Cheng‐Chih Chung
- Division of Cardiology Department of Internal Medicine School of Medicine College of Medicine Taipei Medical University Taipei Taiwan
- Division of Cardiovascular Medicine Department of Internal Medicine Wan Fang Hospital Taipei Medical University Taipei Taiwan
| | - Yu‐Hsun Kao
- Graduate Institute of Clinical Medicine College of Medicine Taipei Medical University Taipei Taiwan
- Department of Medical Education and Research Wan Fang Hospital Taipei Medical University Taipei Taiwan
| | - Shih‐Ann Chen
- Heart Rhythm Center Division of Cardiology Department of Medicine Taipei Veterans General Hospital Taipei Taiwan
- Cardiovascular Center Taichung Veterans General Hospital Taichung Taiwan
| | - Yi‐Jen Chen
- Cardiovascular Research Center Wan Fang Hospital Taipei Medical University Taipei Taiwan
- Division of Cardiovascular Medicine Department of Internal Medicine Wan Fang Hospital Taipei Medical University Taipei Taiwan
- Graduate Institute of Clinical Medicine College of Medicine Taipei Medical University Taipei Taiwan
| |
Collapse
|
6
|
Shaker ME, Hamed MF, Shaaban AA. Digoxin mitigates diethylnitrosamine-induced acute liver injury in mice via limiting production of inflammatory mediators. Saudi Pharm J 2022; 30:291-299. [PMID: 35498227 PMCID: PMC9051977 DOI: 10.1016/j.jsps.2022.01.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 01/12/2022] [Indexed: 01/21/2023] Open
Abstract
The cardiotonic digoxin has been recently shown to possess an anti-inflammatory potential in numerous metabolic and inflammatory disorders. However, data about digoxin’s impact in the setting of acute liver injury and sterile inflammation are still limited. Here, we investigated the potential effect of digoxin pretreatments (0.25 and 0.5 mg/kg, oral) on the severity of acute hepatotoxicity in mice challenged with a single dose of diethylnitrosamine (DN; 150 mg/kg, intraperitoneal) for 24 h. Our results indicated that digoxin pretreatments dose-dependently mitigated DN-induced rise of hepatocellular injury parameters and necroinflammation scores. Digoxin, particularly at dose of 0.5 mg/kg, boosted the number of PCNA positive hepatocytes, leading to improvement of the reparative potential in hepatocytes of DN-intoxicated livers. Digoxin’s ameliorative effect on DN-hepatotoxicity coincided with (i) lowering the increased hepatic production and release of the proinflammatory mediators IL-17A, IL-1β and TNF-α, and (ii) impeding the attraction and infiltration of monocytes to the liver, as denoted by decreasing serum MCP-1 and F4/80 immunohistochemical expression. These effects were attributed to reducing DN-induced activation of NF-κB and overexpression of CD98 in the liver. Meanwhile, DN elicited a decline in the hepatic production and release of the anti-inflammatory cytokines IL-22 and IL-6, which was intensified by digoxin, especially at a dose 0.5 mg/kg. In conclusion, digoxin conferred liver protection against DN-insult by impairing the overproduction of proinflammatory cytokines and infiltration of inflammatory cells to the liver.
Collapse
Affiliation(s)
- Mohamed E. Shaker
- Pharmacology Department, College of Pharmacy, Jouf University, Sakaka 72341, Aljouf, Saudi Arabia
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
- Corresponding author at: Pharmacology Department, College of Pharmacy, Jouf University, Sakaka 72341, Aljouf, Saudi Arabia.
| | - Mohamed F. Hamed
- Pathology Department, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Ahmed A. Shaaban
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
- Pharmacology and Biochemistry Department, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa 11152, Egypt
| |
Collapse
|
7
|
CD98-induced CD147 signaling stabilizes the Foxp3 protein to maintain tissue homeostasis. Cell Mol Immunol 2021; 18:2618-2631. [PMID: 34759371 PMCID: PMC8632965 DOI: 10.1038/s41423-021-00785-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 09/27/2021] [Indexed: 12/13/2022] Open
Abstract
Regulatory T cell (Treg) stability is necessary for the proper control of immune activity and tissue homeostasis. However, it remains unclear whether Treg stability must be continually reinforced or is established during development under physiological conditions. Foxp3 has been characterized as a central mediator of the genetic program that governs Treg stability. Here, we demonstrate that to maintain Foxp3 protein expression, Tregs require cell-to-cell contact, which is mediated by the CD147-CD98 interaction. As Tregs are produced, CD147, which is expressed on their surface, is stimulated by CD98, which is widely expressed in the physiological environment. As a result, CD147's intracellular domain binds to CDK2 and retains it near the membrane, leading to Foxp3 dephosphorylation and the prevention of Foxp3 degradation. In addition, the optimal distribution of Foxp3+ Tregs under both pathological and physiological conditions depends on CD98 expression. Thus, our study provides direct evidence that Foxp3-dependent Treg stability is reinforced in the periphery by the interaction between CD147 and CD98 in the surrounding environment. More importantly, Tregs with high CD147 expression effectively inhibit inflammatory responses and maintain Foxp3 stability, which has guiding significance for the application of Tregs in immunotherapy.
Collapse
|
8
|
Kovač Peić A, Šrajer Gajdošik M, Brilliant K, Callanan H, Hixson DC, Begić M, Josić D. Changes in the proteome of extracellular vesicles shed by rat liver after subtoxic exposure to acetaminophen. Electrophoresis 2021; 42:1388-1398. [PMID: 33837589 DOI: 10.1002/elps.202100020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 03/18/2021] [Accepted: 03/20/2021] [Indexed: 01/16/2023]
Abstract
To identify changes in extracellular vesicles (EVs) secreted by the liver following drug-induced liver injury (DILI), rats were treated with a subtoxic dose (500 mg/kg) of the analgesic drug, acetaminophen (APAP). EVs were collected by liver perfusion of sham and APAP-treated rats. Changes in EVs morphology were examined by transmission electron microscopic analysis of negatively stained vesicles. Results from morphometric analysis of EVs revealed striking differences in their size and distribution. Proteome composition of EVs collected by liver perfusion was determined by mass spectrometry using methods of sample preparation that enabled better detection of both highly hydrophobic proteins and proteins with complex post-translational modifications. The collection of EVs after liver perfusion is an approach that enables the isolation of EVs shed not only by isolated hepatocytes, but also by the entire complement of hepatic cells. EVs derived after DILI had a lower content of alpha-1-macroglobulin, ferritin, and members of cytochrome 450 family. Fibronectin, aminopeptidase N, metalloreductase STEAP4, integrin beta, and members of the annexin family were detected only in APAP-treated samples of EVs. These results show that the present approach can provide valuable insights into the response of the liver following drug-induced liver injury.
Collapse
Affiliation(s)
| | | | - Kate Brilliant
- Proteomics Core, COBRE CCRD, Rhode Island Hospital, Providence, RI, USA
| | - Helen Callanan
- Proteomics Core, COBRE CCRD, Rhode Island Hospital, Providence, RI, USA
| | - Douglas C Hixson
- Proteomics Core, COBRE CCRD, Rhode Island Hospital, Providence, RI, USA.,Warren Alpert Medical School, Brown University, Providence, RI, USA
| | - Marija Begić
- Faculty of Medicine, Juraj Dobrila University of Pula, Pula, Croatia
| | - Djuro Josić
- Proteomics Core, COBRE CCRD, Rhode Island Hospital, Providence, RI, USA.,Warren Alpert Medical School, Brown University, Providence, RI, USA
| |
Collapse
|
9
|
Song H, Canup BSB, Ngo VL, Denning TL, Garg P, Laroui H. Internalization of Garlic-Derived Nanovesicles on Liver Cells is Triggered by Interaction With CD98. ACS OMEGA 2020; 5:23118-23128. [PMID: 32954162 PMCID: PMC7495725 DOI: 10.1021/acsomega.0c02893] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 08/11/2020] [Indexed: 05/20/2023]
Abstract
The mechanism of how plant-derived nanovesicles are uptaken by cells remains unknown. In this study, the garlic-derived nanovesicles (GDVs) were isolated and digested with trypsin to remove all surface proteins. Digested GDVs showed less uptake compared to undigested GDVs, confirming that the surface proteins played a role in the endocytosis. On the cell side (HepG2), interestingly, blocking the CD98 receptors significantly reduced the uptake of GDVs. During the cellular internalization of GDVs, we observed that some surface proteins of GDVs were co-localized with CD98. A total lysate of the GDV surface showed a high presence of a mannose-specific binding protein, II lectin. Blocking GDV II lectin (using mannose preincubation) highly reduced the GDV internalization, which supports that direct interaction between II lectin and CD98 plays an important role in internalization. The GDVs also exhibited in vitro anti-inflammatory effect by downregulating proinflammatory factors on the HepG2 cells. This work contributes to understanding a part of the GDV internalization process and the cellular anti-inflammatory effects of garlic.
Collapse
Affiliation(s)
- Heliang Song
- Department
of Chemistry, Center for Diagnostics and Therapeutics (CDT), Georgia State University, Atlanta, Georgia 30302, United States
| | - Brandon S. B. Canup
- Department
of Chemistry, Center for Diagnostics and Therapeutics (CDT), Georgia State University, Atlanta, Georgia 30302, United States
| | - Vu L. Ngo
- Department
of Biology, Institute for Biomedical Sciences (IBMS), Georgia State University, Atlanta, Georgia 30302, United States
| | - Timothy L. Denning
- Department
of Biology, Institute for Biomedical Sciences (IBMS), Georgia State University, Atlanta, Georgia 30302, United States
| | - Pallavi Garg
- Department
of Biology, Institute for Biomedical Sciences (IBMS), Georgia State University, Atlanta, Georgia 30302, United States
| | - Hamed Laroui
- Department
of Chemistry, Center for Diagnostics and Therapeutics (CDT), Georgia State University, Atlanta, Georgia 30302, United States
| |
Collapse
|