1
|
Gad AI, Ibrahim NF, Almadani N, Mahfouz R, Nofal HA, El-Rafey DS, Ali HT, El-Hawary AT, Sadek AMEM. Therapeutic Effects of Semaglutide on Nonalcoholic Fatty Liver Disease with Type 2 Diabetes Mellitus and Obesity: An Open-Label Controlled Trial. Diseases 2024; 12:186. [PMID: 39195185 DOI: 10.3390/diseases12080186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/11/2024] [Accepted: 08/15/2024] [Indexed: 08/29/2024] Open
Abstract
BACKGROUND GLP-1 receptor agonists (GLP-1 RAs) have been shown to improve glycemic control and insulin sensitivity and reduce body weight in obese patients with type 2 diabetes mellitus (T2D). This trial sought to evaluate the therapeutic effect of oral and subcutaneous semaglutide in NAFLD and its sequelae in obesity and/or T2D. METHODS In an open-labelled intervention study, the sample was 180 patients classified into three parallel groups (1:1:1): group I received oral semaglutide, group II patients received injectable semaglutide, and group III received pioglitazone and/or vitamin E. Patients were evaluated at 6 and 12 months. RESULTS There was a substantial improvement in lipid profile, liver enzymes, and body mass index, especially in group II. As for HDL, only group II showed a consistent increase at both 6 months (51 ± 4.62 mg/dL) and 12 months (50.08 ± 2.45 mg/dL) compared with baseline (45.6 ± 6.37 mg/dL) (p-value < 0.001). Despite the non-significant difference in NAFLD fibrosis score (NFS) (p-value = 0.45 and 0.63), group II had significantly lower scores of the fibrosis-4 score (FIB-4), liver stiffness measurement (LSM), and controlled attenuation parameter (CAP) at 6 and 12 months (p-value < 0.001). Conclusions: Semaglutide improves lipid profile, liver steatosis, and fibrosis parameters and reduces the BMI in T2D and obese patients with NAFLD.
Collapse
Affiliation(s)
- Ahmed I Gad
- Internal Medicine Department, Faculty of Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Nevin F Ibrahim
- Internal Medicine Department, Faculty of Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Noura Almadani
- Community and Psychiatric Mental Health Nursing Department, College of Nursing, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Rasha Mahfouz
- Community and Psychiatric Mental Health Nursing Department, College of Nursing, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Hanaa A Nofal
- Community, Environmental Occupational Medicine Department, Faculty of Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Dina S El-Rafey
- Community, Environmental Occupational Medicine Department, Faculty of Medicine, Zagazig University, Zagazig 44519, Egypt
| | | | - Amr T El-Hawary
- Internal Medicine Department, Faculty of Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Ayman M E M Sadek
- Internal Medicine Department, Faculty of Medicine, Zagazig University, Zagazig 44519, Egypt
| |
Collapse
|
2
|
Kokkorakis M, Muzurović E, Volčanšek Š, Chakhtoura M, Hill MA, Mikhailidis DP, Mantzoros CS. Steatotic Liver Disease: Pathophysiology and Emerging Pharmacotherapies. Pharmacol Rev 2024; 76:454-499. [PMID: 38697855 DOI: 10.1124/pharmrev.123.001087] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 12/22/2023] [Accepted: 01/25/2024] [Indexed: 05/05/2024] Open
Abstract
Steatotic liver disease (SLD) displays a dynamic and complex disease phenotype. Consequently, the metabolic dysfunction-associated steatotic liver disease (MASLD)/metabolic dysfunction-associated steatohepatitis (MASH) therapeutic pipeline is expanding rapidly and in multiple directions. In parallel, noninvasive tools for diagnosing and monitoring responses to therapeutic interventions are being studied, and clinically feasible findings are being explored as primary outcomes in interventional trials. The realization that distinct subgroups exist under the umbrella of SLD should guide more precise and personalized treatment recommendations and facilitate advancements in pharmacotherapeutics. This review summarizes recent updates of pathophysiology-based nomenclature and outlines both effective pharmacotherapeutics and those in the pipeline for MASLD/MASH, detailing their mode of action and the current status of phase 2 and 3 clinical trials. Of the extensive arsenal of pharmacotherapeutics in the MASLD/MASH pipeline, several have been rejected, whereas other, mainly monotherapy options, have shown only marginal benefits and are now being tested as part of combination therapies, yet others are still in development as monotherapies. Although the Food and Drug Administration (FDA) has recently approved resmetirom, additional therapeutic approaches in development will ideally target MASH and fibrosis while improving cardiometabolic risk factors. Due to the urgent need for the development of novel therapeutic strategies and the potential availability of safety and tolerability data, repurposing existing and approved drugs is an appealing option. Finally, it is essential to highlight that SLD and, by extension, MASLD should be recognized and approached as a systemic disease affecting multiple organs, with the vigorous implementation of interdisciplinary and coordinated action plans. SIGNIFICANCE STATEMENT: Steatotic liver disease (SLD), including metabolic dysfunction-associated steatotic liver disease and metabolic dysfunction-associated steatohepatitis, is the most prevalent chronic liver condition, affecting more than one-fourth of the global population. This review aims to provide the most recent information regarding SLD pathophysiology, diagnosis, and management according to the latest advancements in the guidelines and clinical trials. Collectively, it is hoped that the information provided furthers the understanding of the current state of SLD with direct clinical implications and stimulates research initiatives.
Collapse
Affiliation(s)
- Michail Kokkorakis
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts (M.K., C.S.M.); Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands (M.K.); Endocrinology Section, Department of Internal Medicine, Clinical Center of Montenegro, Podgorica, Montenegro (E.M.); Faculty of Medicine, University of Montenegro, Podgorica, Montenegro (E.M.); Department of Endocrinology, Diabetes, and Metabolic Diseases, University Medical Center Ljubljana, Ljubljana, Slovenia (Š.V.); Medical Faculty Ljubljana, Ljubljana, Slovenia (Š.V.); Division of Endocrinology, Department of Internal Medicine, American University of Beirut Medical Center, Beirut, Lebanon (M.C.); Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri (M.A.H.); Department of Medical Pharmacology and Physiology, School of Medicine, University of Missouri, Columbia, Missouri (M.A.H.); Department of Clinical Biochemistry, Royal Free Hospital Campus, University College London Medical School, University College London (UCL), London, United Kingdom (D.P.M.); Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates (D.P.M.); and Boston VA Healthcare System, Harvard Medical School, Boston, Massachusetts (C.S.M.)
| | - Emir Muzurović
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts (M.K., C.S.M.); Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands (M.K.); Endocrinology Section, Department of Internal Medicine, Clinical Center of Montenegro, Podgorica, Montenegro (E.M.); Faculty of Medicine, University of Montenegro, Podgorica, Montenegro (E.M.); Department of Endocrinology, Diabetes, and Metabolic Diseases, University Medical Center Ljubljana, Ljubljana, Slovenia (Š.V.); Medical Faculty Ljubljana, Ljubljana, Slovenia (Š.V.); Division of Endocrinology, Department of Internal Medicine, American University of Beirut Medical Center, Beirut, Lebanon (M.C.); Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri (M.A.H.); Department of Medical Pharmacology and Physiology, School of Medicine, University of Missouri, Columbia, Missouri (M.A.H.); Department of Clinical Biochemistry, Royal Free Hospital Campus, University College London Medical School, University College London (UCL), London, United Kingdom (D.P.M.); Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates (D.P.M.); and Boston VA Healthcare System, Harvard Medical School, Boston, Massachusetts (C.S.M.)
| | - Špela Volčanšek
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts (M.K., C.S.M.); Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands (M.K.); Endocrinology Section, Department of Internal Medicine, Clinical Center of Montenegro, Podgorica, Montenegro (E.M.); Faculty of Medicine, University of Montenegro, Podgorica, Montenegro (E.M.); Department of Endocrinology, Diabetes, and Metabolic Diseases, University Medical Center Ljubljana, Ljubljana, Slovenia (Š.V.); Medical Faculty Ljubljana, Ljubljana, Slovenia (Š.V.); Division of Endocrinology, Department of Internal Medicine, American University of Beirut Medical Center, Beirut, Lebanon (M.C.); Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri (M.A.H.); Department of Medical Pharmacology and Physiology, School of Medicine, University of Missouri, Columbia, Missouri (M.A.H.); Department of Clinical Biochemistry, Royal Free Hospital Campus, University College London Medical School, University College London (UCL), London, United Kingdom (D.P.M.); Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates (D.P.M.); and Boston VA Healthcare System, Harvard Medical School, Boston, Massachusetts (C.S.M.)
| | - Marlene Chakhtoura
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts (M.K., C.S.M.); Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands (M.K.); Endocrinology Section, Department of Internal Medicine, Clinical Center of Montenegro, Podgorica, Montenegro (E.M.); Faculty of Medicine, University of Montenegro, Podgorica, Montenegro (E.M.); Department of Endocrinology, Diabetes, and Metabolic Diseases, University Medical Center Ljubljana, Ljubljana, Slovenia (Š.V.); Medical Faculty Ljubljana, Ljubljana, Slovenia (Š.V.); Division of Endocrinology, Department of Internal Medicine, American University of Beirut Medical Center, Beirut, Lebanon (M.C.); Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri (M.A.H.); Department of Medical Pharmacology and Physiology, School of Medicine, University of Missouri, Columbia, Missouri (M.A.H.); Department of Clinical Biochemistry, Royal Free Hospital Campus, University College London Medical School, University College London (UCL), London, United Kingdom (D.P.M.); Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates (D.P.M.); and Boston VA Healthcare System, Harvard Medical School, Boston, Massachusetts (C.S.M.)
| | - Michael A Hill
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts (M.K., C.S.M.); Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands (M.K.); Endocrinology Section, Department of Internal Medicine, Clinical Center of Montenegro, Podgorica, Montenegro (E.M.); Faculty of Medicine, University of Montenegro, Podgorica, Montenegro (E.M.); Department of Endocrinology, Diabetes, and Metabolic Diseases, University Medical Center Ljubljana, Ljubljana, Slovenia (Š.V.); Medical Faculty Ljubljana, Ljubljana, Slovenia (Š.V.); Division of Endocrinology, Department of Internal Medicine, American University of Beirut Medical Center, Beirut, Lebanon (M.C.); Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri (M.A.H.); Department of Medical Pharmacology and Physiology, School of Medicine, University of Missouri, Columbia, Missouri (M.A.H.); Department of Clinical Biochemistry, Royal Free Hospital Campus, University College London Medical School, University College London (UCL), London, United Kingdom (D.P.M.); Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates (D.P.M.); and Boston VA Healthcare System, Harvard Medical School, Boston, Massachusetts (C.S.M.)
| | - Dimitri P Mikhailidis
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts (M.K., C.S.M.); Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands (M.K.); Endocrinology Section, Department of Internal Medicine, Clinical Center of Montenegro, Podgorica, Montenegro (E.M.); Faculty of Medicine, University of Montenegro, Podgorica, Montenegro (E.M.); Department of Endocrinology, Diabetes, and Metabolic Diseases, University Medical Center Ljubljana, Ljubljana, Slovenia (Š.V.); Medical Faculty Ljubljana, Ljubljana, Slovenia (Š.V.); Division of Endocrinology, Department of Internal Medicine, American University of Beirut Medical Center, Beirut, Lebanon (M.C.); Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri (M.A.H.); Department of Medical Pharmacology and Physiology, School of Medicine, University of Missouri, Columbia, Missouri (M.A.H.); Department of Clinical Biochemistry, Royal Free Hospital Campus, University College London Medical School, University College London (UCL), London, United Kingdom (D.P.M.); Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates (D.P.M.); and Boston VA Healthcare System, Harvard Medical School, Boston, Massachusetts (C.S.M.)
| | - Christos S Mantzoros
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts (M.K., C.S.M.); Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands (M.K.); Endocrinology Section, Department of Internal Medicine, Clinical Center of Montenegro, Podgorica, Montenegro (E.M.); Faculty of Medicine, University of Montenegro, Podgorica, Montenegro (E.M.); Department of Endocrinology, Diabetes, and Metabolic Diseases, University Medical Center Ljubljana, Ljubljana, Slovenia (Š.V.); Medical Faculty Ljubljana, Ljubljana, Slovenia (Š.V.); Division of Endocrinology, Department of Internal Medicine, American University of Beirut Medical Center, Beirut, Lebanon (M.C.); Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri (M.A.H.); Department of Medical Pharmacology and Physiology, School of Medicine, University of Missouri, Columbia, Missouri (M.A.H.); Department of Clinical Biochemistry, Royal Free Hospital Campus, University College London Medical School, University College London (UCL), London, United Kingdom (D.P.M.); Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates (D.P.M.); and Boston VA Healthcare System, Harvard Medical School, Boston, Massachusetts (C.S.M.)
| |
Collapse
|
3
|
Saldarriaga OA, Wanninger TG, Arroyave E, Gosnell J, Krishnan S, Oneka M, Bao D, Millian DE, Kueht ML, Moghe A, Jiao J, Sanchez JI, Spratt H, Beretta L, Rao A, Burks JK, Stevenson HL. Heterogeneity in intrahepatic macrophage populations and druggable target expression in patients with steatotic liver disease-related fibrosis. JHEP Rep 2024; 6:100958. [PMID: 38162144 PMCID: PMC10757256 DOI: 10.1016/j.jhepr.2023.100958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 08/18/2023] [Accepted: 09/25/2023] [Indexed: 01/03/2024] Open
Abstract
Background & Aims Clinical trials for reducing fibrosis in steatotic liver disease (SLD) have targeted macrophages with variable results. We evaluated intrahepatic macrophages in patients with SLD to determine if activity scores or fibrosis stages influenced phenotypes and expression of druggable targets, such as CCR2 and galectin-3. Methods Liver biopsies from controls or patients with minimal or advanced fibrosis were subject to gene expression analysis using nCounter to determine differences in macrophage-related genes (n = 30). To investigate variability among individual patients, we compared additional biopsies by staining them with multiplex antibody panels (CD68/CD14/CD16/CD163/Mac387 or CD163/CCR2/galectin-3/Mac387) followed by spectral imaging and spatial analysis. Algorithms that utilize deep learning/artificial intelligence were applied to create cell cluster plots, phenotype profile maps, and to determine levels of protein expression (n = 34). Results Several genes known to be pro-fibrotic (e.g. CD206, TREM2, CD163, and ARG1) showed either no significant differences or significantly decreased with advanced fibrosis. Although marked variability in gene expression was observed in individual patients with cirrhosis, several druggable targets and their ligands (e.g. CCR2, CCR5, CCL2, CCL5, and LGALS3) were significantly increased when compared to patients with minimal fibrosis. Antibody panels identified populations that were significantly increased (e.g. Mac387+), decreased (e.g. CD14+), or enriched (e.g. interactions of Mac387) in patients that had progression of disease or advanced fibrosis. Despite heterogeneity in patients with SLD, several macrophage phenotypes and druggable targets showed a positive correlation with increasing NAFLD activity scores and fibrosis stages. Conclusions Patients with SLD have markedly varied macrophage- and druggable target-related gene and protein expression in their livers. Several patients had relatively high expression, while others were like controls. Overall, patients with more advanced disease had significantly higher expression of CCR2 and galectin-3 at both the gene and protein levels. Impact and implications Appreciating individual differences within the hepatic microenvironment of patients with SLD may be paramount to developing effective treatments. These results may explain why such a small percentage of patients have responded to macrophage-targeting therapies and provide additional support for precision medicine-guided treatment of chronic liver diseases.
Collapse
Affiliation(s)
- Omar A. Saldarriaga
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, USA
| | - Timothy G. Wanninger
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | - Esteban Arroyave
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, USA
| | - Joseph Gosnell
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, USA
| | - Santhoshi Krishnan
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
- Department of Electrical and Computer Engineering, Rice University, Houston, TX, USA
| | - Morgan Oneka
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - Daniel Bao
- School of Medicine, University of Texas Medical Branch, Galveston, TX, USA
| | - Daniel E. Millian
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, USA
| | - Michael L. Kueht
- Department of Surgery, University of Texas Medical Branch, Galveston, TX, USA
| | - Akshata Moghe
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, TX, USA
| | - Jingjing Jiao
- Department of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jessica I. Sanchez
- Department of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Heidi Spratt
- Department of Biostatistics and Data Science, University of Texas Medical Branch, Galveston, TX, USA
| | - Laura Beretta
- Department of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Arvind Rao
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
- Department of Electrical and Computer Engineering, Rice University, Houston, TX, USA
- Departmen of Radiation Oncology, University of Michigan, Ann Arbor, MI, USA
- Department of Biostatistics, University of Michigan, Ann Arbor, MI, USA
- Department of Biomedical Engineering, Rice University, Ann Arbor, MI, USA
| | - Jared K. Burks
- Department of Leukemia, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | |
Collapse
|