3
|
Candiotti JL, Daveler BJ, Sivakanthan S, Grindle GG, Cooper R, Cooper RA. Curb Negotiation With Dynamic Human-Robotic Wheelchair Collaboration. IEEE TRANSACTIONS ON HUMAN-MACHINE SYSTEMS 2021; 52:149-155. [PMID: 35433138 PMCID: PMC9009297 DOI: 10.1109/thms.2021.3131672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Wheelchair users often face architectural barriers such as curbs, limiting their accessibility, mobility, and participation in their communities. The mobility enhancement robotic (MEBot) wheelchair was developed to navigate over such architectural barriers. Its application allows wheelchair users to negotiate curbs automatically while the user remains in control. The application was optimized from a manual to a semiautomated process based on wheelchair users' feedback. The optimized application was evaluated by experienced wheelchair users who navigated over curbs of different heights. Participants evaluated MEBot in terms of effectiveness, workload demand, and usability. Ten participants successfully ascended and descended curbs of different heights at an average completion time of 55.7 ± 19.5 and 30.3 ± 9.1 s, respectively. MEBot maintained stability during the process, while participants reported low levels of effort, frustration, and overall cognitive demand to operate MEBot. Furthermore, participants were satisfied with the ease of learning and using the MEBot curb negotiation application to overcome the curbs but suggested less wheel adjustment for comfort and a faster pace to overcome curbs during real-world conditions.
Collapse
Affiliation(s)
- Jorge L Candiotti
- Center of Excellence in Wheelchairs and Robotics Engineering, Veterans Affairs Pittsburgh Healthcare Systems and Human Engineering Research Laboratories, Pittsburgh, PA 15206 USA
| | - Brandon J Daveler
- Center of Excellence in Wheelchairs and Robotics Engineering, Veterans Affairs Pittsburgh Healthcare Systems and Human Engineering Research Laboratories, Pittsburgh, PA 15206 USA; School of Health and Rehabilitation Sciences, University of Pittsburgh, Pittsburgh, PA 15260 USA
| | - Sivashankar Sivakanthan
- Center of Excellence in Wheelchairs and Robotics Engineering, Veterans Affairs Pittsburgh Healthcare Systems and Human Engineering Research Laboratories, Pittsburgh, PA 15206 USA; School of Health and Rehabilitation Sciences, University of Pittsburgh, Pittsburgh, PA 15260 USA
| | - Garrett G Grindle
- Center of Excellence in Wheelchairs and Robotics Engineering, Veterans Affairs Pittsburgh Healthcare Systems and Human Engineering Research Laboratories, Pittsburgh, PA 15206 USA; School of Health and Rehabilitation Sciences, University of Pittsburgh, Pittsburgh, PA 15260 USA
| | - Rosemarie Cooper
- Center of Excellence in Wheelchairs and Robotics Engineering, Veterans Affairs Pittsburgh Healthcare Systems and Human Engineering Research Laboratories, Pittsburgh, PA 15206 USA; School of Health and Rehabilitation Sciences, University of Pittsburgh, Pittsburgh, PA 15260 USA
| | - Rory A Cooper
- Center of Excellence in Wheelchairs and Robotics Engineering, Veterans Affairs Pittsburgh Healthcare Systems and Human Engineering Research Laboratories, Pittsburgh, PA 15206 USA; School of Health and Rehabilitation Sciences, University of Pittsburgh, Pittsburgh, PA 15260 USA
| |
Collapse
|
4
|
Afsar MR, Haque MR, Dooley M, Shen X. RailBot: A Novel Assistive Device for Stair Climbing. J Med Device 2021. [DOI: 10.1115/1.4049546] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Abstract
For most older adults, their own homes is the overwhelmingly preferred environment for living and growing older. However, for those living in homes with stairs, the difficulty and risk of injury in stair ascent/descent is a major challenge in their daily life, which may endanger the feasibility of such choice. In this paper, the authors present a novel assistive device, namely RailBot, to help mobility-challenged individuals (including frail older adults) to climb stairs more easily. Unlike the traditional elevators and stair lifts, the RailBot is a highly compact device that can be easily installed in existing stairways, allowing it to benefit a large number of individuals living in homes with stairs. Further, by assisting the users' stair climbing instead of carrying them upstairs, the RailBot enables and encourages the users to maintain and enhance their stair-climbing capabilities, and thus contributes to their long-term physical health. The design details of the RailBot prototype are presented, including the system configuration, the actuation mechanism of the mobile platform, as well as the intuitive control interface for start-stop control and speed regulation. After mounting the prototype in a real-world use environment, a small-scale human study was conducted, with the results clearly demonstrating the effectiveness of the RailBot assistance through the significant reduction of lower-limb muscle activities.
Collapse
Affiliation(s)
- Md Rayhan Afsar
- Department of Mechanical Engineering, The University of Alabama, Tuscaloosa, AL 35487
| | - Md Rejwanul Haque
- Department of Mechanical Engineering, The University of Alabama, Tuscaloosa, AL 35487
| | - Mason Dooley
- Department of Mechanical Engineering, The University of Alabama, Tuscaloosa, AL 35487
| | - Xiangrong Shen
- Department of Mechanical Engineering, The University of Alabama, Tuscaloosa, AL 35487
| |
Collapse
|
6
|
Candiotti JL, Kamaraj DC, Daveler B, Chung CS, Grindle GG, Cooper R, Cooper RA. Usability Evaluation of a Novel Robotic Power Wheelchair for Indoor and Outdoor Navigation. Arch Phys Med Rehabil 2019; 100:627-637. [PMID: 30148995 PMCID: PMC10041662 DOI: 10.1016/j.apmr.2018.07.432] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 07/09/2018] [Accepted: 07/17/2018] [Indexed: 01/05/2023]
Abstract
OBJECTIVE To compare the Mobility Enhancement roBotic (MEBot) wheelchair's capabilities with commercial electric-powered wheelchairs (EPWs) by performing a systematic usability evaluation. DESIGN Usability in effectiveness, efficacy, and satisfaction was evaluated using quantitative measures. A semistructured interview was employed to gather feedback about the users' interaction with MEBot. SETTING Laboratory testing of EPW driving performance with 2 devices in a controlled setting simulating common EPW driving tasks. PARTICIPANTS A convenience sample of expert EPW users (N=12; 9 men, 3 women) with an average age of 54.7±10.9 years and 16.3± 8.1 years of EPW driving experience. INTERVENTIONS Not applicable. MAIN OUTCOME MEASURES Powered mobility clinical driving assessment (PMCDA), Satisfaction Questionnaire, National Aeronautics and Space Administration's Task Load Index. RESULTS Participants were able to perform significantly higher number of tasks (P=.004), with significantly higher scores in both the adequacy-efficacy (P=.005) and the safety (P=.005) domains of the PMCDA while using MEBot over curbs and cross-slopes. However, participants reported significantly higher mental demand (P=.005) while using MEBot to navigate curbs and cross-slopes due to MEBot's complexity to perform its mobility applications which increased user's cognitive demands. CONCLUSIONS Overall, this usability evaluation demonstrated that MEBot is a promising EPW device to use indoors and outdoors with architectural barriers such as curbs and cross-slopes. Current design limitations were highlighted with recommendations for further improvement.
Collapse
Affiliation(s)
- Jorge L Candiotti
- Center of Excellence in Wheelchairs and Associated Rehabilitation Engineering, Veterans Affairs Pittsburgh Healthcare System and Human Engineering Research Laboratories, Pittsburgh, PA; Department of Rehabilitation Sciences and Technology, School of Health and Rehabilitation Sciences, University of Pittsburgh, Pittsburgh, PA
| | - Deepan C Kamaraj
- Center of Excellence in Wheelchairs and Associated Rehabilitation Engineering, Veterans Affairs Pittsburgh Healthcare System and Human Engineering Research Laboratories, Pittsburgh, PA; Department of Rehabilitation Sciences and Technology, School of Health and Rehabilitation Sciences, University of Pittsburgh, Pittsburgh, PA
| | - Brandon Daveler
- Center of Excellence in Wheelchairs and Associated Rehabilitation Engineering, Veterans Affairs Pittsburgh Healthcare System and Human Engineering Research Laboratories, Pittsburgh, PA; Department of Rehabilitation Sciences and Technology, School of Health and Rehabilitation Sciences, University of Pittsburgh, Pittsburgh, PA
| | - Cheng-Shiu Chung
- Center of Excellence in Wheelchairs and Associated Rehabilitation Engineering, Veterans Affairs Pittsburgh Healthcare System and Human Engineering Research Laboratories, Pittsburgh, PA; Department of Rehabilitation Sciences and Technology, School of Health and Rehabilitation Sciences, University of Pittsburgh, Pittsburgh, PA
| | - Garrett G Grindle
- Center of Excellence in Wheelchairs and Associated Rehabilitation Engineering, Veterans Affairs Pittsburgh Healthcare System and Human Engineering Research Laboratories, Pittsburgh, PA; Department of Rehabilitation Sciences and Technology, School of Health and Rehabilitation Sciences, University of Pittsburgh, Pittsburgh, PA
| | - Rosemarie Cooper
- Center of Excellence in Wheelchairs and Associated Rehabilitation Engineering, Veterans Affairs Pittsburgh Healthcare System and Human Engineering Research Laboratories, Pittsburgh, PA; Department of Rehabilitation Sciences and Technology, School of Health and Rehabilitation Sciences, University of Pittsburgh, Pittsburgh, PA
| | - Rory A Cooper
- Center of Excellence in Wheelchairs and Associated Rehabilitation Engineering, Veterans Affairs Pittsburgh Healthcare System and Human Engineering Research Laboratories, Pittsburgh, PA; Department of Rehabilitation Sciences and Technology, School of Health and Rehabilitation Sciences, University of Pittsburgh, Pittsburgh, PA.
| |
Collapse
|
8
|
Sundaram SA, Wang H, Ding D, Cooper RA. Step-Climbing Power Wheelchairs: A Literature Review. Top Spinal Cord Inj Rehabil 2017; 23:98-109. [PMID: 29339886 PMCID: PMC5672886 DOI: 10.1310/sci2302-98] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Background: Power wheelchairs capable of overcoming environmental barriers, such as uneven terrain, curbs, or stairs, have been under development for more than a decade. Method: We conducted a systematic review of the scientific and engineering literature to identify these devices, and we provide brief descriptions of the mechanism and method of operation for each. We also present data comparing their capabilities in terms of step climbing and standard wheelchair functions. Results: We found that all the devices presented allow for traversal of obstacles that cannot be accomplished with traditional power wheelchairs, but the slow speeds and small wheel diameters of some designs make them only moderately effective in the basic area of efficient transport over level ground and the size and configuration of some others limit maneuverability in tight spaces. Conclusion: We propose that safety and performance test methods more comprehensive than the International Organization for Standards (ISO) testing protocols be developed for measuring the capabilities of advanced wheelchairs with step-climbing and other environment-negotiating features to allow comparison of their clinical effectiveness.
Collapse
Affiliation(s)
- S. Andrea Sundaram
- Human Engineering Research Laboratories, VA Pittsburgh Healthcare System, Pittsburgh, Pennsylvania
- Department of Rehabilitation Science and Technology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Hongwu Wang
- Human Engineering Research Laboratories, VA Pittsburgh Healthcare System, Pittsburgh, Pennsylvania
- Department of Rehabilitation Science and Technology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Dan Ding
- Human Engineering Research Laboratories, VA Pittsburgh Healthcare System, Pittsburgh, Pennsylvania
- Department of Rehabilitation Science and Technology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Rory A. Cooper
- Human Engineering Research Laboratories, VA Pittsburgh Healthcare System, Pittsburgh, Pennsylvania
- Department of Rehabilitation Science and Technology, University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
10
|
Laffont I, Jourdan C, Coroian F, Blain H, Carre V, Viollet E, Tavares I, Fattal C, Gelis A, Nouvel F, Bakhti K, Cros V, Patte K, Schifano L, Porte M, Galano E, Dray G, Fouletier M, Rivier F, Morales R, Labauge P, Camu W, Combe B, Morel J, Froger J, Coulet B, Cottalorda J, Kouyoumdjian P, Jonquet O, Landreau L, Bonnin HY, Hantkié O, Nicolas P, Enjalbert M, Leblond C, Soua B, Coignard P, Guiraud D, Azevedo C, Mottet D, Fraisse P, Pastor E, Mercier J, Bourret R, Bousquet J, Pélissier J, Bardy B, Herisson C, Dupeyron A. [Living Lab MACVIA. Disability]. Presse Med 2015; 44 Suppl 1:S60-9. [PMID: 26482491 DOI: 10.1016/j.lpm.2015.07.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Affiliation(s)
- I Laffont
- CHRU de Montpellier, département de médecine physique et de réadaptation, 34090 Montpellier, France; Movement to Health (M2H), Euromov, université de Montpellier, Montpellier, France.
| | - C Jourdan
- CHRU de Montpellier, département de médecine physique et de réadaptation, 34090 Montpellier, France
| | - F Coroian
- CHRU de Montpellier, département de médecine physique et de réadaptation, 34090 Montpellier, France; Movement to Health (M2H), Euromov, université de Montpellier, Montpellier, France
| | - H Blain
- Movement to Health (M2H), Euromov, université de Montpellier, Montpellier, France; CHRU de Montpellier, département de gériatrie, 34090 Montpellier, France
| | - V Carre
- CHRU de Montpellier, département de médecine physique et de réadaptation, 34090 Montpellier, France
| | - E Viollet
- CHU de Nîmes, hôpital Carémeau et du Grau du Roi, département de médecine physique et de réadaptation, 30029 Nîmes, France; CHU Carémeau, CEDMH, 30029 Nîmes, France
| | - I Tavares
- CHRU de Montpellier, département de médecine physique et de réadaptation, 34090 Montpellier, France
| | - C Fattal
- Association APPROCHE, CMRRF de Kerpape, BP 78, 56275 Ploemeur cedex, France
| | - A Gelis
- Centre Mutualiste Propara, 34000 Montpellier, France
| | - F Nouvel
- CHU Carémeau, CEDMH, 30029 Nîmes, France
| | - K Bakhti
- CHRU de Montpellier, département de médecine physique et de réadaptation, 34090 Montpellier, France; Movement to Health (M2H), Euromov, université de Montpellier, Montpellier, France
| | - V Cros
- CHRU de Montpellier, département de médecine physique et de réadaptation, 34090 Montpellier, France
| | - K Patte
- Institut Marin Saint-Pierre, 34250 Palavas les Flots, France
| | - L Schifano
- Institut Marin Saint-Pierre, 34250 Palavas les Flots, France
| | - M Porte
- CHU de Nîmes, hôpital Carémeau et du Grau du Roi, département de médecine physique et de réadaptation, 30029 Nîmes, France
| | - E Galano
- CHU de Nîmes, hôpital Carémeau et du Grau du Roi, département de médecine physique et de réadaptation, 30029 Nîmes, France
| | - G Dray
- École des Mines d'Alès, 30100 Alès, France
| | | | - F Rivier
- CHU de Montpellier, centre de référence Grand Sud des maladies neuromusculaires, département de neuropédiatrie, 34090 Montpellier, France
| | - R Morales
- CHRU de Montpellier, département de neurologie, 34090 Montpellier, France
| | - P Labauge
- CHRU de Montpellier, département de neurologie, 34090 Montpellier, France
| | - W Camu
- CHRU de Montpellier, département de neurologie, 34090 Montpellier, France
| | - B Combe
- CHRU de Montpellier, département de rhumatologie, 34090 Montpellier, France
| | - J Morel
- CHRU de Montpellier, département de rhumatologie, 34090 Montpellier, France
| | - J Froger
- Movement to Health (M2H), Euromov, université de Montpellier, Montpellier, France; CHU de Nîmes, hôpital Carémeau et du Grau du Roi, département de médecine physique et de réadaptation, 30029 Nîmes, France
| | - B Coulet
- CHRU de Montpellier, département de chirurgie orthopédique, 34090 Montpellier, France
| | - J Cottalorda
- CHRU de Montpellier, département de chirurgie orthopédique et plastique infantile, 34090 Montpellier, France
| | - P Kouyoumdjian
- CHU Carémeau, département de chirurgie orthopédique, 30029 Nîmes, France
| | - O Jonquet
- CHRU de Montpellier, département de réanimation, 34090 Montpellier, France
| | - L Landreau
- CHRU de Montpellier, département de réanimation, 34090 Montpellier, France
| | - H-Y Bonnin
- Movement to Health (M2H), Euromov, université de Montpellier, Montpellier, France; CHU de Nîmes, hôpital Carémeau et du Grau du Roi, département de médecine physique et de réadaptation, 30029 Nîmes, France
| | - O Hantkié
- Centre Bourgès, groupe Oc Santé, 34173 Castelneau-le-lez cedex, France
| | - P Nicolas
- Centre Bourgès, groupe Oc Santé, 34173 Castelneau-le-lez cedex, France
| | - M Enjalbert
- Centre Bouffard-Vercelli, 66290 Cerbère, France; Association APPROCHE, CMRRF de Kerpape, BP 78, 56275 Ploemeur cedex, France
| | - C Leblond
- Centre Bouffard-Vercelli, 66290 Cerbère, France
| | - B Soua
- Association ADAGES, Les Fontaines d'Ô, 34000 Montpellier, France
| | - P Coignard
- Association APPROCHE, CMRRF de Kerpape, BP 78, 56275 Ploemeur cedex, France
| | - D Guiraud
- Université de Montpellier, laboratoire d'informatique, de robotique et de microélectronique de Montpellier, 34090 Montpellier, France; Institut national de recherche en informatique et en automatique, LIRMM, université de Montpellier, 34090 Montpellier, France
| | - C Azevedo
- Université de Montpellier, laboratoire d'informatique, de robotique et de microélectronique de Montpellier, 34090 Montpellier, France; Institut national de recherche en informatique et en automatique, LIRMM, université de Montpellier, 34090 Montpellier, France
| | - D Mottet
- Movement to Health (M2H), Euromov, université de Montpellier, Montpellier, France
| | - P Fraisse
- Université de Montpellier, laboratoire d'informatique, de robotique et de microélectronique de Montpellier, 34090 Montpellier, France
| | - E Pastor
- CCAS de Lattes, 34970 Lattes, France
| | - J Mercier
- CHRU de Montpellier, U1046 Inserm, université Montpellier 1, 34090 Montpellier, France
| | - R Bourret
- CHRU de Montpellier, Direction générale, 34090 Montpellier, France
| | | | - J Pélissier
- Movement to Health (M2H), Euromov, université de Montpellier, Montpellier, France; CHU de Nîmes, hôpital Carémeau et du Grau du Roi, département de médecine physique et de réadaptation, 30029 Nîmes, France
| | - B Bardy
- Movement to Health (M2H), Euromov, université de Montpellier, Montpellier, France
| | - C Herisson
- CHRU de Montpellier, département de médecine physique et de réadaptation, 34090 Montpellier, France; Movement to Health (M2H), Euromov, université de Montpellier, Montpellier, France
| | - A Dupeyron
- Movement to Health (M2H), Euromov, université de Montpellier, Montpellier, France; CHU de Nîmes, hôpital Carémeau et du Grau du Roi, département de médecine physique et de réadaptation, 30029 Nîmes, France; CHU Carémeau, CEDMH, 30029 Nîmes, France
| |
Collapse
|
12
|
Wang H, Candiotti J, Shino M, Chung CS, Grindle GG, Ding D, Cooper RA. Development of an advanced mobile base for personal mobility and manipulation appliance generation II robotic wheelchair. J Spinal Cord Med 2013; 36:333-46. [PMID: 23820149 PMCID: PMC3758530 DOI: 10.1179/2045772313y.0000000094] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
BACKGROUND This paper describes the development of a mobile base for the Personal Mobility and Manipulation Appliance Generation II (PerMMA Gen II robotic wheelchair), an obstacle-climbing wheelchair able to move in structured and unstructured environments, and to climb over curbs as high as 8 inches. The mechanical, electrical, and software systems of the mobile base are presented in detail, and similar devices such as the iBOT mobility system, TopChair, and 6X6 Explorer are described. FINDINGS The mobile base of PerMMA Gen II has two operating modes: "advanced driving mode" on flat and uneven terrain, and "automatic climbing mode" during stair climbing. The different operating modes are triggered either by local and dynamic conditions or by external commands from users. A step-climbing sequence, up to 0.2 m, is under development and to be evaluated via simulation. The mathematical model of the mobile base is introduced. A feedback and a feed-forward controller have been developed to maintain the posture of the passenger when driving over uneven surfaces or slopes. The effectiveness of the controller has been evaluated by simulation using the open dynamics engine tool. CONCLUSION Future work for PerMMA Gen II mobile base is implementation of the simulation and control on a real system and evaluation of the system via further experimental tests.
Collapse
Affiliation(s)
- Hongwu Wang
- University of Pittsburgh, Pittsburgh, PA 15206, USA.
| | - Jorge Candiotti
- Department of Rehabilitation Science and Technology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Motoki Shino
- Department of Mechanical Engineering, University of Tokyo, Tokyo, Japan
| | - Cheng-Shiu Chung
- Department of Rehabilitation Science and Technology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Garrett G. Grindle
- Department of Rehabilitation Science and Technology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Dan Ding
- Department of Rehabilitation Science and Technology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Rory A. Cooper
- Department of Rehabilitation Science and Technology, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|