1
|
Wan C, Huang S, Wang X, Ge P, Wang Z, Zhang Y, Li Y, Su B. Effects of robot-assisted gait training on cardiopulmonary function and lower extremity strength in individuals with spinal cord injury: A systematic review and meta-analysis. J Spinal Cord Med 2024; 47:6-14. [PMID: 36972206 PMCID: PMC10795646 DOI: 10.1080/10790268.2023.2188392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/18/2023] Open
Abstract
CONTEXT Robot-assisted gait training (RAGT) has been increasingly adopted in many rehabilitation facilities for walking function and activity in individuals with spinal cord injury (SCI). However, the effectiveness of RAGT on lower extremity strength and cardiopulmonary function, especially static pulmonary function, have not been clearly outlined. OBJECTIVE Determine the effect of RAGT on cardiopulmonary function and lower extremity strength in SCI survivors. METHODS Eight databases were systematically searched for randomized controlled trials comparing RAGT with conventional physical therapy or other non-robotic therapies for survivors with SCI. Study selection required lower extremity strength decline after SCI at baseline. The overall effects of RAGT were calculated using a meta-analytic method. Begg's test was used to assess the risk of publication bias. RESULTS The pooled analysis demonstrated that RAGT may have a positive effect for individuals with SCI on lower extremity strength enhancing (n = 408; standardized mean difference [SMD] = 0.81; 95% confidence interval [CI] = 0.14-1.48) and cardiopulmonary endurance(n = 104; standardized mean difference [SMD] = 2.24; 95% confidence interval [CI] = 0.28-4.19). However, no significant effect was established on static pulmonary function. No publication bias was observed according to the Begg's test. CONCLUSIONS RAGT may be a useful technique for improving lower limb strength and cardiovascular endurance in SCI survivors. The usefulness of RAGT in enhancing static pulmonary function was not demonstrated by the study. However, these results should be interpreted with caution, given the low number of selected studies and subjects. Clinical studies with large sample sizes will be necessary in the future.
Collapse
Affiliation(s)
- Chunli Wan
- Department of rehabilitation medicine, The First Affiliated Hospital of Nanjing Medical University/School of Rehabilitation Medicine, Nanjing Medical University, Nanjing, Jiangsu, 210029, China
| | - Sisi Huang
- Department of rehabilitation medicine, The First Affiliated Hospital of Nanjing Medical University/School of Rehabilitation Medicine, Nanjing Medical University, Nanjing, Jiangsu, 210029, China
| | - Xue Wang
- Department of rehabilitation medicine, The First Affiliated Hospital of Nanjing Medical University/School of Rehabilitation Medicine, Nanjing Medical University, Nanjing, Jiangsu, 210029, China
| | - Panli Ge
- Department of rehabilitation medicine, The First Affiliated Hospital of Nanjing Medical University/School of Rehabilitation Medicine, Nanjing Medical University, Nanjing, Jiangsu, 210029, China
| | - Zhixiang Wang
- Department of rehabilitation medicine, The First Affiliated Hospital of Nanjing Medical University/School of Rehabilitation Medicine, Nanjing Medical University, Nanjing, Jiangsu, 210029, China
| | - Yuting Zhang
- Department of rehabilitation medicine, The First Affiliated Hospital of Nanjing Medical University/School of Rehabilitation Medicine, Nanjing Medical University, Nanjing, Jiangsu, 210029, China
| | - Yongqiang Li
- Department of rehabilitation medicine, The First Affiliated Hospital of Nanjing Medical University/School of Rehabilitation Medicine, Nanjing Medical University, Nanjing, Jiangsu, 210029, China
| | - Bin Su
- Wuxi Central Rehabilitation Hospital/Wuxi Mental Health Center, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, 214151, China
| |
Collapse
|
2
|
Li R, Ding M, Wang J, Pan H, Sun X, Huang L, Fu C, He C, Wei Q. Effectiveness of robotic-assisted gait training on cardiopulmonary fitness and exercise capacity for incomplete spinal cord injury: A systematic review and meta-analysis of randomized controlled trials. Clin Rehabil 2023; 37:312-329. [PMID: 36373899 DOI: 10.1177/02692155221133474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE To determine the effects of robotic-assisted gait training on cardiopulmonary fitness and exercise capacity for people with incomplete spinal cord injury. METHODS PubMed, Embase, Web of Science, PEDro, CENTRAL and CINAHL were searched from inception until September 4, 2022. Randomized controlled trials that evaluated the effects of robotic-assisted gait training on cardiopulmonary fitness and exercise capacity for individuals with incomplete spinal cord injury were selected. Mean differences (MD) with 95% confidence interval (CI) were calculated. The methodological quality was evaluated by the Cochrane Risk of Bias 2.0 tool. Subgroup analyses were conducted according to the time since injury. RESULTS In total 19 studies involving 770 patients were eligible for analysis. Individuals with acute incomplete spinal cord injury in robotic-assisted gait training groups showed significantly greater improvements in 6-minute walking test (MD 53.32; 95% CI 33.49 to 73.15; P < 0.001), lower extremity motor scale (MD 5.22; 95% CI 3.63 to 6.80; P < 0.001) and walking index for spinal cord injury II (MD 3.18; 95% CI 1.34 to 5.02; P < 0.001). Robotic-assisted gait training improved peak oxygen consumption to a greater degree for chronic incomplete spinal cord injury patients (MD 4.90; 95% CI 0.96 to 8.84; P = 0.01). CONCLUSION Robot-assisted gait training may be a feasible and effective intervention in terms of cardiopulmonary fitness and exercise capacity for individuals with incomplete spinal cord injury.
Collapse
Affiliation(s)
- Ran Li
- Department of Rehabilitation Medicine, West China Hospital, 12530Sichuan University, Chengdu, Sichuan, People's Republic of China.,Key Laboratory of Rehabilitation Medicine in Sichuan Province, Chengdu, Sichuan, People's Republic of China
| | - Mingfu Ding
- Department of Rehabilitation Medicine, West China Hospital, 12530Sichuan University, Chengdu, Sichuan, People's Republic of China.,Key Laboratory of Rehabilitation Medicine in Sichuan Province, Chengdu, Sichuan, People's Republic of China
| | - Jiao Wang
- Department of Rehabilitation Medicine, West China Hospital, 12530Sichuan University, Chengdu, Sichuan, People's Republic of China.,Key Laboratory of Rehabilitation Medicine in Sichuan Province, Chengdu, Sichuan, People's Republic of China
| | - Hongxia Pan
- Department of Rehabilitation Medicine, West China Hospital, 12530Sichuan University, Chengdu, Sichuan, People's Republic of China.,Key Laboratory of Rehabilitation Medicine in Sichuan Province, Chengdu, Sichuan, People's Republic of China
| | - Xin Sun
- Department of Rehabilitation Medicine, West China Hospital, 12530Sichuan University, Chengdu, Sichuan, People's Republic of China.,Key Laboratory of Rehabilitation Medicine in Sichuan Province, Chengdu, Sichuan, People's Republic of China
| | - Liyi Huang
- Department of Rehabilitation Medicine, West China Hospital, 12530Sichuan University, Chengdu, Sichuan, People's Republic of China.,Key Laboratory of Rehabilitation Medicine in Sichuan Province, Chengdu, Sichuan, People's Republic of China
| | - Chenying Fu
- National Clinical Research Center for Geriatrics, 34753West China Hospital, Sichuan University, Chengdu, People's Republic of China.,Aging and Geriatric Mechanism Laboratory, West China Hospital, 12530Sichuan University, Chengdu, People's Republic of China
| | - Chengqi He
- Department of Rehabilitation Medicine, West China Hospital, 12530Sichuan University, Chengdu, Sichuan, People's Republic of China.,Key Laboratory of Rehabilitation Medicine in Sichuan Province, Chengdu, Sichuan, People's Republic of China
| | - Quan Wei
- Department of Rehabilitation Medicine, West China Hospital, 12530Sichuan University, Chengdu, Sichuan, People's Republic of China.,Key Laboratory of Rehabilitation Medicine in Sichuan Province, Chengdu, Sichuan, People's Republic of China
| |
Collapse
|
3
|
Liu B, Yu J, Fan Q, Hao F, Wu J, Xiao W, Yu F, Ren Z. The effect of exercise on walking economy in patients with chronic neurological conditions: A systematic review and meta-analysis. Front Neurol 2023; 13:1074521. [PMID: 36712424 PMCID: PMC9874330 DOI: 10.3389/fneur.2022.1074521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 12/15/2022] [Indexed: 01/13/2023] Open
Abstract
Introduction To investigate the effect of exercise on the walking economy (WE) of patients with chronic neurological conditions (CNCs) and to determine the type of physical activity that best improves the WE of patients with CNCs. Methods Four electronic databases were searched until December 2022 (Web of Science, PubMed, Cochrane, and CINAHL). Studies were screened using the following inclusion criteria: 1. randomized controlled or non-randomized controlled trials; 2. exercise interventions >4 weeks in duration; 3. patients aged ≥18 years with a diagnosis of CNCs. 4. walking economy of patients measured before and after the intervention. The PEDro scale was used to assess the methodological quality of the included studies. Results and discussion Twenty-two studies met the inclusion criteria. Meta-analysis results showed that exercise significantly improved WE (g = -0.352, 95% CI, -0.625 to -0.078, P = 0.012). Subgroup analysis revealed that patients who received exercise showed better WE compared with those who underwent no control intervention (g = -0.474, 95% CI, -0.636 to -0.311, P < 0.001). However, exercise therapy did not show a significant improvement of WE compared with control groups (g = -0.192, 95% CI, -0.451 to 0.067, P = 0.146). In addition, we found that endurance combined with resistance, high-intensity intermittent, and other training modalities resulted in better WE compared with the pre-intervention. Of these, interval training has the greatest effect on improving WE. In conclusion, exercise can improve WE in patients with CNCs. More randomized controlled trials are necessary for the future. Systematic review registration https://www.crd.york.ac.uk/prospero/display_record.php?ID=CRD42022361455, identifier: CRD42022361455.
Collapse
Affiliation(s)
- Bowen Liu
- College of Physical Education, Shenzhen University, Shenzhen, China
| | - Jingxuan Yu
- College of Physical Education, Shenzhen University, Shenzhen, China
| | - Qiwei Fan
- Department of Sports Medicine and Rehabilitation, Peking University Shenzhen Hospital, Shenzhen, China
| | - Fengwei Hao
- School of Physical Education and Sports Exercise, South China Normal University, Guangzhou, China
| | - Jinlong Wu
- College of Physical Education, Southwest University, Chongqing, China
| | - Wen Xiao
- College of Physical Education, Shenzhen University, Shenzhen, China
| | - Fengyu Yu
- College of Physical Education, Shenzhen University, Shenzhen, China
| | - Zhanbing Ren
- College of Physical Education, Shenzhen University, Shenzhen, China,*Correspondence: Zhanbing Ren ✉
| |
Collapse
|
4
|
Evans NH, Field-Fote EC. A Pilot Study of Intensive Locomotor-Related Skill Training and Transcranial Direct Current Stimulation in Chronic Spinal Cord Injury. J Neurol Phys Ther 2022; 46:281-292. [PMID: 35544283 DOI: 10.1097/npt.0000000000000403] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BACKGROUND AND PURPOSE Improved walking function is a priority among persons with motor-incomplete spinal cord injury (PwMISCI). Accessibility and cost limit long-term participation in locomotor training offered in specialized centers. Intensive motor training that facilitates neuroplastic mechanisms that support skill learning and can be implemented in the home/community may be advantageous for promoting long-term restoration of walking function. Additionally, increasing corticospinal drive via transcranial direct current stimulation (tDCS) may enhance training effects. In this pilot study, we investigated whether a moderate-intensity motor skill training (MST) circuit improved walking function in PwMISCI and whether augmenting training with tDCS influenced outcomes. METHODS Twenty-five adults (chronic, motor-incomplete spinal cord injury) were randomized to a 3-day intervention of a locomotor-related MST circuit and concurrent application of sham tDCS (MST+tDCS sham ) or active tDCS (MST+tDCS). The primary outcome was overground walking speed. Secondary outcomes included walking distance, cadence, stride length, and step symmetry index (SI). RESULTS Analyses revealed significant effects of the MST circuit on walking speed, walking distance, cadence, and bilateral stride length but no effect on interlimb SI. No significant between-groups differences were observed. Post hoc analyses revealed within-groups change in walking speed (ΔM = 0.13 m/s, SD = 0.13) that app-roached the minimally clinically important difference of 0.15 m/s. DISCUSSION AND CONCLUSIONS Brief, intensive MST involving locomotor-related activities significantly increased walking speed, walking distance, and spatiotemporal measures in PwMISCI. Significant additive effects of tDCS were not observed; however, participation in only 3 days of MST was associated with changes in walking speed that were comparable to longer locomotor training studies.Video Abstract available for more insights from the authors (see the Video, Supplemental Digital Content 1, available at: http://links.lww.com/JNPT/A386 ).
Collapse
Affiliation(s)
- Nicholas H Evans
- Crawford Research Institute, Shepherd Center, Atlanta, Georgia (N.H.E., E.F.F.); Program in Applied Physiology, Georgia Institute of Technology, Atlanta (N.H.E., E.F.F.); and Department of Rehabilitation Medicine, Emory University School of Medicine, Atlanta, Georgia (E.F.F.)
| | | |
Collapse
|
5
|
Selph SS, Skelly AC, Wasson N, Dettori JR, Brodt ED, Ensrud E, Elliot D, Dissinger KM, McDonagh M. Physical Activity and the Health of Wheelchair Users: A Systematic Review in Multiple Sclerosis, Cerebral Palsy, and Spinal Cord Injury. Arch Phys Med Rehabil 2021; 102:2464-2481.e33. [PMID: 34653376 DOI: 10.1016/j.apmr.2021.10.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 09/10/2021] [Accepted: 10/02/2021] [Indexed: 10/20/2022]
Abstract
OBJECTIVE To understand the benefits and harms of physical activity in people who may require a wheelchair with a focus on people with multiple sclerosis (MS), cerebral palsy (CP), and spinal cord injury (SCI). DATA SOURCES Searches were conducted in MEDLINE, Cumulative Index to Nursing and Allied Health, PsycINFO, Cochrane CENTRAL, and Embase (January 2008 through November 2020). STUDY SELECTION Randomized controlled trials, nonrandomized trials, and cohort studies of observed physical activity (at least 10 sessions on 10 days) in participants with MS, CP, and SCI. DATA EXTRACTION We conducted dual data abstraction, quality assessment, and strength of evidence. Measures of physical functioning are reported individually where sufficient data exist and grouped as "function" where data are scant. DATA SYNTHESIS No studies provided evidence for prevention of cardiovascular conditions, development of diabetes, or obesity. Among 168 included studies, 44% enrolled participants with MS (38% CP, 18% SCI). Studies in MS found walking ability may be improved with treadmill training and multimodal exercises; function may be improved with treadmill, balance exercises, and motion gaming; balance is likely improved with balance exercises and may be improved with aquatic exercises, robot-assisted gait training (RAGT), motion gaming, and multimodal exercises; activities of daily living (ADL), female sexual function, and spasticity may be improved with aquatic therapy; sleep may be improved with aerobic exercises and aerobic fitness with multimodal exercises. In CP, balance may be improved with hippotherapy and motion gaming; function may be improved with cycling, treadmill, and hippotherapy. In SCI, ADL may be improved with RAGT. CONCLUSIONS Depending on population and type of exercise, physical activity was associated with improvements in walking, function, balance, depression, sleep, ADL, spasticity, female sexual function, and aerobic capacity. Few harms of physical activity were reported in studies. Future studies are needed to address evidence gaps and to confirm findings.
Collapse
Affiliation(s)
- Shelley S Selph
- Pacific Northwest Evidence-based Practice Center, Department of Medical Informatics and Clinical Epidemiology, Oregon Health and Science University, Portland, Oregon.
| | | | - Ngoc Wasson
- Pacific Northwest Evidence-based Practice Center, Department of Medical Informatics and Clinical Epidemiology, Oregon Health and Science University, Portland, Oregon
| | | | | | - Erik Ensrud
- Department of Medicine, Oregon Health and Science University, Portland, Oregon
| | - Diane Elliot
- Department of Medicine, Oregon Health and Science University, Portland, Oregon
| | - Kristin M Dissinger
- Department of Medicine, Oregon Health and Science University, Portland, Oregon
| | - Marian McDonagh
- Pacific Northwest Evidence-based Practice Center, Department of Medical Informatics and Clinical Epidemiology, Oregon Health and Science University, Portland, Oregon
| |
Collapse
|
6
|
Hicks AL. Locomotor training in people with spinal cord injury: is this exercise? Spinal Cord 2020; 59:9-16. [PMID: 32581307 DOI: 10.1038/s41393-020-0502-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 06/02/2020] [Accepted: 06/05/2020] [Indexed: 11/09/2022]
Abstract
Locomotor training holds tremendous appeal to people with spinal cord injury who are wheelchair dependent, as the reacquisition of gait remains one of the most coveted goals in this population. For the last few decades this type of training has remained primarily in the clinical environment, as it requires the use of expensive treadmills with bodyweight support or complex overhead suspension tracks to facilitate overground walking. The development of powered exoskeletons has taken locomotor training out of the clinic, both improving accessibility and providing a potential option for community ambulation in people with lower limb paralysis. A question that has yet to be answered, however, is whether or not locomotor training offers a sufficiently intense stimulus to induce improvements in fitness or health. As inactivity-related secondary health complications are a major source of morbidity and mortality in people with SCI, it would be important to characterize the potential of locomotor training to not only improve functional walking ability, but also improve health-related fitness. This narrative review will summarize the key literature in this area to determine whether locomotor training challenges the cardiovascular, muscular or metabolic systems enough to be considered a viable form of exercise.
Collapse
Affiliation(s)
- Audrey L Hicks
- Department of Kinesiology, McMaster University, Hamilton, ON, Canada.
| |
Collapse
|
7
|
Xi J, Luo X, Wang Y, Li J, Guo L, Wu G, Li Q. Tetrahydrocurcumin protects against spinal cord injury and inhibits the oxidative stress response by regulating FOXO4 in model rats. Exp Ther Med 2019; 18:3681-3687. [PMID: 31602247 DOI: 10.3892/etm.2019.7974] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2017] [Accepted: 04/06/2018] [Indexed: 12/25/2022] Open
Abstract
It has been reported that tetrahydrocurcumin has hypoglycemic, hypolipidemic, anti-metastasis, anticancer and anti-depressant pharmacological effects, and its antioxidative, hypoglycemic and hypolipidemic properties are better than those of curcumin. The present study assessed whether tetrahydrocurcumin exerts a neuroprotective effect against spinal cord injury (SCI) and investigated the underlying mechanisms. In a rat model of SCI, tetrahydrocurcumin enhanced the average Basso-Beattie-Bresnahan scores, inhibited water accumulation in the spinal cord and decreased inflammatory factors. Furthermore, oxidative stress and apoptosis (caspase-3 activity and B-cell lymphoma 2-associated X protein levels) were also suppressed in SCI rats treated with tetrahydrocurcumin. Tetrahydrocurcumin effectively decreased the gene expression of matrix metalloproteinase-3 and -13, as well as cyclooxygenase-2, promoted the phosphorylation of Akt and enhanced the protein expression of forkhead box (FOX)O4 in SCI rats. The present study delineates that tetrahydrocurcumin protects against SCI and inhibits the oxidative stress response by regulating the FOXO4 in SCI model rats.
Collapse
Affiliation(s)
- Jiancheng Xi
- Department of Minimally Invasive Spine Surgery, The 309th Hospital of The People's Liberation Army, Beijing 100091, P.R. China
| | - Xiaobo Luo
- Department of Minimally Invasive Spine Surgery, The 309th Hospital of The People's Liberation Army, Beijing 100091, P.R. China
| | - Yipeng Wang
- Department of Minimally Invasive Spine Surgery, The 309th Hospital of The People's Liberation Army, Beijing 100091, P.R. China
| | - Jinglong Li
- Department of Minimally Invasive Spine Surgery, The 309th Hospital of The People's Liberation Army, Beijing 100091, P.R. China
| | - Lixin Guo
- Department of Minimally Invasive Spine Surgery, The 309th Hospital of The People's Liberation Army, Beijing 100091, P.R. China
| | - Guangseng Wu
- Department of Minimally Invasive Spine Surgery, The 309th Hospital of The People's Liberation Army, Beijing 100091, P.R. China
| | - Qingui Li
- Department of Minimally Invasive Spine Surgery, The 309th Hospital of The People's Liberation Army, Beijing 100091, P.R. China
| |
Collapse
|
8
|
McMillan DW, Maher JL, Jacobs KA, Mendez AJ, Nash MS, Bilzon JLJ. Influence of upper-body continuous, resistance or high-intensity interval training (CRIT) on postprandial responses in persons with spinal cord injury: study protocol for a randomised controlled trial. Trials 2019; 20:497. [PMID: 31409383 PMCID: PMC6693181 DOI: 10.1186/s13063-019-3583-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 07/16/2019] [Indexed: 01/07/2023] Open
Abstract
Background Chronic spinal cord injury (SCI) increases morbidity and mortality associated with cardiometabolic diseases, secondary to increases in central adiposity, hyperlipidaemia and impaired glucose tolerance. While upper-body Moderate Intensity Continuous Training (MICT) improves cardiorespiratory fitness, its effects on cardiometabolic component risks in adults with SCI appear relatively modest. The aim of this study is to assess the acute effects of Continuous Resistance Training (CRT), High Intensity Interval Training (HIIT), MICT and rest (CON) on fasting and postprandial systemic biomarkers and substrate utilisation. Methods Eleven healthy, chronic SCI (> 1 year, ASIA A-C) men will be recruited. Following preliminary testing, each will complete four experimental conditions, where they will report to the laboratory following an ~ 10-h overnight fast. A venous blood sample will be drawn and expired gases collected to estimate resting metabolic rate (RMR). In order to ensure an isocaloric exercise challenge, each will complete CRT first, with the remaining three conditions presented in randomised order: (1) CRT, ~ 45 min of resistance manoeuvres (weight lifting) interspersed with low-resistance, high-speed arm-crank exercise; (2) CON, seated rest; (3) MICT, ~ 45 min constant arm-crank exercise at a resistance equivalent to 30–40% peak power output (PPO) and; (4) HIIT, ~ 35 min arm-crank exercise with the resistance alternating every 2 min between 10% PPO and 70% PPO. After each ~ 45-min condition, participants will ingest a 2510-kJ liquid test meal (35% fat, 50% carbohydrate, 15% protein). Venous blood and expired gas samples will be collected at the end of exercise and at regular intervals for 120 min post meal. Discussion This study should establish the acute effects of different forms of exercise on fasting and postprandial responses in chronic SCI male patients. Measures of glucose clearance, insulin sensitivity, lipid and inflammatory biomarker concentrations will be assessed and changes in whole-body substrate oxidation estimated from expired gases. Trial registration ClinicalTrials.gov, ID: NCT03545867. Retrospectively registered on 1 June 2018. Electronic supplementary material The online version of this article (10.1186/s13063-019-3583-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- David W McMillan
- The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL, USA.,Department of Kinesiology and Sport Sciences, University of Miami, Miami, FL, USA
| | - Jennifer L Maher
- The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL, USA.,Department for Health, University of Bath, Bath, Somerset, UK
| | - Kevin A Jacobs
- Department of Kinesiology and Sport Sciences, University of Miami, Miami, FL, USA
| | - Armando J Mendez
- Division of Endocrinology, Diabetes and Metabolism, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Mark S Nash
- The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL, USA.,Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL, USA.,Department of Physical Medicine and Rehabilitation, University of Miami Miller School of Medicine, Miami, FL, USA
| | - James L J Bilzon
- The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL, USA. .,Department for Health, University of Bath, Bath, Somerset, UK.
| |
Collapse
|
9
|
Cheung EYY, Yu KKK, Kwan RLC, Ng CKM, Chau RMW, Cheing GLY. Effect of EMG-biofeedback robotic-assisted body weight supported treadmill training on walking ability and cardiopulmonary function on people with subacute spinal cord injuries - a randomized controlled trial. BMC Neurol 2019; 19:140. [PMID: 31234791 PMCID: PMC6591819 DOI: 10.1186/s12883-019-1361-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 06/06/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Body weight supported treadmill training (BWSTT) is a frequently used approach for restoring the ability to walk after spinal cord injury (SCI). However, the duration of BWSTT is usually limited by fatigue of the therapists and patients. Robotic-assisted body weight supported treadmill training (RABWSTT) was developed to tackle the aforesaid limitation. Currently, limited randomized controlled trials are available to investigate its effectiveness, especially on cardiopulmonary function. The aim of this two-arm, parallel-group randomized controlled trial is to examine the feasibility of adapting an EMG-biofeedback system for assist-as-needed RABWSTT and its effects on walking and cardiopulmonary function in people with SCI. METHODS Sixteen incomplete SCI subjects were recruited and randomly allocated into an intervention group or control group. The intervention group received 30 min of RABWSTT with EMG biofeedback system over the vastus lateralis muscle to enhance active participation. Dose equivalent passive lower limbs mobilization exercise was provided to subjects in the control group. RESULTS Significant time-group interaction was found in the Walking Index for Spinal Cord Injury version II (WISCI II) (p = 0.020), Spinal Cord Independence Measure version III (SCIM III) mobility sub-score (p < 0.001), bilateral symmetry (p = 0.048), maximal oxygen consumption (p = 0.014) and peak expiratory flow rate (p = 0.048). Wilcoxon signed-rank test showed that the intervention group had significant improvement in the above-mentioned outcomes after the intervention except WISCI II, which also yielded marginal significance level. CONCLUSION The present study demonstrated that the use of EMG-biofeedback RABWSTT enhanced the walking performance for SCI subjects and improve cardiopulmonary function. Positive outcomes reflect that RABSTT training may be able to enhance their physical fitness. TRIAL REGISTRATION The study protocol was approved by the Research Ethics Committee (Kowloon Central/ Kowloon East), Hospital Authority on 6 December 2013, and the Human Subjects Ethics Sub-committee of The Hong Kong Polytechnic University on 15 May 2013, with reference numbers KC/KC-13-0181/ER-2 and HSEARS20130510002 respectively. The study was registered in ClinicalTrials.gov on 20 November 2013, with reference number NCT01989806 .).
Collapse
Affiliation(s)
- Eddy Yu Yeung Cheung
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region, China.,Physiotherapy Department, Kowloon Hospital, Hospital Authority, Hong Kong Special Administrative Region, China
| | - Kevin Ka Ki Yu
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region, China.,University Research Facility in Behavioral and Systems Neuroscience, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region, China
| | - Rachel Lai Chu Kwan
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region, China
| | - Carmen Ka Man Ng
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region, China
| | - Rosanna Mei Wa Chau
- Physiotherapy Department, Kowloon Hospital, Hospital Authority, Hong Kong Special Administrative Region, China
| | - Gladys Lai Ying Cheing
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region, China. .,Jockey Club School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China.
| |
Collapse
|
10
|
Cardiometabolic Challenges Provided by Variable Assisted Exoskeletal Versus Overground Walking in Chronic Motor-incomplete Paraplegia: A Case Series. J Neurol Phys Ther 2019; 43:128-135. [PMID: 30883500 DOI: 10.1097/npt.0000000000000262] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND AND PURPOSE People with spinal cord injury (SCI) experience secondary complications including low levels of cardiometabolic activity and associated health risks. It is unknown whether overground bionic ambulation (OBA) enhances cardiometabolic challenge during walking in those with motor-incomplete SCI, thereby providing additional therapeutic benefits. CASE DESCRIPTIONS One man and one woman with chronic motor-incomplete paraplegia due to SCI. INTERVENTION Assessment of functional walking capacity with the 10-m and 6-minute walk tests. Participants underwent cardiometabolic measurements including heart rate (HR), oxygen consumption ((Equation is included in full-text article.)O2), energy expenditure (EE), and substrate utilization patterns during OBA and overground walking for 6 minutes each. OUTCOMES The female participant had low functional walking capacity (walking speed = 0.23 m/s; 6-minute walk = 230 ft). She had higher cardiorespiratory responses during OBA versus overground walking (Δ(Equation is included in full-text article.)O2 = -3.6 mL/kg/min, ΔEE = 12 kcal) despite similar mean HR values (ΔHR = -1 beats per minute). She was able to sustain continuous walking only during the OBA trial. The male participant had greater walking capacity (walking speed = 0.33 m/s, 6 minutes = 386ft) and lower responses during OBA versus overground walking (Δ(Equation is included in full-text article.)O2 = -6.0 mL/kg/min, ΔEE = -18 kcal, ΔHR = -6 beats per minute). He was able to walk continuously in both conditions. DISCUSSION The participant with lower walking capacity experienced a higher cardiometabolic challenge and was able to sustain exercise efforts for longer period with OBA versus overground walking. Therefore, OBA presents a superior alternative to overground training for cardiometabolic conditioning and associated health benefits in this participant. For the participant with higher walking capacity, OBA represented a lower challenge and appears to be an inferior cardiometabolic training option to overground walking. The cardiometabolic response to OBA differs depending on functional capacity; OBA warrants study as an approach to cardiometabolic training for individuals with motor-incomplete SCI who have limited lower extremity function.Video Abstract available for more insights from the authors (see the Video, Supplemental Digital Content 1, available at: http://links.lww.com/JNPT/A259).
Collapse
|
11
|
Aguirre-Güemez AV, Pérez-Sanpablo AI, Quinzaños-Fresnedo J, Pérez-Zavala R, Barrera-Ortiz A. Walking speed is not the best outcome to evaluate the effect of robotic assisted gait training in people with motor incomplete Spinal Cord Injury: A Systematic Review with meta-analysis. J Spinal Cord Med 2019; 42:142-154. [PMID: 29065788 PMCID: PMC6419626 DOI: 10.1080/10790268.2017.1390644] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
CONTEXT While there are previous systematic reviews on the effectiveness of the use of robotic-assisted gait training (RAGT) in people with spinal cord injuries (SCI), as this is a dynamic field, new studies have been produced that are now incorporated on this systematic review (SR) with meta-analysis, updating the available evidence on this area. OBJECTIVE To synthesise the available evidence on the use of RAGT, to improve gait, strength and functioning. METHODS SR and meta-analysis following the Cochrane Handbook for Systematic Reviews of Interventions were implemented. Cochrane Injuries Group Specialized Register, PubMed, MEDLINE, EMBASE, CINAHL, ISIWeb of Science (SCIEXPANDED) databases were reviewed for the period 1990 to December 2016. Three researchers independently identified and categorized trials; 293 studies were identified, 273 eliminated; remaining 15 randomized clinical trials (RCT) and five SR. Six studies had available data for meta-analysis (222 participants). RESULTS The pooled mean demonstrated a beneficial effect of RAGT for WISCI, FIM-L and LEMS (3.01, 2.74 and 1.95 respectively), and no effect for speed. CONCLUSIONS The results show a positive effect in the use of RAGT. However, this should be taken carefully due to heterogeneity of the studies, small samples and identified limitations of some of the included trials. These results highlight the relevance of implementing a well-designed multicenter RCT powered enough to evaluate different RAGT approaches.
Collapse
Affiliation(s)
| | | | - Jimena Quinzaños-Fresnedo
- División de Rehabilitación Neurológica, Instituto Nacional de Rehabilitación, Ciudad de México, México
| | - Ramiro Pérez-Zavala
- División de Rehabilitación Neurológica, Instituto Nacional de Rehabilitación, Ciudad de México, México
| | - Aída Barrera-Ortiz
- División de Rehabilitación Neurológica, Instituto Nacional de Rehabilitación, Ciudad de México, México
| |
Collapse
|
12
|
Gorman PH, Scott W, VanHiel L, Tansey KE, Sweatman WM, Geigle PR. Comparison of peak oxygen consumption response to aquatic and robotic therapy in individuals with chronic motor incomplete spinal cord injury: a randomized controlled trial. Spinal Cord 2019; 57:471-481. [DOI: 10.1038/s41393-019-0239-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 12/14/2018] [Accepted: 01/02/2019] [Indexed: 01/17/2023]
|
13
|
Krassioukov AV, Currie KD, Hubli M, Nightingale TE, Alrashidi AA, Ramer L, Eng JJ, Ginis KAM, MacDonald MJ, Hicks A, Ditor D, Oh P, Verrier MC, Craven BC. Effects of exercise interventions on cardiovascular health in individuals with chronic, motor complete spinal cord injury: protocol for a randomised controlled trial [Cardiovascular Health/Outcomes: Improvements Created by Exercise and education in SCI (CHOICES) Study]. BMJ Open 2019; 9:e023540. [PMID: 30612110 PMCID: PMC6326283 DOI: 10.1136/bmjopen-2018-023540] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
INTRODUCTION Recent studies demonstrate that cardiovascular diseases and associated complications are the leading cause of morbidity and mortality in individuals with spinal cord injury (SCI). Abnormal arterial stiffness, defined by a carotid-to-femoral pulse wave velocity (cfPWV) ≥10 m/s, is a recognised risk factor for heart disease in individuals with SCI. There is a paucity of studies assessing the efficacy of conventional training modalities on arterial stiffness and other cardiovascular outcomes in this population. Therefore, this study aims to compare the efficacy of arm cycle ergometry training (ACET) and body weight-supported treadmill training (BWSTT) on reducing arterial stiffness in individuals with chronic motor complete, high-level (above the sixth thoracic segment) SCI. METHODS AND ANALYSIS This is a multicentre, randomised, controlled, clinical trial. Eligible participants will be randomly assigned (1:1) into either ACET or BWSTT groups. Sixty participants with chronic (>1 year) SCI will be recruited from three sites in Canada (Vancouver, Toronto and Hamilton). Participants in each group will exercise three times per week up to 30 min and 60 min for ACET and BWSTT, respectively, over the period of 6 months. The primary outcome measure will be change in arterial stiffness (cfPWV) from baseline. Secondary outcome measures will include comprehensive assessments of: (1) cardiovascular parameters, (2) autonomic function, (3) body composition, (4) blood haematological and metabolic profiles, (5) cardiorespiratory fitness and (6) quality of life (QOL) and physical activity outcomes. Outcome measures will be assessed at baseline, 3 months, 6 months and 12 months (only QOL and physical activity outcomes). Statistical analyses will apply linear-mixed modelling to determine the training (time), group (ACET vs BWSTT) and interaction (time × group) effects on all outcomes. ETHICS AND DISSEMINATION Ethical approval was obtained from all three participating sites. Primary and secondary outcome data will be submitted for publication in peer-reviewed journals and widely disseminated. TRIAL REGISTRATION NUMBER NCT01718977; Pre-results. TRIAL STATUS Recruitment for this study began on January 2013 and the first participant was randomized on April 2013. Recruitment stopped on October 2018.
Collapse
Affiliation(s)
- Andrei V Krassioukov
- International Collaboration on Repair Discoveries, University of British Columbia, Vancouver, British Columbia, Canada
- Faculty of Medicine, Division of Physical Medicine and Rehabilitation, University of British Columbia, Vancouver, British Columbia, Canada
- GF Strong Rehabilitation Centre, Vancouver Coastal Health, Vancouver, British Columbia, Canada
| | - Katharine D Currie
- International Collaboration on Repair Discoveries, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Kinesiology, Michigan State University, East Lansing, Michigan, USA
| | - Michèle Hubli
- International Collaboration on Repair Discoveries, University of British Columbia, Vancouver, British Columbia, Canada
- Balgrist University Hospital, University of Zurich, Zurich, Swaziland
| | - Tom E Nightingale
- International Collaboration on Repair Discoveries, University of British Columbia, Vancouver, British Columbia, Canada
- Faculty of Medicine, Division of Physical Medicine and Rehabilitation, University of British Columbia, Vancouver, British Columbia, Canada
| | - Abdullah A Alrashidi
- International Collaboration on Repair Discoveries, University of British Columbia, Vancouver, British Columbia, Canada
- Faculty of Medicine, Experimental Medicine, University of British Columbia, Vancouver, British Columbia, Canada
- Physical Therapy Department, King Fahd Medical City, Riyadh, Saudi Arabia
| | - Leanne Ramer
- International Collaboration on Repair Discoveries, University of British Columbia, Vancouver, British Columbia, Canada
- Biomedical Physiology and Kinesiology, Simon Fraser University, Vancouver, British Columbia, Canada
| | - Janice J Eng
- International Collaboration on Repair Discoveries, University of British Columbia, Vancouver, British Columbia, Canada
- GF Strong Rehabilitation Centre, Vancouver Coastal Health, Vancouver, British Columbia, Canada
- Department of Physical Therapy, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Kathleen A Martin Ginis
- International Collaboration on Repair Discoveries, University of British Columbia, Vancouver, British Columbia, Canada
- Southern Medical Program, School of Health & Exercise Sciences, University of British Columbia, Kelowna, British Columbia, Canada
| | | | - Audrey Hicks
- Spinal Cord Injury Centre, McMaster University, Hamilton, Ontario, Canada
| | - Dave Ditor
- Department of Kinesiology, Faculty of Applied Health Sciences, Brock University, St. Catharines, Ontario, Canada
| | - Paul Oh
- Department of Medicine University Health Network, Division of Physical Medicine and Rehabilitation, University of Toronto, Toronto, Ontario, Canada
| | - Molly C Verrier
- Department of Physical Therapy, University of Toronto, Toronto, Ontario, Canada
| | - Beverly Catharine Craven
- Department of Medicine University Health Network, Division of Physical Medicine and Rehabilitation, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
14
|
Gollie JM. Fatigability during volitional walking in incomplete spinal cord injury: cardiorespiratory and motor performance considerations. Neural Regen Res 2018; 13:786-790. [PMID: 29862998 PMCID: PMC5998625 DOI: 10.4103/1673-5374.232461] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/10/2018] [Indexed: 02/06/2023] Open
Abstract
Fatigability describes the decline in force production (i.e., performance fatigability) and/or changes in sensations regulating performance (i.e., perceived fatigability) during whole-body activity and poses a major challenge to those living with spinal cord injuries (SCI). After SCI, the inability to overcome disruptions to metabolic homeostasis due to cardiorespiratory limitations and physical deconditioning may contribute to increased fatigability severity. The increased susceptibility to fatigability may have implications for motor control strategies and motor learning. Locomotor training approaches designed to reduce fatigability and enhance aerobic capacity in combination with motor learning may be advantageous for promoting functional recovery after SCI. Future research is required to advance the understanding of the relationship between fatigability, cardiorespiratory function and motor performance following SCI.
Collapse
Affiliation(s)
- Jared M. Gollie
- Muscle Morphology, Mechanics and Performance Laboratory, Clinical Research Center-Human Performance Research Unit, Veteran Affairs Medical Center Washington, DC, USA
- Department of Health, Human Function, and Rehabilitation Sciences, School of Medicine and Health Sciences, The George Washington University, Washington, DC, USA
| |
Collapse
|
15
|
Zhou R, Alvarado L, Ogilvie R, Chong SL, Shaw O, Mushahwar VK. Non-gait-specific intervention for the rehabilitation of walking after SCI: role of the arms. J Neurophysiol 2018; 119:2194-2211. [PMID: 29364074 DOI: 10.1152/jn.00569.2017] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Arm movements modulate leg activity and improve gait efficiency; however, current rehabilitation interventions focus on improving walking through gait-specific training and do not actively involve the arms. The goal of this project was to assess the effect of a rehabilitation strategy involving simultaneous arm and leg cycling on improving walking after incomplete spinal cord injury (iSCI). We investigated the effect of 1) non-gait-specific training and 2) active arm involvement during training on changes in over ground walking capacity. Participants with iSCI were assigned to simultaneous arm-leg cycling (A&L) or legs only cycling (Leg) training paradigms, and cycling movements were assisted with electrical stimulation. Overground walking speed significantly increased by 0.092 ± 0.022 m/s in the Leg group and 0.27 ± 0.072m/s in the A&L group after training. Whereas the increases in the Leg group were similar to those seen after current locomotor training strategies, increases in the A&L group were significantly larger than those in the Leg group. Walking distance also significantly increased by 32.12 ± 8.74 m in the Leg and 91.58 ± 36.24 m in the A&L group. Muscle strength, sensation, and balance improved in both groups; however, the A&L group had significant improvements in most gait measures and had more regulated joint kinematics and muscle activity after training compared with the Leg group. We conclude that electrical stimulation-assisted cycling training can produce significant improvements in walking after SCI. Furthermore, active arm involvement during training can produce greater improvements in walking performance. This strategy may also be effective in people with other neural disorders or diseases. NEW & NOTEWORTHY This work challenges concepts of task-specific training for the rehabilitation of walking and encourages coordinated training of the arms and legs after spinal cord injury. Cycling of the legs produced significant improvements in walking that were similar in magnitude to those reported with gait-specific training. Moreover, active engagement of the arms simultaneously with the legs generated nearly double the improvements obtained by leg training only. The cervico-lumbar networks are critical for the improvement of walking.
Collapse
Affiliation(s)
- Rui Zhou
- Neuroscience & Mental Health Institute, Faculty of Medicine & Dentistry, University of Alberta , Edmonton, Alberta , Canada.,Sensory Motor Adaptive Rehabilitation Technology (SMART) Network, University of Alberta , Edmonton, Alberta , Canada
| | - Laura Alvarado
- Neuroscience & Mental Health Institute, Faculty of Medicine & Dentistry, University of Alberta , Edmonton, Alberta , Canada.,Sensory Motor Adaptive Rehabilitation Technology (SMART) Network, University of Alberta , Edmonton, Alberta , Canada
| | - Robert Ogilvie
- Division of Physical Medicine & Rehabilitation, Department of Medicine, Faculty of Medicine & Dentistry, University of Alberta , Edmonton, Alberta , Canada.,Sensory Motor Adaptive Rehabilitation Technology (SMART) Network, University of Alberta , Edmonton, Alberta , Canada
| | - Su Ling Chong
- Division of Physical Medicine & Rehabilitation, Department of Medicine, Faculty of Medicine & Dentistry, University of Alberta , Edmonton, Alberta , Canada.,Sensory Motor Adaptive Rehabilitation Technology (SMART) Network, University of Alberta , Edmonton, Alberta , Canada
| | - Oriana Shaw
- Division of Physical Medicine & Rehabilitation, Department of Medicine, Faculty of Medicine & Dentistry, University of Alberta , Edmonton, Alberta , Canada.,Sensory Motor Adaptive Rehabilitation Technology (SMART) Network, University of Alberta , Edmonton, Alberta , Canada
| | - Vivian K Mushahwar
- Neuroscience & Mental Health Institute, Faculty of Medicine & Dentistry, University of Alberta , Edmonton, Alberta , Canada.,Division of Physical Medicine & Rehabilitation, Department of Medicine, Faculty of Medicine & Dentistry, University of Alberta , Edmonton, Alberta , Canada.,Sensory Motor Adaptive Rehabilitation Technology (SMART) Network, University of Alberta , Edmonton, Alberta , Canada
| |
Collapse
|
16
|
|
17
|
Brazg G, Fahey M, Holleran CL, Connolly M, Woodward J, Hennessy PW, Schmit BD, Hornby TG. Effects of Training Intensity on Locomotor Performance in Individuals With Chronic Spinal Cord Injury: A Randomized Crossover Study. Neurorehabil Neural Repair 2017; 31:944-954. [PMID: 29081250 DOI: 10.1177/1545968317731538] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND Many physical interventions can improve locomotor function in individuals with motor incomplete spinal cord injury (iSCI), although the training parameters that maximize recovery are not clear. Previous studies in individuals with other neurologic injuries suggest the intensity of locomotor training (LT) may positively influence walking outcomes. However, the effects of intensity during training of individuals with iSCI have not been tested. OBJECTIVE The purpose of this pilot, blinded-assessor randomized trial was to evaluate the effects of LT intensity on walking outcomes in individuals with iSCI. METHODS Using a crossover design, ambulatory participants with iSCI >1 year duration performed either high- or low-intensity LT for ≤20 sessions over 4 to 6 weeks. Four weeks following completion, the training interventions were alternated. Targeted intensities focused on achieving specific ranges of heart rate (HR) or ratings of perceived exertion (RPE), with intensity manipulated by increasing speeds or applying loads. RESULTS Significantly greater increases in peak treadmill speeds (0.18 vs 0.02 m/s) and secondary measures of metabolic function and overground speed were observed following high- versus low-intensity training, with no effects of intervention order. Moderate to high correlations were observed between differences in walking speed or distances and differences in HRs or RPEs during high- versus low-intensity training. CONCLUSION This pilot study provides the first evidence that the intensity of stepping practice may be an important determinant of LT outcomes in individuals with iSCI. Whether such training is feasible in larger patient populations and contributes to improved locomotor outcomes deserves further consideration.
Collapse
Affiliation(s)
| | - Meghan Fahey
- 1 Rehabilitation Institute of Chicago, Chicago, IL, USA
| | | | - Mark Connolly
- 1 Rehabilitation Institute of Chicago, Chicago, IL, USA
| | - Jane Woodward
- 1 Rehabilitation Institute of Chicago, Chicago, IL, USA
| | | | - Brian D Schmit
- 3 Northwestern University, Chicago, IL, USA.,4 Marquette University, Milwaukee, WI, USA
| | - T George Hornby
- 1 Rehabilitation Institute of Chicago, Chicago, IL, USA.,2 Washington University, St Louis, MO, USA.,5 Indiana University, Indianapolis, IN, USA
| |
Collapse
|
18
|
van der Scheer JW, Hutchinson MJ, Paulson T, Martin Ginis KA, Goosey-Tolfrey VL. Reliability and Validity of Subjective Measures of Aerobic Intensity in Adults With Spinal Cord Injury: A Systematic Review. PM R 2017; 10:194-207. [DOI: 10.1016/j.pmrj.2017.08.440] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 08/03/2017] [Accepted: 08/14/2017] [Indexed: 01/23/2023]
|
19
|
Effects of Overground Locomotor Training on Walking Performance in Chronic Cervical Motor Incomplete Spinal Cord Injury: A Pilot Study. Arch Phys Med Rehabil 2016; 98:1119-1125. [PMID: 27965006 DOI: 10.1016/j.apmr.2016.10.022] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Revised: 10/21/2016] [Accepted: 10/29/2016] [Indexed: 12/23/2022]
Abstract
OBJECTIVE To determine the effects of a novel overground locomotor training program on walking performance in people with chronic cervical motor incomplete spinal cord injury (iSCI). DESIGN Before-after pilot study. SETTING Human performance research laboratory. PARTICIPANTS Adults (N=6, age >18y) with chronic cervical iSCI with American Spinal Injury Association Impairment Scale grades C and D. INTERVENTIONS Overground locomotor training included two 90-minute sessions per week for 12 to 15 weeks. Training sessions alternated between uniplanar and multiplanar stepping patterns. Each session was comprised of 5 segments: joint mobility, volitional muscle activation, task isolation, task integration, and activity rehearsal. MAIN OUTCOME MEASURES Overground walking speed, oxygen consumption (V˙o2), and carbon dioxide production (V˙co2). RESULTS Overground locomotor training increased overground walking speed (.36±.20 vs .51±.24 m/s, P<.001, d=.68). Significant decreases in V˙o2 (6.6±1.3 vs 5.7±1.4mL·kg·min, P=.038, d=.67) and V˙co2 (753.1±125.5 vs 670.7±120.3mL/min, P=.036, d=.67) during self-selected constant work rate treadmill walking were also noted after training. CONCLUSIONS The overground locomotor training program used in this pilot study is feasible and improved both overground walking speed and walking economy in a small sample of people with chronic cervical iSCI. Future studies are necessary to establish the efficacy of this overground locomotor training program and to differentiate among potential mechanisms contributing to enhanced walking performance in people with iSCI after overground locomotor training.
Collapse
|
20
|
Mercier C, Roosink M, Bouffard J, Bouyer LJ. Promoting Gait Recovery and Limiting Neuropathic Pain After Spinal Cord Injury. Neurorehabil Neural Repair 2016; 31:315-322. [PMID: 27913797 PMCID: PMC5405804 DOI: 10.1177/1545968316680491] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Most persons living with a spinal cord injury experience neuropathic pain in the months following their lesion, at the moment where they receive intensive gait rehabilitation. Based on studies using animal models, it has been proposed that central sensitization in nociceptive pathways (maladaptive plasticity) and plasticity related to motor learning (adaptive plasticity) share common neural mechanisms and compete with each other. This article aims to address the discrepancy between the growing body of basic science literature supporting this hypothesis and the general belief in rehabilitation research that pain and gait rehabilitation represent two independent problems. First, the main findings from basic research showing interactions between nociception and learning in the spinal cord will be summarized, focusing both on evidence demonstrating the impact of nociception on motor learning and of motor learning on central sensitization. Then, the generalizability of these findings in animal models to humans will be discussed. Finally, the way potential interactions between nociception and motor learning are currently taken into account in clinical research in patients with spinal cord injury will be presented. To conclude, recommendations will be proposed to better integrate findings from basic research into future clinical research in persons with spinal cord injury.
Collapse
Affiliation(s)
- Catherine Mercier
- 1 Centre Interdisciplinaire de Recherche en Réadaptation et Intégration Sociale, Quebec City, Quebec, Canada.,2 Laval University, Quebec City, Quebec, Canada
| | - Meyke Roosink
- 1 Centre Interdisciplinaire de Recherche en Réadaptation et Intégration Sociale, Quebec City, Quebec, Canada
| | - Jason Bouffard
- 1 Centre Interdisciplinaire de Recherche en Réadaptation et Intégration Sociale, Quebec City, Quebec, Canada.,2 Laval University, Quebec City, Quebec, Canada
| | - Laurent J Bouyer
- 1 Centre Interdisciplinaire de Recherche en Réadaptation et Intégration Sociale, Quebec City, Quebec, Canada.,2 Laval University, Quebec City, Quebec, Canada
| |
Collapse
|
21
|
Biomechanical effects of body weight support with a novel robotic walker for over-ground gait rehabilitation. Med Biol Eng Comput 2016; 55:315-326. [PMID: 27193227 DOI: 10.1007/s11517-016-1515-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Accepted: 05/02/2016] [Indexed: 10/21/2022]
Abstract
Body weight support (BWS) promotes better functional outcomes for neurologically challenged patients. Despite the established effectiveness of BWS in gait rehabilitation, the findings on biomechanical effects of BWS training still remain contradictory. Therefore, the aim of this study is to comprehensively investigate the effects of BWS. Using a newly developed robotic walker which can facilitate pelvic motions with an active BWS unit, we compared gait parameters of ten healthy subjects during a 10-m walk with incremental levels of body weight unloading, ranging from 0 to 40 % at 10 % intervals. Significant changes in joint angles and gait temporospatial parameters were observed. In addition, the results of an EMG signal study showed that the intensity of muscle activation was significantly reduced with increasing BWS levels. The reduction was found at the ankle, knee, and hip joints in the sagittal plane as well as at the hip joint in the frontal plane. The results of this study provide an important indication of increased lateral body balance and greater stabilization in sagittal and frontal plane during gait. Our findings provide a better understanding of the biomechanical effects of BWS during gait, which will help guide the gait rehabilitation strategies.
Collapse
|
22
|
Gorman PH, Scott W, York H, Theyagaraj M, Price-Miller N, McQuaid J, Eyvazzadeh M, Ivey FM, Macko RF. Robotically assisted treadmill exercise training for improving peak fitness in chronic motor incomplete spinal cord injury: A randomized controlled trial. J Spinal Cord Med 2016; 39:32-44. [PMID: 25520035 PMCID: PMC4725790 DOI: 10.1179/2045772314y.0000000281] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
OBJECTIVE To assess the effectiveness of robotically assisted body weight supported treadmill training (RABWSTT) for improving cardiovascular fitness in chronic motor incomplete spinal cord injury (CMISCI). DESIGN Pilot prospective randomized, controlled clinical trial. SETTING Outpatient rehabilitation specialty hospital. PARTICIPANTS Eighteen individuals with CMISCI with American Spinal Injury Association (ASIA) level between C4 and L2 and at least one-year post injury. Interventions CMISCI participants were randomized to RABWSTT or a home stretching program (HSP) three times per week for three months. Those in the home stretching group were crossed over to three months of RABWSTT following completion of the initial three month phase. OUTCOME MEASURES Peak oxygen consumption (peak VO(2)) was measured during both robotic treadmill walking and arm cycle ergometry: twice at baseline, once at six weeks (mid-training) and twice at three months (post-training). Peak VO(2) values were normalized for body mass. RESULTS The RABWSTT group improved peak VO(2) by 12.3% during robotic treadmill walking (20.2 ± 7.4 to 22.7 ± 7.5 ml/kg/min, P = 0.018), compared to a non-significant 3.9% within group change observed in HSP controls (P = 0.37). Neither group displayed a significant change in peak VO2 during arm cycle ergometry (RABWSTT, 8.5% (P = 0.25); HSP, 1.76% (P = 0.72)). A repeated measures analysis showed statistically significant differences between treatments for peak VO(2) during both robotic treadmill walking (P = 0.002) and arm cycle ergometry (P = 0.001). CONCLUSION RABWSTT is an effective intervention model for improving peak fitness levels assessed during robotic treadmill walking in persons with CMISCI.
Collapse
Affiliation(s)
- Peter H. Gorman
- Correspondence to: Peter H. Gorman, University of Maryland Rehabilitation and Orthopaedic Institute, 2200 Kernan Drive, Baltimore, MD 21207, USA.
| | - William Scott
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD, USA
| | | | | | - Naomi Price-Miller
- University of Maryland Rehabilitation and Orthopaedic Institute (formerly Kernan Orthopaedics and Rehabilitation Hospital), Baltimore, MD, USA
| | - Jean McQuaid
- University of Maryland Rehabilitation and Orthopaedic Institute (formerly Kernan Orthopaedics and Rehabilitation Hospital), Baltimore, MD, USA
| | | | | | | |
Collapse
|
23
|
Effects of aerobic exercise training on fitness and walking-related outcomes in ambulatory individuals with chronic incomplete spinal cord injury. Spinal Cord 2015; 54:675-81. [PMID: 26666508 PMCID: PMC4909592 DOI: 10.1038/sc.2015.212] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Revised: 10/29/2015] [Accepted: 10/30/2015] [Indexed: 11/09/2022]
Abstract
Study Design Single group, pretest-posttest study. Objectives To determine the effects of a non-task-specific, voluntary, progressive aerobic exercise training (AET) intervention on fitness and walking-related outcomes in ambulatory adults with chronic motor-incomplete SCI. Setting Rehabilitation research center. Methods Ten ambulatory individuals (50% female; 57.94 ± 9.33 years old; 11.11 ± 9.66 years post injury) completed voluntary, progressive moderate-to-vigorous intensity AET on a recumbent stepper three days per week for six weeks. The primary outcome measures were aerobic capacity (VO2peak) and self-selected overground walking speed (OGWS). Secondary outcome measures included: walking economy, six-minute walk test (6MWT), daily step counts, Walking Index for Spinal Cord Injury (WISCI-II), Dynamic Gait Index (DGI), and Berg Balance Scale (BBS). Results Nine participants completed all testing and training. Significant improvements in aerobic capacity (P=0.011), OGWS (P=0.023), the percentage of VO2peak utilized while walking at self-selected speed (P=0.03), and daily step counts (P=0.025) resulted following training. Conclusions The results indicate that total-body, voluntary, progressive AET is safe, feasible, and effective for improving aerobic capacity, walking speed, and select walking-related outcomes in an exclusively ambulatory SCI sample. This study suggests the potential for non-task-specific aerobic exercise to improve walking following incomplete SCI and builds a foundation for further investigation aimed at the development of exercise based rehabilitation strategies to target functionally limiting impairments in ambulatory individuals with chronic SCI.
Collapse
|
24
|
Wang H, Liu NK, Zhang YP, Deng L, Lu QB, Shields CB, Walker MJ, Li J, Xu XM. Treadmill training induced lumbar motoneuron dendritic plasticity and behavior recovery in adult rats after a thoracic contusive spinal cord injury. Exp Neurol 2015; 271:368-78. [PMID: 26164199 DOI: 10.1016/j.expneurol.2015.07.004] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Revised: 07/01/2015] [Accepted: 07/04/2015] [Indexed: 12/17/2022]
Abstract
Spinal cord injury (SCI) is devastating, causing sensorimotor impairments and paralysis. Persisting functional limitations on physical activity negatively affect overall health in individuals with SCI. Physical training may improve motor function by affecting cellular and molecular responses of motor pathways in the central nervous system (CNS) after SCI. Although motoneurons form the final common path for motor output from the CNS, little is known concerning the effect of exercise training on spared motoneurons below the level of injury. Here we examined the effect of treadmill training on morphological, trophic, and synaptic changes in the lumbar motoneuron pool and on behavior recovery after a moderate contusive SCI inflicted at the 9th thoracic vertebral level (T9) using an Infinite Horizon (IH, 200 kDyne) impactor. We found that treadmill training significantly improved locomotor function, assessed by Basso-Beattie-Bresnahan (BBB) locomotor rating scale, and reduced foot drops, assessed by grid walking performance, as compared with non-training. Additionally, treadmill training significantly increased the total neurite length per lumbar motoneuron innervating the soleus and tibialis anterior muscles of the hindlimbs as compared to non-training. Moreover, treadmill training significantly increased the expression of a neurotrophin brain-derived neurotrophic factor (BDNF) in the lumbar motoneurons as compared to non-training. Finally, treadmill training significantly increased synaptic density, identified by synaptophysin immunoreactivity, in the lumbar motoneuron pool as compared to non-training. However, the density of serotonergic terminals in the same regions did not show a significant difference between treadmill training and non-training. Thus, our study provides a biological basis for exercise training as an effective medical practice to improve recovery after SCI. Such an effect may be mediated by synaptic plasticity, and neurotrophic modification in the spared lumbar motoneuron pool caudal to a thoracic contusive SCI.
Collapse
Affiliation(s)
- Hongxing Wang
- Department of Rehabilitation Medicine, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, PR China; Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Department of Neurological Surgery, Goodman Campbell Brain and Spine, Indiana University School of Medicine, Indianapolis, IN 46202, United States
| | - Nai-Kui Liu
- Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Department of Neurological Surgery, Goodman Campbell Brain and Spine, Indiana University School of Medicine, Indianapolis, IN 46202, United States
| | - Yi Ping Zhang
- Norton Neuroscience Institute, Norton Healthcare, Louisville, KY 40202, United States
| | - Lingxiao Deng
- Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Department of Neurological Surgery, Goodman Campbell Brain and Spine, Indiana University School of Medicine, Indianapolis, IN 46202, United States
| | - Qing-Bo Lu
- Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Department of Neurological Surgery, Goodman Campbell Brain and Spine, Indiana University School of Medicine, Indianapolis, IN 46202, United States
| | - Christopher B Shields
- Norton Neuroscience Institute, Norton Healthcare, Louisville, KY 40202, United States
| | - Melissa J Walker
- Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Department of Neurological Surgery, Goodman Campbell Brain and Spine, Indiana University School of Medicine, Indianapolis, IN 46202, United States
| | - Jianan Li
- Department of Rehabilitation Medicine, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, PR China.
| | - Xiao-Ming Xu
- Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Department of Neurological Surgery, Goodman Campbell Brain and Spine, Indiana University School of Medicine, Indianapolis, IN 46202, United States.
| |
Collapse
|
25
|
Kressler J, Cowan RE, Bigford GE, Nash MS. Reducing cardiometabolic disease in spinal cord injury. Phys Med Rehabil Clin N Am 2015; 25:573-604, viii. [PMID: 25064789 DOI: 10.1016/j.pmr.2014.04.006] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Accelerated cardiometabolic disease is a serious health hazard after spinal cord injuries (SCI). Lifestyle intervention with diet and exercise remains the cornerstone of effective cardiometabolic syndrome treatment. Behavioral approaches enhance compliance and benefits derived from both diet and exercise interventions and are necessary to assure that persons with SCI profit from intervention. Multitherapy strategies will likely be needed to control challenging component risks, such as gain in body mass, which has far reaching implications for maintenance of daily function as well as health.
Collapse
Affiliation(s)
- Jochen Kressler
- Department of Neurological Surgery, Miller School of Medicine, University of Miami, 1475 North West 12th Avenue, Miami, FL 33136, USA; The Miami Project to Cure Paralysis, Miller School of Medicine, University of Miami, 1095 North West 14th Terrace, Lois Pope LIFE Center, Miami, FL 33136, USA
| | - Rachel E Cowan
- Department of Neurological Surgery, Miller School of Medicine, University of Miami, 1475 North West 12th Avenue, Miami, FL 33136, USA; The Miami Project to Cure Paralysis, Miller School of Medicine, University of Miami, 1095 North West 14th Terrace, Lois Pope LIFE Center, Miami, FL 33136, USA
| | - Gregory E Bigford
- Department of Neurological Surgery, Miller School of Medicine, University of Miami, 1475 North West 12th Avenue, Miami, FL 33136, USA; The Miami Project to Cure Paralysis, Miller School of Medicine, University of Miami, 1095 North West 14th Terrace, Lois Pope LIFE Center, Miami, FL 33136, USA
| | - Mark S Nash
- Department of Neurological Surgery, Miller School of Medicine, University of Miami, 1475 North West 12th Avenue, Miami, FL 33136, USA; The Miami Project to Cure Paralysis, Miller School of Medicine, University of Miami, 1095 North West 14th Terrace, Lois Pope LIFE Center, Miami, FL 33136, USA; Department of Rehabilitation Medicine, Miller School of Medicine, University of Miami, 1500 North West 12th Avenue, Suite 1409, Miami, FL 33136, USA.
| |
Collapse
|
26
|
Jeffries EC, Hoffman SM, de Leon R, Dominguez JF, Semerjian TZ, Melgar IA, Dy CJ. Energy expenditure and heart rate responses to increased loading in individuals with motor complete spinal cord injury performing body weight-supported exercises. Arch Phys Med Rehabil 2015; 96:1467-73. [PMID: 25887699 DOI: 10.1016/j.apmr.2015.03.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Revised: 03/18/2015] [Accepted: 03/27/2015] [Indexed: 10/23/2022]
Abstract
OBJECTIVE To examine acute metabolic and heart rate responses in individuals with motor complete spinal cord injury (SCI) during stepping and standing with body weight support (BWS). DESIGN Cohort study. SETTING Therapeutic exercise research laboratory. PARTICIPANTS Nonambulatory individuals with chronic, motor complete SCI between T5 and T12 (n=8) and healthy, able-bodied controls (n=8). INTERVENTION Not applicable. MAIN OUTCOME MEASURES Oxygen consumption (V˙o2) and heart rate. RESULTS Individuals with motor complete SCI performed standing and stepping exercises in a BWS system with manual assistance of lower body kinematics. V˙o2 and heart rate responses were assessed in relation to level of BWS. Weight support was provided by an overhead lift at high (≥50% BWS) or low (20%-35% BWS) levels during stepping and standing. Although participants with motor complete SCI were unable to stand or step without assistance, levels of V˙o2 and heart rate were elevated by 38% and 37%, respectively, when load was maximized during stepping (ie, low BWS). Participants without an SCI (able-bodied group) had a similar acute response to exercise. None of the participants met the target range for V˙o2 response in any of the tasks. However, stepping was sufficient to enable half of the participants in the SCI group to attain the target range for heart rate response to exercise. CONCLUSIONS Individuals with motor complete SCI exhibit cardiovascular responses during body weight-supported exercise. Findings indicate that body weight-supported stepping provides a minimal cardiovascular challenge for individuals with paraplegia. Emphasis on low weight support during locomotor training can trigger additional heart rate adaptations.
Collapse
Affiliation(s)
- Evan C Jeffries
- School of Kinesiology and Nutritional Science, California State University, Los Angeles, CA
| | | | - Ray de Leon
- School of Kinesiology and Nutritional Science, California State University, Los Angeles, CA
| | - Jesus F Dominguez
- Division of Biokinesiology and Physical Therapy, University of Southern California, Los Angeles, CA
| | | | - Ivana A Melgar
- School of Kinesiology and Nutritional Science, California State University, Los Angeles, CA
| | - Christine J Dy
- School of Kinesiology and Nutritional Science, California State University, Los Angeles, CA.
| |
Collapse
|
27
|
Evans N, Hartigan C, Kandilakis C, Pharo E, Clesson I. Acute Cardiorespiratory and Metabolic Responses During Exoskeleton-Assisted Walking Overground Among Persons with Chronic Spinal Cord Injury. Top Spinal Cord Inj Rehabil 2015; 21:122-32. [PMID: 26364281 DOI: 10.1310/sci2102-122] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BACKGROUND Lower extremity robotic exoskeleton technology is being developed with the promise of affording people with spinal cord injury (SCI) the opportunity to stand and walk. The mobility benefits of exoskeleton-assisted walking can be realized immediately, however the cardiorespiratory and metabolic benefits of this technology have not been thoroughly investigated. OBJECTIVE The purpose of this pilot study was to evaluate the acute cardiorespiratory and metabolic responses associated with exoskeleton-assisted walking overground and to determine the degree to which these responses change at differing walking speeds. METHODS Five subjects (4 male, 1 female) with chronic SCI (AIS A) volunteered for the study. Expired gases were collected during maximal graded exercise testing and two, 6-minute bouts of exoskeleton-assisted walking overground. Outcome measures included peak oxygen consumption (V̇O2peak), average oxygen consumption (V̇O2avg), peak heart rate (HRpeak), walking economy, metabolic equivalent of tasks for SCI (METssci), walk speed, and walk distance. RESULTS Significant differences were observed between walk-1 and walk-2 for walk speed, total walk distance, V̇O2avg, and METssci. Exoskeleton-assisted walking resulted in %V̇O2peak range of 51.5% to 63.2%. The metabolic cost of exoskeleton-assisted walking ranged from 3.5 to 4.3 METssci. CONCLUSIONS Persons with motor-complete SCI may be limited in their capacity to perform physical exercise to the extent needed to improve health and fitness. Based on preliminary data, cardiorespiratory and metabolic demands of exoskeleton-assisted walking are consistent with activities performed at a moderate intensity.
Collapse
Affiliation(s)
- Nicholas Evans
- Beyond Therapy, Shepherd Center, Atlanta, Georgia.,Hulse Spinal Cord Injury Laboratory, Shepherd Center, Atlanta, Georgia
| | - Clare Hartigan
- Virginia C. Crawford Research Institute, Shepherd Center, Atlanta, Georgia
| | - Casey Kandilakis
- Virginia C. Crawford Research Institute, Shepherd Center, Atlanta, Georgia
| | | | - Ismari Clesson
- Virginia C. Crawford Research Institute, Shepherd Center, Atlanta, Georgia
| |
Collapse
|
28
|
Abstract
In recent years, several investigators have successfully regenerated axons in animal spinal cords without locomotor recovery. One explanation is that the animals were not trained to use the regenerated connections. Intensive locomotor training improves walking recovery after spinal cord injury (SCI) in people, and >90% of people with incomplete SCI recover walking with training. Although the optimal timing, duration, intensity, and type of locomotor training are still controversial, many investigators have reported beneficial effects of training on locomotor function. The mechanisms by which training improves recovery are not clear, but an attractive theory is available. In 1949, Donald Hebb proposed a famous rule that has been paraphrased as “neurons that fire together, wire together.” This rule provided a theoretical basis for a widely accepted theory that homosynaptic and heterosynaptic activity facilitate synaptic formation and consolidation. In addition, the lumbar spinal cord has a locomotor center, called the central pattern generator (CPG), which can be activated nonspecifically with electrical stimulation or neurotransmitters to produce walking. The CPG is an obvious target to reconnect after SCI. Stimulating motor cortex, spinal cord, or peripheral nerves can modulate lumbar spinal cord excitability. Motor cortex stimulation causes long-term changes in spinal reflexes and synapses, increases sprouting of the corticospinal tract, and restores skilled forelimb function in rats. Long used to treat chronic pain, motor cortex stimuli modify lumbar spinal network excitability and improve lower extremity motor scores in humans. Similarly, epidural spinal cord stimulation has long been used to treat pain and spasticity. Subthreshold epidural stimulation reduces the threshold for locomotor activity. In 2011, Harkema et al. reported lumbosacral epidural stimulation restores motor control in chronic motor complete patients. Peripheral nerve or functional electrical stimulation (FES) has long been used to activate sacral nerves to treat bladder and pelvic dysfunction and to augment motor function. In theory, FES should facilitate synaptic formation and motor recovery after regenerative therapies. Upcoming clinical trials provide unique opportunities to test the theory.
Collapse
Affiliation(s)
- Wise Young
- W. M. Keck Center for Collaborative Neuroscience, Rutgers, State University of New Jersey, Piscataway, NJ, USA
| |
Collapse
|
29
|
Stevens SL, Morgan DW. Heart rate response during underwater treadmill training in adults with incomplete spinal cord injury. Top Spinal Cord Inj Rehabil 2015; 21:40-8. [PMID: 25762859 PMCID: PMC4349174 DOI: 10.1310/sci2101-40] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
BACKGROUND Walking on a submerged treadmill can improve mobility in persons displaying lower limb muscle weakness and balance deficits. Little is known, however, regarding the effect of water treadmill exercise on cardiac performance in persons with incomplete spinal cord injury (iSCI). OBJECTIVE To assess heart rate response during underwater treadmill training (UTT) in adults with iSCI. METHODS Seven males and 4 females with iSCI (age = 48 ± 13 years; 5 ± 8 years after injury) completed 8 weeks of UTT (3 sessions per week; 3 walks per session) incorporating individually determined walking speeds, personalized levels of body weight unloading, and gradual, alternating increases in speed and duration. Heart rate was monitored during the last 15 seconds of the final 2 minutes of each walk. RESULTS Over the course of 3 biweekly periods in which walking speed remained constant, heart rate fell by 7% (7 ± 1 b•min(-1); P < .001) in weeks 2 and 3, 14% (17 ± 6 b•min(-1); P < .001) in weeks 4 and 5, and 17% (21 ± 11 b•min(-1); P < .001) in weeks 6 and 7. CONCLUSION In adults with iSCI, progressively greater absolute and relative reductions in submaximal exercise heart rate occurred after 2 months of UTT featuring a systematic increase in training volume.
Collapse
Affiliation(s)
- Sandra L. Stevens
- Department of Health and Human Performance, Middle Tennessee State University, Murfreesboro, Tennessee
| | - Don W. Morgan
- Department of Health and Human Performance, Middle Tennessee State University, Murfreesboro, Tennessee
| |
Collapse
|
30
|
Kressler J, Thomas CK, Field-Fote EC, Sanchez J, Widerström-Noga E, Cilien DC, Gant K, Ginnety K, Gonzalez H, Martinez A, Anderson KD, Nash MS. Understanding therapeutic benefits of overground bionic ambulation: exploratory case series in persons with chronic, complete spinal cord injury. Arch Phys Med Rehabil 2014; 95:1878-1887.e4. [PMID: 24845221 DOI: 10.1016/j.apmr.2014.04.026] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Revised: 03/21/2014] [Accepted: 04/10/2014] [Indexed: 12/29/2022]
Abstract
OBJECTIVE To explore responses to overground bionic ambulation (OBA) training from an interdisciplinary perspective including key components of neuromuscular activation, exercise conditioning, mobility capacity, and neuropathic pain. DESIGN Case series. SETTING Academic research center. PARTICIPANTS Persons (N=3; 2 men, 1 woman) aged 26 to 38 years with complete spinal cord injury (SCI) (American Spinal Injury Association Impairment Scale grade A) between the levels of T1 and T10 for ≥1 year. INTERVENTION OBA 3d/wk for 6 weeks. MAIN OUTCOME MEASURES To obtain a comprehensive understanding of responses to OBA, an array of measures were obtained while walking in the device, including walking speeds and distances, energy expenditure, exercise conditioning effects, and neuromuscular and cortical activity patterns. Changes in spasticity and pain severity related to OBA use were also assessed. RESULTS With training, participants were able to achieve walking speeds and distances in the OBA device similar to those observed in persons with motor-incomplete SCI (10-m walk speed, .11-.33m/s; 2-min walk distance, 11-33m). The energy expenditure required for OBA was similar to walking in persons without disability (ie, 25%-41% of peak oxygen consumption). Subjects with lower soleus reflex excitability walked longer during training, but there was no change in the level or amount of muscle activity with training. There was no change in cortical activity patterns. Exercise conditioning effects were small or nonexistent. However, all participants reported an average reduction in pain severity over the study period ranging between -1.3 and 1.7 on a 0-to-6 numeric rating scale. CONCLUSIONS OBA training improved mobility in the OBA device without significant changes in exercise conditioning or in neuromuscular or cortical activity. However, pain severity was reduced and no severe adverse events were encountered during training. OBA therefore opens the possibility to reduce the common consequences of chronic, complete SCI such as reduced functional mobility and neuropathic pain.
Collapse
Affiliation(s)
- Jochen Kressler
- The Miami Project to Cure Paralysis, Miller School of Medicine, University of Miami, Miami, FL.
| | - Christine K Thomas
- The Miami Project to Cure Paralysis, Miller School of Medicine, University of Miami, Miami, FL; Department of Neurological Surgery, Miller School of Medicine, University of Miami, Miami, FL; Department of Physiology and Biophysics, Miller School of Medicine, University of Miami, Miami, FL
| | - Edelle C Field-Fote
- The Miami Project to Cure Paralysis, Miller School of Medicine, University of Miami, Miami, FL; Department of Neurological Surgery, Miller School of Medicine, University of Miami, Miami, FL; Department of Rehabilitation Medicine, Miller School of Medicine, University of Miami, Miami, FL; Department of Physical Therapy, Miller School of Medicine, University of Miami, Miami, FL
| | - Justin Sanchez
- The Miami Project to Cure Paralysis, Miller School of Medicine, University of Miami, Miami, FL; Department of Biomedical Engineering, Miller School of Medicine, University of Miami, Miami, FL
| | - Eva Widerström-Noga
- The Miami Project to Cure Paralysis, Miller School of Medicine, University of Miami, Miami, FL; Department of Neurological Surgery, Miller School of Medicine, University of Miami, Miami, FL; Department of Rehabilitation Medicine, Miller School of Medicine, University of Miami, Miami, FL
| | - Deena C Cilien
- The Miami Project to Cure Paralysis, Miller School of Medicine, University of Miami, Miami, FL
| | - Katie Gant
- The Miami Project to Cure Paralysis, Miller School of Medicine, University of Miami, Miami, FL
| | - Kelly Ginnety
- The Miami Project to Cure Paralysis, Miller School of Medicine, University of Miami, Miami, FL
| | - Hernan Gonzalez
- Department of Biomedical Engineering, Miller School of Medicine, University of Miami, Miami, FL
| | - Adriana Martinez
- The Miami Project to Cure Paralysis, Miller School of Medicine, University of Miami, Miami, FL
| | - Kimberley D Anderson
- The Miami Project to Cure Paralysis, Miller School of Medicine, University of Miami, Miami, FL
| | - Mark S Nash
- The Miami Project to Cure Paralysis, Miller School of Medicine, University of Miami, Miami, FL; Department of Neurological Surgery, Miller School of Medicine, University of Miami, Miami, FL; Department of Rehabilitation Medicine, Miller School of Medicine, University of Miami, Miami, FL; Department of Medicine, Miller School of Medicine, University of Miami, Miami, FL
| |
Collapse
|