1
|
Schoffl J, Craig A, McBain C, Pozzato I, Middleton JW, Arora M. The Effect of Non-Invasive, Non-Pharmacological Interventions on Autonomic Regulation of Cardiovascular Function in Adults with Spinal Cord Injury: A Systematic Review with Meta-Analysis. Neurotrauma Rep 2025; 5:1151-1172. [PMID: 40007857 PMCID: PMC11848056 DOI: 10.1089/neur.2024.0110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2025] Open
Abstract
Autonomic regulation of cardiovascular function is often disrupted following a spinal cord injury (SCI). A systematic review was undertaken to evaluate the effect of non-invasive, non-pharmacological (NINP) interventions on cardiovascular autonomic biomarkers in adults with SCI. AMED, CENTRAL, CINAHL EMBASE, and MEDLINE were searched from inception to May 17, 2024. Randomized controlled trials (RCTs) of NINP interventions for cardiovascular autonomic biomarkers (heart rate variability [HRV], systolic blood pressure variability [SBPV], or baroreflex gain) in adults (≥18 years of age) with SCI (>3 months) were included. Primary outcomes included HRV (low-frequency power [HRV-LF], high-frequency power [HRV-HF], root mean square of successive differences [RMSSD]), SBPV (low-frequency power [SBPV-LF]), and baroreflex sensitivity. The quality and certainty of the evidence were assessed using version 2 of the Cochrane risk of bias tool and the Preferred Reporting Items for Systematic Reviews and Meta-Analysis tool, respectively. Of 2651 records identified, six RCTs were included (participants, n = 123). HRV-LF (four studies; participants, n = 69) and HRV-HF (five studies; participants, n = 93) showed no to small changes in favor of NINP interventions ([g = 0.25; 95% confidence interval [CI] = -0.23, 0.73; p = 0.31; I2 = 0%], [g = 0.00; 95% CI = -0.41, 0.42; p = 0.98; I2 = 0%], respectively). Limited evidence was available for RMSSD, SBPV-LF, and baroreflex gain. This review found that the evidence is inconclusive regarding the effect of NINP interventions on the included HRV, BPV, and BRS parameters in adults with SCI. Further research with strong methodological rigor is needed to provide greater insights in this area.
Collapse
Affiliation(s)
- Jacob Schoffl
- John Walsh Centre for Rehabilitation Research, Northern Sydney Local Health District, St Leonards, NSW, Australia
- The Kolling Institute, School of Health Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Ashley Craig
- John Walsh Centre for Rehabilitation Research, Northern Sydney Local Health District, St Leonards, NSW, Australia
- The Kolling Institute, School of Health Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Candice McBain
- John Walsh Centre for Rehabilitation Research, Northern Sydney Local Health District, St Leonards, NSW, Australia
- The Kolling Institute, School of Health Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Ilaria Pozzato
- John Walsh Centre for Rehabilitation Research, Northern Sydney Local Health District, St Leonards, NSW, Australia
- The Kolling Institute, School of Health Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - James W. Middleton
- John Walsh Centre for Rehabilitation Research, Northern Sydney Local Health District, St Leonards, NSW, Australia
- The Kolling Institute, School of Health Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Mohit Arora
- John Walsh Centre for Rehabilitation Research, Northern Sydney Local Health District, St Leonards, NSW, Australia
- The Kolling Institute, School of Health Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
2
|
Tharu NS, Suthar A, Gerasimenko Y, Castillo C, Ng A, Ovechkin A. Noninvasive Electrical Modalities to Alleviate Respiratory Deficits Following Spinal Cord Injury. Life (Basel) 2024; 14:1657. [PMID: 39768364 PMCID: PMC11728181 DOI: 10.3390/life14121657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 12/10/2024] [Accepted: 12/10/2024] [Indexed: 01/16/2025] Open
Abstract
(1) Background: Respiratory dysfunction is a debilitating consequence of cervical and thoracic spinal cord injury (SCI), resulting from the loss of cortico-spinal drive to respiratory motor networks. This impairment affects both central and peripheral nervous systems, disrupting motor control and muscle innervation, which is essential for effective breathing. These deficits significantly impact the health and quality of life of individuals with SCI. Noninvasive stimulation techniques targeting these networks have emerged as a promising strategy to restore respiratory function. This study systematically reviewed the evidence on noninvasive electrical stimulation modalities targeting respiratory motor networks, complemented by previously unpublished data from our research. (2) Methods: A systematic search of five databases (PubMed, Ovid, Embase, Science Direct, and Web of Science) identified studies published through 31 August 2024. A total of 19 studies involving 194 participants with SCI were included. Unpublished data from our research were also analyzed to provide supplementary insights. (3) Results: Among the stimulation modalities reviewed, spinal cord transcutaneous stimulation (scTS) emerged as a particularly promising therapeutic approach for respiratory rehabilitation in individuals with SCI. An exploratory clinical trial conducted by the authors confirmed the effectiveness of scTS in enhancing respiratory motor performance using a bipolar, 5 kHz-modulated, and 1 ms pulse width modality. However, the heterogeneity in SCI populations and stimulation protocols across studies underscores the need for further standardization and individualized optimization to enhance clinical outcomes. (4) Conclusions: Developing standardized and individualized neuromodulatory protocols, addressing both central and peripheral nervous system impairments, is critical to optimizing respiratory recovery and advancing clinical implementation.
Collapse
Affiliation(s)
- Niraj Singh Tharu
- Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, KY 40202, USA; (N.S.T.); (A.S.)
| | - Aastha Suthar
- Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, KY 40202, USA; (N.S.T.); (A.S.)
- Department of Neurological Surgery, University of Louisville, Louisville, KY 40202, USA
| | - Yury Gerasimenko
- Department of Physiology, University of Louisville, Louisville, KY 40202, USA;
- Pavlov Institute of Physiology Russian Academy of Sciences, St. Petersburg 199034, Russia
| | - Camilo Castillo
- Department of Neurological Surgery, Division of Physical Medicine and Rehabilitation, University of Louisville, Louisville, KY 40202, USA;
| | - Alex Ng
- Department of Medicine, Division of Pulmonary, Critical Care, and Sleep Disorders Medicine, University of Louisville, Louisville, KY 40202, USA;
| | - Alexander Ovechkin
- Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, KY 40202, USA; (N.S.T.); (A.S.)
- Department of Neurological Surgery, University of Louisville, Louisville, KY 40202, USA
| |
Collapse
|
3
|
Li Q, Li C, Zhang X. Research Progress on the Effects of Different Exercise Modes on the Secretion of Exerkines After Spinal Cord Injury. Cell Mol Neurobiol 2024; 44:62. [PMID: 39352588 PMCID: PMC11445308 DOI: 10.1007/s10571-024-01497-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 09/16/2024] [Indexed: 10/04/2024]
Abstract
Exercise training is a conventional treatment strategy throughout the entire treatment process for patients with spinal cord injury (SCI). Currently, exercise modalities for SCI patients primarily include aerobic exercise, endurance training, strength training, high-intensity interval training, and mind-body exercises. These exercises play a positive role in enhancing skeletal muscle function, inducing neuroprotection and regeneration, thereby influencing neural plasticity, reducing limb spasticity, and improving motor function and daily living abilities in SCI patients. However, the mechanism by which exercise training promotes functional recovery after SCI is still unclear, and there is no consensus on a unified and standardized exercise treatment plan. Different exercise methods may bring different benefits. After SCI, patients' physical activity levels decrease significantly due to factors such as motor dysfunction, which may be a key factor affecting changes in exerkines. The changes in exerkines of SCI patients caused by exercise training are an important and highly relevant and visual evaluation index, which may provide a new research direction for revealing the intrinsic mechanism by which exercise promotes functional recovery after SCI. Therefore, this article summarizes the changes in the expression of common exerkines (neurotrophic factors, inflammatory factors, myokines, bioactive peptides) after SCI, and intends to analyze the impact and role of different exercise methods on functional recovery after SCI from the perspective of exerkines mechanism. We hope to provide theoretical basis and data support for scientific exercise treatment programs after SCI.
Collapse
Affiliation(s)
- Qianxi Li
- School of Sport Medicine and Rehabilitation, Beijing Sport University, Beijing, 100084, China
| | - Chenyu Li
- School of Sport Medicine and Rehabilitation, Beijing Sport University, Beijing, 100084, China
| | - Xin Zhang
- School of Sport Medicine and Rehabilitation, Beijing Sport University, Beijing, 100084, China.
| |
Collapse
|
4
|
Tsou HK, Shih KC, Lin YC, Li YM, Chen HY. Altered heart rate variability and pulse-wave velocity after spinal cord injury. World J Clin Cases 2022; 10:9680-9692. [PMID: 36186200 PMCID: PMC9516939 DOI: 10.12998/wjcc.v10.i27.9680] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 07/14/2022] [Accepted: 08/15/2022] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Heart rate variability (HRV) and pulse-wave velocity (PWV), indicators of cardiac function, are altered in patients with spinal cord injury (SCI), suggesting that autonomic cardiac function and arterial stiffness may underlie the high risk of cardiovascular complications in these patients. No study has simultaneously investigated HRV and PWV in the same patients. AIM To evaluate cardiovascular complications in SCI patients by comparing HRV and PWV between patients with and without SCI. METHODS In this cross-sectional pilot study, patients with (n = 60) and without SCI (n = 60) were recruited from December 7, 2019 to January 21, 2020. Each participant received a five-minute assessment of HRV and the cardiovascular system using the Medicore HRV Analyzer SA-3000P. Differences in HRV and PWV parameters between participants with and without SCI were statistically examined. RESULTS We observed a significant difference between participants with and without SCI with respect to the standard deviation of all normal-to-normal intervals, square root of the mean sum of squared successive risk ratio interval differences, physical stress index, total power, very-low frequency, low frequency, high frequency, and arterial elasticity. CONCLUSION Patients with SCI have weaker sympathetic and parasympathetic activity as well as lower arterial elasticity compared to those without, suggesting that SCI may increase cardiac function loading.
Collapse
Affiliation(s)
- Hsi-Kai Tsou
- Functional Neurosurgery Division, Neurological Institute, Taichung Veterans General Hospital, Taichung 404, Taiwan
- Department of Rehabilitation, Jen-Teh Junior College of Medicine, Nursing and Management, Miaoli County 356, Taiwan
- College of Health, National Taichung University of Science and Technology, Taichung 403, Taiwan
- College of Medicine, National Chung Hsing University, Taichung 402, Taiwan
| | - Kuan-Chung Shih
- Research Assistant, The Rong Sing Medical Foundation, Taichung 404, Taiwan
| | - Yueh-Chiang Lin
- Research Assistant, Neurological Institute, Taichung Veterans General Hospital, Taichung 404, Taiwan
| | - Yi-Ming Li
- Research Assistant, Department of Nursing, National Taichung University of Science and Technology, Taichung 403, Taiwan
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 106, Taiwan
| | - Hsiao-Yu Chen
- Department of Nursing, National Taichung University of Science and Technology, Taichung 403, Taiwan
| |
Collapse
|
5
|
Adaptive Sports in Spinal Cord Injury: a Systematic Review. CURRENT PHYSICAL MEDICINE AND REHABILITATION REPORTS 2022; 10:145-153. [PMID: 35821797 PMCID: PMC9261885 DOI: 10.1007/s40141-022-00358-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/02/2022] [Indexed: 11/02/2022]
Abstract
Purpose of Review Recent Findings Summary
Collapse
|
6
|
Randelman M, Zholudeva LV, Vinit S, Lane MA. Respiratory Training and Plasticity After Cervical Spinal Cord Injury. Front Cell Neurosci 2021; 15:700821. [PMID: 34621156 PMCID: PMC8490715 DOI: 10.3389/fncel.2021.700821] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 08/11/2021] [Indexed: 12/30/2022] Open
Abstract
While spinal cord injuries (SCIs) result in a vast array of functional deficits, many of which are life threatening, the majority of SCIs are anatomically incomplete. Spared neural pathways contribute to functional and anatomical neuroplasticity that can occur spontaneously, or can be harnessed using rehabilitative, electrophysiological, or pharmacological strategies. With a focus on respiratory networks that are affected by cervical level SCI, the present review summarizes how non-invasive respiratory treatments can be used to harness this neuroplastic potential and enhance long-term recovery. Specific attention is given to "respiratory training" strategies currently used clinically (e.g., strength training) and those being developed through pre-clinical and early clinical testing [e.g., intermittent chemical stimulation via altering inhaled oxygen (hypoxia) or carbon dioxide stimulation]. Consideration is also given to the effect of training on non-respiratory (e.g., locomotor) networks. This review highlights advances in this area of pre-clinical and translational research, with insight into future directions for enhancing plasticity and improving functional outcomes after SCI.
Collapse
Affiliation(s)
- Margo Randelman
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA, United States.,Marion Murray Spinal Cord Research Center, Drexel University College of Medicine, Philadelphia, PA, United States
| | - Lyandysha V Zholudeva
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA, United States.,Marion Murray Spinal Cord Research Center, Drexel University College of Medicine, Philadelphia, PA, United States.,Gladstone Institutes, San Francisco, CA, United States
| | - Stéphane Vinit
- INSERM, END-ICAP, Université Paris-Saclay, UVSQ, Versailles, France
| | - Michael A Lane
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA, United States.,Marion Murray Spinal Cord Research Center, Drexel University College of Medicine, Philadelphia, PA, United States
| |
Collapse
|
7
|
Effects of Respiratory Muscle Training on Baroreflex Sensitivity, Respiratory Function, and Serum Oxidative Stress in Acute Cervical Spinal Cord Injury. J Pers Med 2021; 11:jpm11050377. [PMID: 34062971 PMCID: PMC8147917 DOI: 10.3390/jpm11050377] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 04/30/2021] [Accepted: 04/30/2021] [Indexed: 11/24/2022] Open
Abstract
Background: respiratory complications are a leading cause of morbidity and mortality in individuals with spinal cord injury (SCI). We examined the effects of respiratory muscle training (RMT) in patients with acute cervical SCI. Methods: this prospective trial enrolled 44 adults with acute cervical SCI, of which twenty received RMT and twenty-four did not receive RMT. Respiratory function, cardiovascular autonomic function, and reactive oxidative species (ROS) were compared. The experimental group received 40-min high-intensity home-based RMT 7 days per week for 10 weeks. The control group received a sham intervention for a similar period. The primary outcomes were the effects of RMT on pulmonary and cardiovascular autonomic function, and ROS production in individuals with acute cervical SCI. Results: significant differences between the two groups in cardiovascular autonomic function and the heart rate response to deep breathing (p = 0.017) were found at the 6-month follow-up. After RMT, the maximal inspiratory pressure (p = 0.042) and thiobarbituric acid-reactive substances (TBARS) (p = 0.006) improved significantly, while there was no significant difference in the maximal expiratory pressure. Significant differences between the two groups in tidal volume (p = 0.005) and the rapid shallow breathing index (p = 0.031) were found at 6 months. Notably, the SF-36 (both the physical (PCS) and mental (MCS) component summaries) in the RMT group had decreased significantly at the 6-month follow-up, whereas the clinical scores did not differ significantly (p = 0.333) after RMT therapy. Conclusions: High-intensity home-based RMT can improve pulmonary function and endurance and reduce breathing difficulties in patients with respiratory muscle weakness after injury. It is recommended for rehabilitation after spinal cord injury.
Collapse
|
8
|
Bilchak JN, Caron G, Côté MP. Exercise-Induced Plasticity in Signaling Pathways Involved in Motor Recovery after Spinal Cord Injury. Int J Mol Sci 2021; 22:ijms22094858. [PMID: 34064332 PMCID: PMC8124911 DOI: 10.3390/ijms22094858] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 04/28/2021] [Accepted: 04/29/2021] [Indexed: 02/06/2023] Open
Abstract
Spinal cord injury (SCI) leads to numerous chronic and debilitating functional deficits that greatly affect quality of life. While many pharmacological interventions have been explored, the current unsurpassed therapy for most SCI sequalae is exercise. Exercise has an expansive influence on peripheral health and function, and by activating the relevant neural pathways, exercise also ameliorates numerous disorders of the central nervous system (CNS). While the exact mechanisms by which this occurs are still being delineated, major strides have been made in the past decade to understand the molecular underpinnings of this essential treatment. Exercise rapidly and prominently affects dendritic sprouting, synaptic connections, neurotransmitter production and regulation, and ionic homeostasis, with recent literature implicating an exercise-induced increase in neurotrophins as the cornerstone that binds many of these effects together. The field encompasses vast complexity, and as the data accumulate, disentangling these molecular pathways and how they interact will facilitate the optimization of intervention strategies and improve quality of life for individuals affected by SCI. This review describes the known molecular effects of exercise and how they alter the CNS to pacify the injury environment, increase neuronal survival and regeneration, restore normal neural excitability, create new functional circuits, and ultimately improve motor function following SCI.
Collapse
|
9
|
Suarez-Roca H, Mamoun N, Sigurdson MI, Maixner W. Baroreceptor Modulation of the Cardiovascular System, Pain, Consciousness, and Cognition. Compr Physiol 2021; 11:1373-1423. [PMID: 33577130 DOI: 10.1002/cphy.c190038] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Baroreceptors are mechanosensitive elements of the peripheral nervous system that maintain cardiovascular homeostasis by coordinating the responses to external and internal environmental stressors. While it is well known that carotid and cardiopulmonary baroreceptors modulate sympathetic vasomotor and parasympathetic cardiac neural autonomic drive, to avoid excessive fluctuations in vascular tone and maintain intravascular volume, there is increasing recognition that baroreceptors also modulate a wide range of non-cardiovascular physiological responses via projections from the nucleus of the solitary tract to regions of the central nervous system, including the spinal cord. These projections regulate pain perception, sleep, consciousness, and cognition. In this article, we summarize the physiology of baroreceptor pathways and responses to baroreceptor activation with an emphasis on the mechanisms influencing cardiovascular function, pain perception, consciousness, and cognition. Understanding baroreceptor-mediated effects on cardiac and extra-cardiac autonomic activities will further our understanding of the pathophysiology of multiple common clinical conditions, such as chronic pain, disorders of consciousness (e.g., abnormalities in sleep-wake), and cognitive impairment, which may result in the identification and implementation of novel treatment modalities. © 2021 American Physiological Society. Compr Physiol 11:1373-1423, 2021.
Collapse
Affiliation(s)
- Heberto Suarez-Roca
- Department of Anesthesiology, Center for Translational Pain Medicine, Duke University, Durham, North Carolina, USA
| | - Negmeldeen Mamoun
- Department of Anesthesiology, Division of Cardiothoracic Anesthesia and Critical Care Medicine, Duke University, Durham, North Carolina, USA
| | - Martin I Sigurdson
- Department of Anesthesiology and Critical Care Medicine, Landspitali, University Hospital, Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | - William Maixner
- Department of Anesthesiology, Center for Translational Pain Medicine, Duke University, Durham, North Carolina, USA
| |
Collapse
|
10
|
Lemos JR, da Cunha FA, Lopes AJ, Guimarães FS, do Amaral Vasconcellos FV, Dos Santos Vigário P. Respiratory muscle training in non-athletes and athletes with spinal cord injury: A systematic review of the effects on pulmonary function, respiratory muscle strength and endurance, and cardiorespiratory fitness based on the FITT principle of exercise prescription. J Back Musculoskelet Rehabil 2020; 33:655-667. [PMID: 31594206 DOI: 10.3233/bmr-181452] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
BACKGROUND Respiratory muscle training (RMT) has been recommended to mitigate impacts of spinal cord injuries (SCI), but the optimal dosage in terms of the frequency, intensity, time, and type (FITT principle) to promote health in SCI individuals remains unclear. OBJECTIVE To discuss research related to the effects of RMT on pulmonary function, respiratory muscle strength and cardiorespiratory fitness in athletes and non-athletes with SCI, presenting the FITT principle. METHODS We performed a systematic review. PubMed, Lilacs, Scopus, Web of Science, PEDro, SciELO and Cochrane databases were searched between 1989 and August 2018. Participants were athletes and non-athletes with SCI. RESULTS 4,354 studies were found, of which only 17 met the eligibility criteria. Results indicated that RMT is associated with beneficial changes in pulmonary function and respiratory muscle strength and endurance among athletes and non-athletes, whereas no effect was reported for maximal oxygen uptake. It was not possible to establish an optimal RMT dose from the FITT principle, but combined inspiratory/expiratory muscle training seems to promote greater respiratory changes than isolated IMT or EMT. CONCLUSION The use of RMT elicits benefits in ventilatory variables of athletes and non-athletes with SCI. However, it remains unclear which RMT type and protocol should be used to maximize benefits.
Collapse
Affiliation(s)
- Júlia Ribeiro Lemos
- Postgraduate Program in Rehabilitation Sciences, Augusto Motta University Center, Rio de Janeiro, Brazil
| | - Felipe Amorim da Cunha
- Postgraduate Program in Exercise Science and Sports, University of Rio de Janeiro State, Rio de Janeiro, Brazil.,Laboratory of Physical Activity and Health Promotion, University of Rio de Janeiro State, Rio de Janeiro, Brazil
| | - Agnaldo José Lopes
- Postgraduate Program in Rehabilitation Sciences, Augusto Motta University Center, Rio de Janeiro, Brazil
| | | | - Fabrício Vieira do Amaral Vasconcellos
- Postgraduate Program in Exercise Science and Sports, University of Rio de Janeiro State, Rio de Janeiro, Brazil.,Laboratory of Physical Activity and Health Promotion, University of Rio de Janeiro State, Rio de Janeiro, Brazil
| | | |
Collapse
|
11
|
Sisto SA. Archives of Physical Medicine and Rehabilitation and ACRM Recognize the Elizabeth and Sidney Licht Award Winner and Nominees for Excellence in Scientific Writing. Arch Phys Med Rehabil 2020; 101:722-727. [PMID: 32007237 DOI: 10.1016/j.apmr.2019.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 12/10/2019] [Indexed: 11/29/2022]
Affiliation(s)
- Sue Ann Sisto
- Department of Rehabilitation Science, School of Public Health and Health Professions, University at Buffalo, State University of New York, Buffalo, NY
| |
Collapse
|
12
|
Gee CM, Williams AM, Sheel AW, Eves ND, West CR. Respiratory muscle training in athletes with cervical spinal cord injury: effects on cardiopulmonary function and exercise capacity. J Physiol 2019; 597:3673-3685. [DOI: 10.1113/jp277943] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 05/20/2019] [Indexed: 01/22/2023] Open
Affiliation(s)
- Cameron M. Gee
- International Collaboration on Repair Discoveries Vancouver BC Canada
- School of KinesiologyUniversity of British Columbia Vancouver BC Canada
- Canadian Sport Institute – Pacific Victoria BC Canada
| | - Alexandra M. Williams
- International Collaboration on Repair Discoveries Vancouver BC Canada
- Faculty of MedicineUniversity of British Columbia Kelowna BC Canada
| | - A. William Sheel
- International Collaboration on Repair Discoveries Vancouver BC Canada
- School of KinesiologyUniversity of British Columbia Vancouver BC Canada
| | - Neil D. Eves
- Centre for Heart Lung & Vascular HealthSchool of Health & Exercise SciencesUniversity of British Columbia Kelowna BC Canada
| | - Christopher R. West
- International Collaboration on Repair Discoveries Vancouver BC Canada
- Canadian Sport Institute – Pacific Victoria BC Canada
- Faculty of MedicineUniversity of British Columbia Kelowna BC Canada
| |
Collapse
|
13
|
Cipriano GF, Cipriano G, Santos FV, Güntzel Chiappa AM, Pires L, Cahalin LP, Chiappa GR. Current insights of inspiratory muscle training on the cardiovascular system: a systematic review with meta-analysis. Integr Blood Press Control 2019; 12:1-11. [PMID: 31190975 PMCID: PMC6535083 DOI: 10.2147/ibpc.s159386] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2018] [Accepted: 04/26/2019] [Indexed: 12/24/2022] Open
Abstract
Background: Cardiorespiratory limitation is a common hallmark of cardiovascular disease which is a key component of pharmacological and exercise treatments. More recently, inspiratory muscle training (IMT) is becoming an effective complementary treatment with positive effects on muscle strength and exercise capacity. We assessed the effectiveness of IMT on the cardiovascular system through autonomic function modulation via heart rate variability and arterial blood pressure. Methods: Randomized controlled trials (RCTs) were identified from searches of The Cochrane Library, MEDLINE and EMBASE to November 2018. Citations, conference proceedings and previous reviews were included without population restriction, comparing IMT intervention to no treatment, placebo or active control. Results: We identified 10 RCTs involving 267 subjects (mean age range 51–71 years). IMT programs targeted maximum inspiratory pressure (MIP) and cardiovascular outcomes, using low (n=6) and moderate to high intensity (n=4) protocols, but the protocols varied considerably (duration: 1–12 weeks, frequency: 3–14 times/week, time: 10–30 mins). An overall increase of the MIP (cmH2O) was observed (−27.57 95% CI −18.48, −37.45, I2=64%), according to weighted mean difference (95%CI), and was accompanied by a reduction of the low to high frequency ratio (−0.72 95% CI−1.40, −0.05, I2=50%). In a subgroup analysis, low- and moderate-intensity IMT treatment was associated with a reduction of the heart rate (HR) (−7.59 95% CI −13.96, −1.22 bpm, I2=0%) and diastolic blood pressure (DBP) (−8.29 [−11.64, −4.94 mmHg], I2=0%), respectively. Conclusion: IMT is an effective treatment for inspiratory muscle weakness in several populations and could be considered as a complementary treatment to improve the cardiovascular system, mainly HR and DBP. Further research is required to better understand the above findings.
Collapse
Affiliation(s)
- Graziella Fb Cipriano
- Physical Therapy Department, University of Brasilia, Brasilia, Brazil.,Department of Physical Therapy, University of Miami Miller School Of Medicine, Coral Gables, FL, USA
| | - Gerson Cipriano
- Physical Therapy Department, University of Brasilia, Brasilia, Brazil.,Department of Physical Therapy, University of Miami Miller School Of Medicine, Coral Gables, FL, USA
| | - Francisco V Santos
- Physical Therapy Department, University of Brasilia, Brasilia, Brazil.,Department of Education and Training in Oncology, Cancer Institute of São Paulo, São Paulo, Brazil
| | | | - Luigi Pires
- Centro Universitário do Planalto Central Professor Apparecido dos Santos, Brasilia, Brazil
| | - Lawrence Patrick Cahalin
- Department of Physical Therapy, University of Miami Miller School Of Medicine, Coral Gables, FL, USA
| | - Gaspar R Chiappa
- Centro Universitário do Planalto Central Professor Apparecido dos Santos, Brasilia, Brazil.,University Center, UniEvangelica, Anapolis, Goias, Brazil
| |
Collapse
|
14
|
Herrity AN, Williams CS, Angeli CA, Harkema SJ, Hubscher CH. Lumbosacral spinal cord epidural stimulation improves voiding function after human spinal cord injury. Sci Rep 2018; 8:8688. [PMID: 29875362 PMCID: PMC5989228 DOI: 10.1038/s41598-018-26602-2] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 05/15/2018] [Indexed: 01/05/2023] Open
Abstract
Deficits in urologic function after spinal cord injury (SCI) manifest both as a failure to store and empty, greatly impacting daily life. While current management strategies are necessary for urological maintenance, they oftentimes are associated with life-long side effects. Our objective was to investigate the efficacy of spinal cord epidural stimulation (scES) as a promising therapy to improve bladder control after SCI. A bladder mapping study was undertaken for sixteen sessions over the course of four months in an individual with chronic, motor complete SCI. Varying combinations of stimulating cathode electrodes were initially tested during filling cystometry resulting in the identification of an effective configuration for reflexive bladder emptying at the caudal end of the electrode array. Subsequent systematic testing of different frequencies at a fixed stimulus intensity and pulse width yielded lowest post-void residual volumes at 30 Hz. These stimulation parameters were then tested in four additional research participants and found to also improve reflexive voiding efficiency. Taken together with SCI studies on step, stand, voluntary motor control and cardiovascular regulation, these findings further corroborate that scES has an all-encompassing potential to increase the central state of excitability, allowing for the control of multiple body functions, including the urological system.
Collapse
Affiliation(s)
- A N Herrity
- Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, KY, USA.,Department of Neurological Surgery, University of Louisville, Louisville, KY, USA
| | - C S Williams
- Department of Urology, University of Louisville, Louisville, KY, USA
| | - C A Angeli
- Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, KY, USA.,Frazier Rehab Institute, Louisville, KY, USA
| | - S J Harkema
- Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, KY, USA.,Department of Neurological Surgery, University of Louisville, Louisville, KY, USA.,Frazier Rehab Institute, Louisville, KY, USA
| | - C H Hubscher
- Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, KY, USA. .,Department of Anatomical Sciences and Neurobiology, University of Louisville, Louisville, KY, USA.
| |
Collapse
|
15
|
Legg Ditterline BE, Asian SC, Randall DC, Harkema SJ, Castillo C, Ovechkin AV. Response to Letter to the Editor regarding "Effects of respiratory training on heart rate variability and baroreflex sensitivity in individuals with chronic spinal cord injury". Arch Phys Med Rehabil 2018; 99:776-777. [PMID: 29580462 PMCID: PMC6037166 DOI: 10.1016/j.apmr.2018.01.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 01/05/2018] [Indexed: 12/19/2022]
Affiliation(s)
| | - Sevda C Asian
- Department of Neurological Surgery, University of Louisville, Louisville, KY
| | - David C Randall
- Department of Physiology, University of Kentucky, Lexington, KY
| | - Susan J Harkema
- Departments of Physiology and Neurological Surgery, University of Louisville, Louisville, KY
| | - Camilo Castillo
- Department of Neurological Surgery, University of Louisville, Louisville, KY
| | - Alexander V Ovechkin
- Departments of Physiology and Neurological Surgery, University of Louisville, Louisville, KY
| |
Collapse
|
16
|
Gee CM, West CR. Effects of Respiratory Training on Heart Rate Variability and Baroreflex Sensitivity in Individuals with Chronic Spinal Cord Injury. Arch Phys Med Rehabil 2018; 99:776. [PMID: 29580461 DOI: 10.1016/j.apmr.2017.12.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2017] [Accepted: 12/17/2017] [Indexed: 11/19/2022]
Affiliation(s)
- Cameron M Gee
- University of British Columbia, Vancouver, BC, Canada
| | | |
Collapse
|
17
|
Goswami N, Blaber AP, Hinghofer-Szalkay H, Montani JP. Orthostatic Intolerance in Older Persons: Etiology and Countermeasures. Front Physiol 2017; 8:803. [PMID: 29163185 PMCID: PMC5677785 DOI: 10.3389/fphys.2017.00803] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Accepted: 09/29/2017] [Indexed: 12/16/2022] Open
Abstract
Orthostatic challenge produced by upright posture may lead to syncope if the cardiovascular system is unable to maintain adequate brain perfusion. This review outlines orthostatic intolerance related to the aging process, long-term bedrest confinement, drugs, and disease. Aging-associated illness or injury due to falls often leads to hospitalization. Older patients spend up to 83% of hospital admission lying in bed and thus the consequences of bedrest confinement such as physiological deconditioning, functional decline, and orthostatic intolerance represent a central challenge in the care of the vulnerable older population. This review examines current scientific knowledge regarding orthostatic intolerance and how it comes about and provides a framework for understanding of (patho-) physiological concepts of cardiovascular (in-) stability in ambulatory and bedrest confined senior citizens as well as in individuals with disease conditions [e.g., orthostatic intolerance in patients with diabetes mellitus, multiple sclerosis, Parkinson's, spinal cord injury (SCI)] or those on multiple medications (polypharmacy). Understanding these aspects, along with cardio-postural interactions, is particularly important as blood pressure destabilization leading to orthostatic intolerance affects 3-4% of the general population, and in 4 out of 10 cases the exact cause remains elusive. Reviewed also are countermeasures to orthostatic intolerance such as exercise, water drinking, mental arithmetic, cognitive training, and respiration training in SCI patients. We speculate that optimally applied countermeasures such as mental challenge maintain sympathetic activity, and improve venous return, stroke volume, and consequently, blood pressure during upright standing. Finally, this paper emphasizes the importance of an active life style in old age and why early re-mobilization following bedrest confinement or bedrest is crucial in preventing orthostatic intolerance, falls and falls-related injuries in older persons.
Collapse
Affiliation(s)
- Nandu Goswami
- Gravitational Physiology and Medicine Research Unit, Institute of Physiology, Medical University of Graz, Graz, Austria
| | - Andrew P Blaber
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada
| | - Helmut Hinghofer-Szalkay
- Gravitational Physiology and Medicine Research Unit, Institute of Physiology, Medical University of Graz, Graz, Austria
| | - Jean-Pierre Montani
- Department of Medicine/Physiology, University of Fribourg, Fribourg, Switzerland
| |
Collapse
|