1
|
Liu Z, Chen J, Xu M, Ho S, Wei Y, Ho HP, Yong KT. Engineered multi-domain lipid nanoparticles for targeted delivery. Chem Soc Rev 2025. [PMID: 40390667 DOI: 10.1039/d4cs00891j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/21/2025]
Abstract
Engineered lipid nanoparticles (LNPs) represent a breakthrough in targeted drug delivery, enabling precise spatiotemporal control essential to treat complex diseases such as cancer and genetic disorders. However, the complexity of the delivery process-spanning diverse targeting strategies and biological barriers-poses significant challenges to optimizing their design. To address these, this review introduces a multi-domain framework that dissects LNPs into four domains: structure, surface, payload, and environment. Engineering challenges, functional mechanisms, and characterization strategies are analyzed across each domain, along with a discussion of advantages, limitations, and in vivo fate (e.g., biodistribution and clearance). The framework also facilitates comparisons with natural exosomes and exploration of alternative administration routes, such as intranasal and intraocular delivery. We highlight current characterization techniques, such as cryo-TEM and multiscale molecular dynamics simulations, as well as the recently emerging artificial intelligence (AI) applications-ranging from LNP structure screening to the prospective use of generative models for de novo design beyond traditional experimental and simulation paradigms. Finally, we examine how engineered LNPs integrate active, passive, endogenous, and stimuli-responsive targeting mechanisms to achieve programmable delivery, potentially surpassing biological sophistication in therapeutic performance.
Collapse
Affiliation(s)
- Zhaoyu Liu
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, 999077, China.
- Department of Biomedical Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, Maryland, 21218, USA
| | - Jingxun Chen
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, 999077, China.
- Department of Biomedical Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, Maryland, 21218, USA
| | - Mingkun Xu
- Guangdong Institute of Intelligence Science and Technology, Hengqin, Zhuhai, 519031, China
| | - Sherwin Ho
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, California, 90095, USA.
| | - Yuanyuan Wei
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, 999077, China.
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, California, 90095, USA.
| | - Ho-Pui Ho
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, 999077, China.
- School of Electrical and Electronic Engineering, Yonsei University, Seoul, 03722, Korea
| | - Ken-Tye Yong
- School of Biomedical Engineering, The University of Sydney, Sydney, New South Wales 2006, Australia.
- The Biophotonics and Mechano-Bioengineering Lab, The University of Sydney, Sydney, New South Wales 2006, Australia
| |
Collapse
|
2
|
Zhu B, Li Y, Wang W, Cheng S, Han R, Luo X. A Robust Biosensor Based on Dual Loop Constrained Antifouling Peptide for Electrochemical Detection of Human Insulin like Growth Factor 1 in Blood. Anal Chem 2025. [PMID: 40394454 DOI: 10.1021/acs.analchem.5c01274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2025]
Abstract
Human insulin-like growth factor 1 (IGF-1) levels in human blood serve as a reliable biomarker for assessing endogenous growth hormone secretion and are also implicated in the pathogenesis of various cancers, highlighting their broad clinical diagnostic value. However, the direct detection of IGF-1 in complex blood samples with electrochemical biosensors is challenging due to the severe biofouling and the enzymes in the blood that may cause degradation of biomolecules functionalized on the sensor surfaces. Herein, a dual-loop constrained antifouling peptide (DLC-AP) was designed and constructed through the covalent cyclization of linear antifouling peptides, and it was further used for the development of an antifouling electrochemical biosensor. The DLC-AP exhibited exceptional antifouling properties in complex biological media, and its structural stability against enzymatic degradation by proteolytic enzymes in blood significantly enhanced the stability and antifouling performance of the biosensor. The DLC-AP-based biosensor demonstrated high sensitivity for IGF-1 detection in human blood samples, achieving a linear response range of 0.1 pM to 100.0 nM with a low limit of detection (7.0 fM), and its assay results of IGF-1 levels in clinical blood samples showed agreement with the ELISA results. This strategy of peptide and biosensor design offers a promising avenue for the construction of antifouling biosensing devices for biomarker monitoring in complex human blood.
Collapse
Affiliation(s)
- Baoping Zhu
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Yang Li
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Wenqing Wang
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Shujie Cheng
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Rui Han
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Xiliang Luo
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| |
Collapse
|
3
|
Stollmann A, Garcia-Guirado J, Hong JS, Rüedi P, Im H, Lee H, Ortega Arroyo J, Quidant R. Molecular fingerprinting of biological nanoparticles with a label-free optofluidic platform. Nat Commun 2024; 15:4109. [PMID: 38750038 PMCID: PMC11096335 DOI: 10.1038/s41467-024-48132-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 04/22/2024] [Indexed: 05/18/2024] Open
Abstract
Label-free detection of multiple analytes in a high-throughput fashion has been one of the long-sought goals in biosensing applications. Yet, for all-optical approaches, interfacing state-of-the-art label-free techniques with microfluidics tools that can process small volumes of sample with high throughput, and with surface chemistry that grants analyte specificity, poses a critical challenge to date. Here, we introduce an optofluidic platform that brings together state-of-the-art digital holography with PDMS microfluidics by using supported lipid bilayers as a surface chemistry building block to integrate both technologies. Specifically, this platform fingerprints heterogeneous biological nanoparticle populations via a multiplexed label-free immunoaffinity assay with single particle sensitivity. First, we characterise the robustness and performance of the platform, and then apply it to profile four distinct ovarian cell-derived extracellular vesicle populations over a panel of surface protein biomarkers, thus developing a unique biomarker fingerprint for each cell line. We foresee that our approach will find many applications where routine and multiplexed characterisation of biological nanoparticles are required.
Collapse
Affiliation(s)
- Alexia Stollmann
- Nanophotonic Systems Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, 8092, Zurich, Switzerland
| | - Jose Garcia-Guirado
- Nanophotonic Systems Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, 8092, Zurich, Switzerland
| | - Jae-Sang Hong
- Center for Systems Biology, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Pascal Rüedi
- Nanophotonic Systems Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, 8092, Zurich, Switzerland
| | - Hyungsoon Im
- Center for Systems Biology, Massachusetts General Hospital, Boston, MA, 02114, USA
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA
| | - Hakho Lee
- Center for Systems Biology, Massachusetts General Hospital, Boston, MA, 02114, USA
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA
| | - Jaime Ortega Arroyo
- Nanophotonic Systems Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, 8092, Zurich, Switzerland.
| | - Romain Quidant
- Nanophotonic Systems Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, 8092, Zurich, Switzerland.
| |
Collapse
|
4
|
Stollmann A, Garcia-Guirado J, Hong JS, Im H, Lee H, Arroyo JO, Quidant R. Molecular fingerprinting of biological nanoparticles with a label-free optofluidic platform. RESEARCH SQUARE 2023:rs.3.rs-3309306. [PMID: 37886549 PMCID: PMC10602063 DOI: 10.21203/rs.3.rs-3309306/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
Label-free detecting multiple analytes in a high-throughput fashion has been one of the long-sought goals in biosensing applications. Yet, for all-optical approaches, interfacing state-of-the-art label-free techniques with microfluidics tools that can process small volumes of sample with high throughput, and with surface chemistry that grants analyte specificity, poses a critical challenge to date. Here, we introduce an optofluidic platform that brings together state-of-the-art digital holography with PDMS microfluidics by using supported lipid bilayers as a surface chemistry building block to integrate both technologies. Specifically, this platform fingerprints heterogeneous biological nanoparticle populations via a multiplexed label-free immunoaffinity assay with single particle sensitivity. Herein, we first thoroughly characterise the robustness and performance of the platform, and then apply it to profile four distinct ovarian cell-derived extracellular vesicle populations over a panel of surface protein biomarkers, thus developing a unique biomarker fingerprint for each cell line. We foresee that our approach will find many applications where routine and multiplexed characterisation of biological nanoparticles is required.
Collapse
Affiliation(s)
- Alexia Stollmann
- Nanophotonic Systems Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, 8092 Zurich, Switzerland
| | - Jose Garcia-Guirado
- Nanophotonic Systems Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, 8092 Zurich, Switzerland
| | - Jae-Sang Hong
- Center for Systems Biology, Massachusetts General Hospital, Boston, Massachusetts 02114, United States
| | - Hyungsoon Im
- Center for Systems Biology, Massachusetts General Hospital, Boston, Massachusetts 02114, United States
- Department of Radiology, Massachusetts General Hospital, Boston, Massachusetts 02114, United States
| | - Hakho Lee
- Center for Systems Biology, Massachusetts General Hospital, Boston, Massachusetts 02114, United States
- Department of Radiology, Massachusetts General Hospital, Boston, Massachusetts 02114, United States
| | - Jaime Ortega Arroyo
- Nanophotonic Systems Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, 8092 Zurich, Switzerland
| | - Romain Quidant
- Nanophotonic Systems Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, 8092 Zurich, Switzerland
| |
Collapse
|
5
|
Stollmann A, Garcia-Guirado J, Hong JS, Im H, Lee H, Arroyo JO, Quidant R. Molecular fingerprinting of biological nanoparticles with a label-free optofluidic platform. ARXIV 2023:arXiv:2308.06117v1. [PMID: 37608933 PMCID: PMC10441434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Figures] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Label-free detecting multiple analytes in a high-throughput fashion has been one of the long-sought goals in biosensing applications. Yet, for all-optical approaches, interfacing state-of-the-art label-free techniques with microfluidics tools that can process small volumes of sample with high throughput, and with surface chemistry that grants analyte specificity, poses a critical challenge to date. Here, we introduce an optofluidic platform that brings together state-of-the-art digital holography with PDMS microfluidics by using supported lipid bilayers as a surface chemistry building block to integrate both technologies. Specifically, this platform fingerprints heterogeneous biological nanoparticle populations via a multiplexed label-free immunoaffinity assay with single particle sensitivity. Herein, we first thoroughly characterise the robustness and performance of the platform, and then apply it to profile four distinct ovarian cell-derived extracellular vesicle populations over a panel of surface protein biomarkers, thus developing a unique biomarker fingerprint for each cell line. We foresee that our approach will find many applications where routine and multiplexed characterisation of biological nanoparticles is required.
Collapse
Affiliation(s)
- Alexia Stollmann
- Nanophotonic Systems Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, 8092 Zurich, Switzerland
| | - Jose Garcia-Guirado
- Nanophotonic Systems Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, 8092 Zurich, Switzerland
| | - Jae-Sang Hong
- Center for Systems Biology, Massachusetts General Hospital, Boston, Massachusetts 02114, United States
| | - Hyungsoon Im
- Center for Systems Biology, Massachusetts General Hospital, Boston, Massachusetts 02114, United States
- Department of Radiology, Massachusetts General Hospital, Boston, Massachusetts 02114, United States
| | - Hakho Lee
- Center for Systems Biology, Massachusetts General Hospital, Boston, Massachusetts 02114, United States
- Department of Radiology, Massachusetts General Hospital, Boston, Massachusetts 02114, United States
| | - Jaime Ortega Arroyo
- Nanophotonic Systems Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, 8092 Zurich, Switzerland
| | - Romain Quidant
- Nanophotonic Systems Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, 8092 Zurich, Switzerland
| |
Collapse
|
6
|
Zhang L, Wu H, Chen Y, Zhang S, Song M, Liu C, Li J, Cheng W, Ding S. Target response controlled enzyme activity switch for multimodal biosensing detection. J Nanobiotechnology 2023; 21:122. [PMID: 37031177 PMCID: PMC10082497 DOI: 10.1186/s12951-023-01860-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 03/16/2023] [Indexed: 04/10/2023] Open
Abstract
How to achieve delicate regulation of enzyme activity and empower it with more roles is the peak in the field of enzyme catalysis research. Traditional proteases or novel nano-enzymes are unable to achieve stimulus-responsive activity modulation due to their own structural limitations. Here, we propose a novel Controllable Enzyme Activity Switch, CEAS, based on hemin aggregation regulation, to deeply explore its regulatory mechanism and develop multimodal biosensing applications. The core of CEAS relies on the dimerizable inactivation of catalytically active center hemin and utilizes a DNA template to orderly guide the G4-Hemin DNAzyme to tightly bind to DNA-Hemin, thereby shutting down the catalytic ability. By customizing the design of the guide template, different target stimulus responses lead to hemin dimerization dissociation and restore the synergistic catalysis of G4-Hemin and DNA-Hemin, thus achieving a target-regulated enzymatic activity switch. Moreover, the programmability of CEAS allowed it easy to couple with a variety of DNA recognition and amplification techniques, thus developing a series of visual protein detection systems and highly sensitive fluorescent detection systems with excellent bioanalytical performance. Therefore, the construction of CEAS is expected to break the limitation of conventional enzymes that cannot be targetable regulated, thus enabling customizable enzymatic reaction systems and providing a new paradigm for controllable enzyme activities.
Collapse
Affiliation(s)
- Lu Zhang
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Haiping Wu
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Yirong Chen
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Songzhi Zhang
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Mingxuan Song
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Changjin Liu
- Department of Laboratory Medicine, The Fifth People's Hospital of Chongqing, Chongqing, 400062, China
| | - Jia Li
- The Center for Clinical Molecular Medical Detection, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, People's Republic of China.
| | - Wei Cheng
- The Center for Clinical Molecular Medical Detection, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, People's Republic of China.
| | - Shijia Ding
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, People's Republic of China.
| |
Collapse
|
7
|
Han WB, Kang DH, Kim TS. 3D Artificial Cell Membranes as Versatile Platforms for Biological Applications. BIOCHIP JOURNAL 2022. [DOI: 10.1007/s13206-022-00066-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
8
|
Park JH, Park EK, Cho YK, Shin IS, Lee H. Normalizing the Optical Signal Enables Robust Assays with Lateral Flow Biosensors. ACS OMEGA 2022; 7:17723-17731. [PMID: 35664567 PMCID: PMC9161384 DOI: 10.1021/acsomega.2c00793] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 03/25/2022] [Indexed: 06/04/2023]
Abstract
Lateral flow assays (LFAs) are widely adopted for fast, on-site molecular diagnostics. Obtaining high-precision assay results, however, remains challenging and often requires a dedicated optical setup to control the imaging environment. Here, we describe quick light normalization exam (qLiNE) that transforms ubiquitous smartphones into a robust LFA reader. qLiNE used a reference card, printed with geometric patterns and color standards, for real-time optical calibration: a photo of an LFA test strip was taken along with the card, and the image was processed using a smartphone app to correct shape distortion, illumination brightness, and color imbalances. This approach yielded consistent optical signal, enabling quantitative molecular analyses under different illumination conditions. We adapted qLiNE to detect cortisol, a known stress hormone, in saliva samples at point-of-use settings. The assay was fast (15 min) and sensitive (detection limit, 0.16 ng/mL). The serial qLiNE assay detected diurnal cycles of cortisol levels as well as stress-induced cortisol increase.
Collapse
Affiliation(s)
- Jin-Ho Park
- Center
for Systems Biology, Massachusetts General
Hospital, Boston, Massachusetts 02114, United States
- Department
of Radiology, Massachusetts General Hospital
and Harvard Medical School, Boston, Massachusetts 02114, United States
| | - Eung-Kyu Park
- QSTAG
CO., LTD., 165 Convencia-daero,
Yeonsu-gu, Incheon 21998, Republic of Korea
| | - Young Kwan Cho
- Center
for Systems Biology, Massachusetts General
Hospital, Boston, Massachusetts 02114, United States
- Department
of Chemistry, Kennedy College of Sciences, University of Massachusetts Lowell, Lowell, Massachusetts 01854, United States
| | - Ik-Soo Shin
- QSTAG
CO., LTD., 165 Convencia-daero,
Yeonsu-gu, Incheon 21998, Republic of Korea
- Department
of Chemistry, Soongsil University, 369 Sangdo-ro, Dongjak-gu, Seoul 06978, Republic
of Korea
| | - Hakho Lee
- Center
for Systems Biology, Massachusetts General
Hospital, Boston, Massachusetts 02114, United States
- Department
of Radiology, Massachusetts General Hospital
and Harvard Medical School, Boston, Massachusetts 02114, United States
| |
Collapse
|
9
|
Gu C, Shan F, Zheng L, Zhou Y, Hu J, Chen G. Towards a protein-selective Raman enhancement by a glycopolymer-based composite surface. J Mater Chem B 2022; 10:1434-1441. [PMID: 35168248 DOI: 10.1039/d1tb02746h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Surface-enhanced Raman scattering (SERS), which is based on the surface plasmon resonance (LSPR) of noble metal nanostructures, is widely used in the biological field due to its advantages of non-damaging samples and detection up to the molecular level. For biological SERS detection, preparation of substrates with biocompatibility and specific adsorption, leading to selective enhancement of the target biomolecules, are important design strategies. Utilizing the specific interaction between a carbohydrate and protein, a glycopolymer-based composite surface is fabricated to realize specific SERS detection of proteins. Herein, we use N-3,4-dihydroxybenzeneethyl methacrylamide (DMA), 2-deoxy-2-(methacrylamido)glucopyranose (MAG) and methacrylic acid (MAA) as monomers in a sunlight-induced RAFT polymerization to synthesize a dopamine-containing glycopolymer. The glycopolymers are used to prepare a SERS substrate. The composite surface shows specific protein adsorption capacity, and the selective Raman enhancement of specific proteins was successfully achieved between the two different proteins Con A and BSA. This provides a feasible approach to design a SERS surface for protein detection and the study of the interaction between sugar and proteins.
Collapse
Affiliation(s)
- Chuan Gu
- Center for Soft Condensed Matter Physics and Interdisciplinary Research, School of Physical Science and Technology, Jiangsu Key Laboratory of Thin Films, Soochow University, Suzhou 215006, P. R. China.
| | - Fangjian Shan
- Center for Soft Condensed Matter Physics and Interdisciplinary Research, School of Physical Science and Technology, Jiangsu Key Laboratory of Thin Films, Soochow University, Suzhou 215006, P. R. China.
| | - Lifang Zheng
- Center for Soft Condensed Matter Physics and Interdisciplinary Research, School of Physical Science and Technology, Jiangsu Key Laboratory of Thin Films, Soochow University, Suzhou 215006, P. R. China.
| | - Yue Zhou
- Center for Soft Condensed Matter Physics and Interdisciplinary Research, School of Physical Science and Technology, Jiangsu Key Laboratory of Thin Films, Soochow University, Suzhou 215006, P. R. China.
| | - Jun Hu
- Center for Soft Condensed Matter Physics and Interdisciplinary Research, School of Physical Science and Technology, Jiangsu Key Laboratory of Thin Films, Soochow University, Suzhou 215006, P. R. China.
| | - Gaojian Chen
- Center for Soft Condensed Matter Physics and Interdisciplinary Research, School of Physical Science and Technology, Jiangsu Key Laboratory of Thin Films, Soochow University, Suzhou 215006, P. R. China.
| |
Collapse
|