1
|
László BR, Hormay E, Szabó I, Mintál K, Nagy B, László K, Péczely L, Ollmann T, Lénárd L, Karádi Z. Disturbance of taste reactivity and other behavioral alterations after bilateral interleukin-1β microinjection into the cingulate cortex of the rat. Behav Brain Res 2020; 383:112537. [PMID: 32032742 DOI: 10.1016/j.bbr.2020.112537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 02/03/2020] [Accepted: 02/03/2020] [Indexed: 11/26/2022]
Abstract
The anterior cingulate cortex (ACC), is known to be intimately involved in food-related motivational processes and their behavioral organization, primarily by evaluating hedonic properties of the relevant stimuli. In the present study, the involvement of cingulate cortical interleukin-1β (IL-1β) mediated mechanisms in a) gustation associated facial and somato-motor behavioral patterns of Wistar rats were examined in taste reactivity test (TR). In addition, b) conditioned taste aversion (CTA) paradigm was performed to investigate the role of these cytokine mechanisms in taste sensation associated learning processes, c) the general locomotor activity of the animals was observed in open field test (OPF), and d) the potentially negative reinforcing effect of IL-1β was examined in conditioned place preference test (CPP). During the TR test, species specific behavioral patterns in response to the five basic tastes were analyzed. Response rates of ingestive and aversive patterns of the cytokine treated and the control groups differed significantly in case of the weaker bitter (QHCl, 0.03 mM), and the stronger umami (MSG, 0.5 M) tastes. IL-1β itself did not elicit CTA, it did not interfere with the acquisition of LiCl induced CTA, and it also failed to cause place preference or aversion in the CPP test. In the OPF paradigm, however, significant differences were found between the cytokine treated and the control groups in the rearing and grooming, the number of crossings, and in the distance moved. Our results indicate the involvement of cingulate cortical IL-1β mechanisms in the control of taste perception and other relevant behavioral processes.
Collapse
Affiliation(s)
- Bettina Réka László
- Institute of Physiology, University of Pécs, Medical School, Pécs, Hungary; Centre for Neuroscience, Szentágothai Research Centre, University of Pécs, Pécs, Hungary.
| | - Edina Hormay
- Institute of Physiology, University of Pécs, Medical School, Pécs, Hungary; Centre for Neuroscience, Szentágothai Research Centre, University of Pécs, Pécs, Hungary
| | - István Szabó
- Institute of Physiology, University of Pécs, Medical School, Pécs, Hungary; Centre for Neuroscience, Szentágothai Research Centre, University of Pécs, Pécs, Hungary
| | - Kitti Mintál
- Institute of Physiology, University of Pécs, Medical School, Pécs, Hungary; Centre for Neuroscience, Szentágothai Research Centre, University of Pécs, Pécs, Hungary
| | - Bernadett Nagy
- Institute of Physiology, University of Pécs, Medical School, Pécs, Hungary; Centre for Neuroscience, Szentágothai Research Centre, University of Pécs, Pécs, Hungary
| | - Kristóf László
- Institute of Physiology, University of Pécs, Medical School, Pécs, Hungary; Centre for Neuroscience, Szentágothai Research Centre, University of Pécs, Pécs, Hungary
| | - László Péczely
- Institute of Physiology, University of Pécs, Medical School, Pécs, Hungary; Centre for Neuroscience, Szentágothai Research Centre, University of Pécs, Pécs, Hungary
| | - Tamás Ollmann
- Institute of Physiology, University of Pécs, Medical School, Pécs, Hungary; Centre for Neuroscience, Szentágothai Research Centre, University of Pécs, Pécs, Hungary
| | - László Lénárd
- Institute of Physiology, University of Pécs, Medical School, Pécs, Hungary; Centre for Neuroscience, Szentágothai Research Centre, University of Pécs, Pécs, Hungary; Molecular Neuroendocrinology and Neurophysiology Research Group, Szentágothai Research Centre, University of Pécs, Pécs, Hungary
| | - Zoltán Karádi
- Institute of Physiology, University of Pécs, Medical School, Pécs, Hungary; Centre for Neuroscience, Szentágothai Research Centre, University of Pécs, Pécs, Hungary; Molecular Neuroendocrinology and Neurophysiology Research Group, Szentágothai Research Centre, University of Pécs, Pécs, Hungary
| |
Collapse
|
2
|
Csetényi B, Hormay E, Szabó I, Takács G, Nagy B, László K, Karádi Z. Food and water intake, body temperature and metabolic consequences of interleukin-1β microinjection into the cingulate cortex of the rat. Behav Brain Res 2017; 331:115-122. [PMID: 28527691 DOI: 10.1016/j.bbr.2017.05.041] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 05/04/2017] [Accepted: 05/16/2017] [Indexed: 12/30/2022]
Abstract
In order to elucidate whether cytokine mechanisms of the cingulate cortex (cctx) are important in the central regulation of homeostasis, in the present study, feeding-metabolic effects of direct bilateral microinjection of interleukin-1β (IL-1β) into the cctx of the rat have been investigated. Short- (2h), medium (12h) and long-term (24h) food and water intakes and body temperature were measured after the intracerebral administration of this primary cytokine or vehicle solution, with or without paracetamol pretreatment. The effect of IL-1β on the blood glucose level of animals was examined in glucose tolerance test (GTT), and concentrations of relevant plasma metabolites (total cholesterol, HDL, LDH, triglycerides, uric acid) were additionally also determined following the above microinjections. In contrast to causing no major alteration in the food and water intakes, the cytokine treatment evoked significant increase in the body temperature of the rats. Prostaglandin-mediated mechanisms were shown to have important role in the mode of this action of IL-1β, since paracetamol pretreatment partially prevented the development of the above mentioned hyperthermia. In the GTT, no considerable difference was observed between the blood glucose levels of the cytokine treated and control animals. Following IL-1β microinjection, however, significant decrease of HDL and total cholesterol was found. Our present findings indicate that elucidating the IL-1β mediated homeostatic control mechanisms in the cingulate cortex may lead to the better understanding not only the regulatory entities of the healthy organism but also those found in obesity, diabetes mellitus and other worldwide rapidly spreading feeding-metabolic disorders.
Collapse
Affiliation(s)
- B Csetényi
- Institute of Physiology, University of Pécs, Medical School, Pécs, Hungary; Centre for Neuroscience, University of Pécs, Pécs, Hungary.
| | - E Hormay
- Institute of Physiology, University of Pécs, Medical School, Pécs, Hungary; Centre for Neuroscience, University of Pécs, Pécs, Hungary
| | - I Szabó
- Institute of Physiology, University of Pécs, Medical School, Pécs, Hungary; Centre for Neuroscience, University of Pécs, Pécs, Hungary
| | - G Takács
- Institute of Physiology, University of Pécs, Medical School, Pécs, Hungary; Centre for Neuroscience, University of Pécs, Pécs, Hungary
| | - B Nagy
- Institute of Physiology, University of Pécs, Medical School, Pécs, Hungary; Centre for Neuroscience, University of Pécs, Pécs, Hungary
| | - K László
- Institute of Physiology, University of Pécs, Medical School, Pécs, Hungary; Centre for Neuroscience, University of Pécs, Pécs, Hungary
| | - Z Karádi
- Institute of Physiology, University of Pécs, Medical School, Pécs, Hungary; Centre for Neuroscience, University of Pécs, Pécs, Hungary; Molecular Neuroendocrinology and Neurophysiology Research Group, Szentágothai Research Center, University of Pécs, Pécs, Hungary
| |
Collapse
|
3
|
Takács G, Szalay C, Nagy B, Szabó I, Simon D, Berki T, Karádi Z. Insulin and leptin plasma levels after the microinjection of interleukin-1β into the nucleus accumbens of the rat. ACTA ACUST UNITED AC 2013; 99:472-8. [PMID: 23238549 DOI: 10.1556/aphysiol.99.2012.4.11] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The nucleus accumbens (NAcc), an important basal forebrain structure, has a central integratory function in the control of feeding and metabolism. The primary cytokine interleukin-1β (IL-1β) exerts its neuromodulatory effects on the endocrine functions both centrally and peripherally. The present study was designed to elucidate the possible consequences of direct administration of IL-1β into the NAcc on the endocrine regulation of metabolism. Plasma concentrations of insulin and leptin, two key hormones in the homeostatic control were determined 15 minutes after a single bilateral microinjection of IL-1β into the NAcc of adult male Wistar rats, and the effects were compared with those found in vehicle treated control animals. Insulin plasma levels of the cytokine treated animals were significantly higher than those parameters of the control rats. No differences were found in leptin plasma concentrations between the two groups. Our findings show that IL-1β mediated processes in the NAcc have important roles in the central neuroendocrine control.
Collapse
Affiliation(s)
- Gábor Takács
- Institute of Physiology and Neurophysiology Research Group, Hungarian Academy of Sciences Pécs, Hungary.
| | | | | | | | | | | | | |
Collapse
|
4
|
Takács G, Papp S, Lukáts B, Szalay C, Nagy B, Fotakos D, Karádi Z. Homeostatic alterations after IL-1beta microinjection into the nucleus accumbens of the rat. Appetite 2010; 54:354-62. [PMID: 20060862 DOI: 10.1016/j.appet.2010.01.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2009] [Revised: 12/29/2009] [Accepted: 01/05/2010] [Indexed: 10/20/2022]
Abstract
The present study investigates the effects of direct administration of interleukin-1beta (IL-1beta) into the nucleus accumbens (NAcc) on homeostatic regulation. Short- and long-term food intakes (FI), water intakes (WI) and body temperature (BT) were measured before and after bilateral microinjection of IL-1beta (with or without paracetamol pretreatment) into the NAcc of Wistar rats, and the effects were compared with those found in vehicle treated control animals. In addition, blood glucose levels, along with a glucose tolerance test (GTT), and plasma concentrations of metabolic parameters, such as total cholesterol, triglycerides, HDL, LDL and uric acid were determined in cytokine treated and control rats. Short-term FI and WI were suppressed after intraaccumbens application of IL-1beta. A significant increase of BT was also observed after the cytokine microinjection. Pretreatment with paracetamol failed to influence the anorexigenic, adipsogenic, and pyrogenic effects of IL-1beta. A definite glucose intolerance of the cytokine treated animals and their pathologically elevated blood glucose levels became obvious in the acute GTT. Following IL-1beta microinjection, plasma levels of triglycerides, total cholesterol and LDL were found increased. Our present findings show that the NAcc is an important site of action of IL-1beta mediated processes in central homeostatic regulation.
Collapse
Affiliation(s)
- Gábor Takács
- Institute of Physiology and Neurophysiology Research Group of the Hungarian Academy of Sciences, Pécs University, Medical School, Szigeti str. 12, H-7624 Pécs, Hungary.
| | | | | | | | | | | | | |
Collapse
|
5
|
Luz PA, Saraiva R, Almeida T, Fregoneze JB, De Castro e Silva E. Blockade of central kappa-opioid receptors inhibits the antidipsogenic effect of interleukin-1beta. Neuropeptides 2009; 43:93-103. [PMID: 19217659 DOI: 10.1016/j.npep.2008.12.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2008] [Revised: 11/27/2008] [Accepted: 12/31/2008] [Indexed: 10/21/2022]
Abstract
The objective of the present study was to investigate the role of brain kappa-opioid receptors (KOR) in the antidipsogenic effect promoted by third ventricle injections of interleukin-1beta (IL-1beta). Wistar male rats were submitted to three different, thirst-inducing, physiological conditions: dehydration induced by water deprivation, hyperosmolarity induced by salt-load and hypovolemia induced by polyethylene glycol subcutaneous injection. Third ventricle injections of IL-1beta significantly inhibited the increase in water intake observed in those situations. The pharmacological blockade of central KOR by the selective KOR antagonist nor-binaltorphimine (BNI) at different doses significantly inhibited the antidipsogenic effect induced by the central administration of IL-1beta in all conditions tested: dehydration, hypovolemia and hyperosmolarity. The central administration of IL-1beta failed to induce any locomotor deficit, as verified in an open field test. Stimulation of the central interleukinergic component did not result in any general suppression of ingestive behavior since no change in saccharin intake was recorded during a dessert test in animals receiving central injections of IL-1beta. Furthermore, the inhibitory effects of IL-1beta on water intake cannot be attributed to sickness-like effects induced by these compounds, since an aversion test excluded this possibility. In summary, the data shown in the present study clearly show that the antidipsogenic effect observed in rats following third ventricle injections of IL-1beta depend on the functional integrity of a brain kappa-opioid-dependent component.
Collapse
Affiliation(s)
- P A Luz
- Department of Biological Sciences, State University of Southwest Bahia, 45200-000 Jequié, Bahia, Brazil
| | | | | | | | | |
Collapse
|
6
|
Takács G, Lukáts B, Papp S, Szalay C, Karádi Z. Taste reactivity alterations after IL-1β microinjection into the ventromedial hypothalamic nucleus of the rat. Neurosci Res 2008; 62:118-22. [DOI: 10.1016/j.neures.2008.06.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2008] [Revised: 06/24/2008] [Accepted: 06/25/2008] [Indexed: 10/21/2022]
|
7
|
Luz PA, Andrade L, Miranda N, Pereira V, Fregoneze J, De Castro e Silva E. Inhibition of water intake by the central administration of IL-1beta in rats: role of the central opioid system. Neuropeptides 2006; 40:85-94. [PMID: 16375968 DOI: 10.1016/j.npep.2005.11.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2005] [Revised: 11/04/2005] [Accepted: 11/05/2005] [Indexed: 12/15/2022]
Abstract
In the present study we investigated, the effect of third ventricle injections of IL-1beta on water intake, in rats, induced by three different physiological stimuli: dehydration induced by water deprivation, hypernatremia associated with hyperosmolarity induced by intragastric salt load, and hypovolemia produced by subcutaneous polytethyleneglycol administration. Central administration of IL-1beta at the doses of 4 and 8 ng reduced water intake in all three conditions studied. Third ventricle injections of IL-1beta (8 ng) were unable to diminish water intake in the groups of rats pretreated with central injections of the non-selective opioid antagonist naloxone (10 microg) in the three different conditions studied. Furthermore, the central administration of IL-1beta was neither able to modify the intake of a 0.1% saccharin solution when the animals were submitted to a "dessert test" nor to induce any significant locomotor deficit in the open-field test. These results suggest that the central activation of interleukin-1 receptors by IL-1beta is able to impair the thirst-inducing mechanisms triggered by the physiological stimuli represented by dehydration, hyperosmolarity and hypovolemia. These results lead us to conclude that the antidipsogenic effects observed following central administration of IL-1beta require the functional integrity of the brain opiatergic system.
Collapse
Affiliation(s)
- P A Luz
- Department of Physiology, Health Sciences Institute, Federal University of Bahia, Vale do Canela s/n, 40110-100 Salvador, Bahia, Brazil
| | | | | | | | | | | |
Collapse
|
8
|
De Castro E Silva E, Luz PA, Magrani J, Andrade L, Miranda N, Pereira V, Fregoneze JB. Role of the central opioid system in the inhibition of water and salt intake induced by central administration of IL-1β in rats. Pharmacol Biochem Behav 2006; 83:285-95. [PMID: 16554088 DOI: 10.1016/j.pbb.2006.02.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2005] [Revised: 01/30/2006] [Accepted: 02/10/2006] [Indexed: 11/21/2022]
Abstract
In the present study we investigated, the effect of third ventricle injections of IL-1beta on water and salt intake in fluid-deprived and sodium-depleted rats. Central administration of IL-1beta significantly reduced water and salt intake in fluid-deprived animals and decreased salt intake in sodium-depleted rats. The antidipsogenic and antinatriorexic effects elicited by the central administration of IL-1beta were suppressed by pretreatment with central injections of the non-selective opioid antagonist naloxone (10 mug) in the two different experimental protocols used here (water deprivation and sodium depletion). In addition, central administration of IL-1beta failed to modify the intake of a 0.1% saccharin solution when the animals were submitted to a "dessert test" or to induce any significant locomotor deficit in the open-field test. The present results suggest that the activation of the central interleukinergic component by IL-1beta impairs the increase in water and salt intake induced by water deprivation and the enhancement in sodium appetite that follows sodium depletion. The data also support the conclusion that the antidipsogenic and antinatriorexic effects resulting from the activation of the central interleukinergic component rely on an opioid-dependent, naloxone-blockable system.
Collapse
Affiliation(s)
- E De Castro E Silva
- Department of Physiology, Health Sciences Institute, Federal University of Bahia, 40110-100 Salvador, Bahia, Brazil.
| | | | | | | | | | | | | |
Collapse
|