1
|
Chen Z, Wang J, Lyu T, Xia Q, Liu L, Li B. Association between brain resting-state functional activities and obesity: A bidirectional Mendelian randomization study. Clin Nutr ESPEN 2025; 67:685-691. [PMID: 40306491 DOI: 10.1016/j.clnesp.2025.04.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Revised: 04/04/2025] [Accepted: 04/19/2025] [Indexed: 05/02/2025]
Abstract
BACKGROUND Investigations revealed significant changes in brain activity between people with obesity or overweight and people with normal weight. The causal relationship between body weight and brain functional activity remains unclear and warrants further investigation. METHODS We conducted a bidirectional two-sample Mendelian randomization (MR) study. We gathered summary statistics from genome-wide association studies for 191 resting-state functional magnetic resonance imaging phenotypes and obesity traits (body mass index, body fat percentage, waist-to-hip ratio). Inverse variance weighting, the weighted median, MR Egger, and the weighted mode were employed. We conducted pleiotropy and heterogeneity analyses to evaluate robustness and reliability. RESULTS Forward analysis revealed that the intensity of spontaneous brain activity in the calcarine, lingual, or cuneus gyri within the visual network (beta = -0.076; 95 % CI: -0.11 to -0.04; p = 6.97 × 10-5) had a causal effect on body weight. The reverse analysis revealed that body weight has a causal effect on the intensity of spontaneous brain activity in the precuneus, angular, and cingulate gyri (beta = 0.209; 95 % CI: 0.11 to 0.31; p = 2.41 × 10-5), and the angular and temporal gyri (beta = 0.215; 95 % CI: 0.11 to 0.32; p = 3.87 × 10-5) within the default mode and central executive network. CONCLUSIONS Genetic evidence proves a causal relationship between body weight and brain functional activity.
Collapse
Affiliation(s)
- Zhaoyi Chen
- Department of Acupuncture and Moxibustion, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing Key Laboratory of Acupuncture Neuromodulation, Beijing 100010, China
| | - Jinkun Wang
- Department of Acupuncture and Moxibustion, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing Key Laboratory of Acupuncture Neuromodulation, Beijing 100010, China; Department of Graduate School, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Tianli Lyu
- Department of Acupuncture and Moxibustion, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing Key Laboratory of Acupuncture Neuromodulation, Beijing 100010, China
| | - Qiuyu Xia
- Department of Acupuncture and Moxibustion, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing Key Laboratory of Acupuncture Neuromodulation, Beijing 100010, China
| | - Lu Liu
- Department of Acupuncture and Moxibustion, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing Key Laboratory of Acupuncture Neuromodulation, Beijing 100010, China.
| | - Bin Li
- Department of Acupuncture and Moxibustion, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing Key Laboratory of Acupuncture Neuromodulation, Beijing 100010, China.
| |
Collapse
|
2
|
Wang J, Shen H, Xu Q, Zhang S, Li T, Zheng Y. Functional connectivity across multi-frequency bands in patients with tension-type headache: a resting-state fMRI retrospective study. BMC Med Imaging 2025; 25:145. [PMID: 40312692 PMCID: PMC12046950 DOI: 10.1186/s12880-025-01599-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Accepted: 02/14/2025] [Indexed: 05/03/2025] Open
Abstract
OBJECTIVES Tension-type headache (TTH) is the most common nervous system disorder worldwide. This study aimed to examine abnormal network-level brain functional connectivity (FC) alterations in patients with TTH across multi-frequency bands. METHODS The study enrolled 63 subjects, comprising 32 patients with TTH and 31 healthy controls (HC). According to our team's previous research, the brain regions with abnormal ReHo in the conventional frequency band (0.01-0.08 Hz) and the slow-5 band (0.01-0.027 Hz) were chosen as seed regions of interest (ROIs). Subsequently, the FC between ROIs and the entire brain analysis across various frequency bands was calculated to evaluate network-level alterations, and differences between the TTH and HC were analyzed. Pearson's correlation analysis was conducted to assess the relationship between significantly altered FC values in two frequency bands and visual analog score (VAS) in TTH patients. RESULTS In the slow-5 band (0.01-0.027 Hz), FC between right medial superior frontal gyrus and right medial temporal pole/right inferior temporal gyrus as well as right middle frontal gyrus and left supramarginal gyrus of TTH patients exhibited significantly higher, compared to the HC group, while FC between right middle frontal gyrus and right lateral occipital cortex reduced. For the correlation results, there was no correlation between abnormal brain regions of FC and VAS score. CONCLUSIONS Changes in FC within brain regions associated with TTH are linked to pain processing. And the altered FC in TTH patients were frequency dependent. These initial observations could enhance our understanding of TTH's pathophysiological mechanism and offer insights for its future diagnosis and treatment.
Collapse
Affiliation(s)
- Jili Wang
- Imaging Department, Shouguang People's Hospital, Shouguang, 262700, China
| | - Hongjie Shen
- Neurology Department, Shouguang People's Hospital, Shouguang, 262700, China
| | - Qinyan Xu
- Imaging Department, Affiliated Hospital of Shandong Second Medical University, Weifang, 261000, China
| | - Shuxian Zhang
- Imaging Department, Affiliated Hospital of Shandong Second Medical University, Weifang, 261000, China
| | - Tian Li
- Tianjin Key Laboratory of Acute Abdomen Disease-Associated Organ Injury and ITCWM Repair, Institute of Integrative Medicine of Acute Abdominal Diseases, Tianjin Nankai HospitalTianjin Medical University, 8 Changjiang Avenue, Tianjin, 300100, China
| | - Yun Zheng
- Ultrasonic Department, Weifang People's Hospital, 151 Guangwen Avenue, Weifang, 261000, China.
| |
Collapse
|
3
|
Nourzadegan N, Baghernezhad S, Daliri MR. Influence of individual's age on the characteristics of brain effective connectivity. GeroScience 2025; 47:2455-2474. [PMID: 39549197 PMCID: PMC11978603 DOI: 10.1007/s11357-024-01436-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 11/07/2024] [Indexed: 11/18/2024] Open
Abstract
Given the increasing number of older adults in society, there is a growing need for studies on changes in the aging brain. The aim of this research is to investigate the effective connectivity of different age groups using resting-state functional magnetic resonance imaging (fMRI) and graph theory. By examining connectivity in different age groups, a better understanding of age-related changes can be achieved. Lifespan pilot data from the Human Connectome Project (HCP) were used to examine dynamic effective connectivity (dEC) changes across different age groups. The Granger causality method with time windowing was employed to calculate dEC. After extracting graph measures, statistical analyses were performed to compare the age groups. Support vector machine and decision tree classifiers were used to classify the different age groups based on the extracted graph measures. Based on the obtained results, it can be concluded that there are significant differences in the effective connectivity among the three age groups. Statistical analyses revealed disassortativity. The global efficiency exhibited a decreasing trend, and the transitivity measure showed an increasing trend with the advancing age. The decision tree classifier showed an accuracy of 86.67 % with Kruskal-Wallis selected features. This study demonstrates that changes in effective connectivity across different age brackets can serve as a tool for better understanding brain function during the aging process.
Collapse
Affiliation(s)
- Nakisa Nourzadegan
- Neuroscience & Neuroengineering Research Laboratory, Biomedical Engineering Department, School of Electrical Engineering, Iran University of Science and Technology (IUST), Tehran, Iran
| | - Sepideh Baghernezhad
- Neuroscience & Neuroengineering Research Laboratory, Biomedical Engineering Department, School of Electrical Engineering, Iran University of Science and Technology (IUST), Tehran, Iran
| | - Mohammad Reza Daliri
- Neuroscience & Neuroengineering Research Laboratory, Biomedical Engineering Department, School of Electrical Engineering, Iran University of Science and Technology (IUST), Tehran, Iran.
| |
Collapse
|
4
|
Li W, Chen X, Gao X, Pang Q, Guo C, Song S, Liu Y, Shi P, Chen H. Altered hippocampal effective connectivity predicts BMI and food approach behavior in children with obesity. Int J Clin Health Psychol 2025; 25:100541. [PMID: 39877891 PMCID: PMC11773239 DOI: 10.1016/j.ijchp.2024.100541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 12/19/2024] [Indexed: 01/31/2025] Open
Abstract
Objective The vicious circle model of obesity proposes that the hippocampus plays a crucial role in food reward processing and obesity. However, few studies focused on whether and how pediatric obesity influences the potential direction of information exchange between the hippocampus and key regions, as well as whether these alterations in neural interaction could predict future BMI and eating behaviors. Methods In this longitudinal study, a total of 39 children with excess weight (overweight/obesity) and 51 children with normal weight, aged 8 to 12, underwent resting-state fMRI. One year later, we conducted follow-up assessments of eating behaviors and BMI. Resting-state functional connectivity and spectral dynamic casual modeling (spDCM) technique were used to examine altered functional and effective connectivity (EC) of the hippocampus in children with overweight/obesity. Linear support vector regression, a machine learning method, was employed to further investigate whether these sensitive hippocampal connections at baseline could predict future BMI and eating behaviors. Results Compared to controls, children with excess weight displayed abnormal bidirectional inhibitory effects between the right hippocampus and left postcentral gyrus (PoCG), that is, stronger inhibitory hippocampus→PoCG EC but weaker inhibitory PoCG→hippocampus EC, which further predicted BMI and food approach behavior one year later. Conclusion These findings point to a particularly important role of abnormal information exchange between the hippocampus and somatosensory cortex in pediatric obesity and future food approach behavior, which provide novel insights into the neural hierarchical mechanisms underlying childhood obesity and further expand the spDCM model of adult obesity by identifying the directionality of abnormal influences between crucial circuits associated with appetitive regulation.
Collapse
Affiliation(s)
- Wei Li
- Faculty of Psychology, Southwest University, Chongqing 400715, China
| | - Ximei Chen
- Faculty of Psychology, Southwest University, Chongqing 400715, China
| | - Xiao Gao
- Faculty of Psychology, Southwest University, Chongqing 400715, China
- Key Laboratory of Cognition and Personality, Ministry of Education, Faculty of Psychology, Southwest University, Chongqing 400715, China
| | - Qingge Pang
- Faculty of Psychology, Southwest University, Chongqing 400715, China
| | - Cheng Guo
- Faculty of Psychology, Southwest University, Chongqing 400715, China
- Key Laboratory of Cognition and Personality, Ministry of Education, Faculty of Psychology, Southwest University, Chongqing 400715, China
| | - Shiqing Song
- School of Psychology, Shaanxi Normal University, Xi'an 710062, China
| | - Yong Liu
- Faculty of Psychology, Southwest University, Chongqing 400715, China
- Key Laboratory of Cognition and Personality, Ministry of Education, Faculty of Psychology, Southwest University, Chongqing 400715, China
| | - Pan Shi
- Faculty of Psychology, Southwest University, Chongqing 400715, China
| | - Hong Chen
- Faculty of Psychology, Southwest University, Chongqing 400715, China
- Key Laboratory of Cognition and Personality, Ministry of Education, Faculty of Psychology, Southwest University, Chongqing 400715, China
- Research Center of Psychology and Social Development, Faculty of Psychology, Southwest University, Chongqing 400715, China
| |
Collapse
|
5
|
Yan YJ, Hu HX, Zhang YJ, Wang LL, Pan YM, Lui SSY, Huang J, Chan RCK. Reward motivation adaptation in people with negative schizotypal features: development of a novel behavioural paradigm and identifying its neural correlates using resting-state functional connectivity analysis. Eur Arch Psychiatry Clin Neurosci 2024; 274:941-953. [PMID: 37395812 DOI: 10.1007/s00406-023-01640-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 06/13/2023] [Indexed: 07/04/2023]
Abstract
Reward motivation in individuals with high levels of negative schizotypal traits (NS) has been found to be lower than that in their counterparts. But it is unclear that whether their reward motivation adaptively changes with external effort-reward ratio, and what resting-state functional connectivity (rsFC) is associated with this change. Thirty-five individuals with high levels of NS and 44 individuals with low levels of NS were recruited. A 3T resting-state functional brain scan and a novel reward motivation adaptation behavioural task were administrated in all participants. The behavioural task was manipulated with three conditions (effort > reward condition vs. effort < reward condition vs. effort = reward condition). Under each condition were rated 'wanting' and 'liking' for rewards. The seed-based voxel-wise rsFC analysis was conducted to explore the rsFCs associated with the 'wanting' and 'liking' ratings in individuals with high levels of NS. 'Wanting' and 'liking' ratings of individuals with high levels of NS significantly declined in the effort > reward condition but did not rebound as high as their counterparts in the effort < reward condition. The rsFCs in NS group associated with these ratings were altered. The altered rsFCs in NS group involved regions in the prefrontal lobe, dopaminergic brain regions (ventral tegmental area, substantia nigra), hippocampus, thalamus and cerebellum. Individuals with high levels of NS manifested their reward motivation adaptation impairment as a failure of adjustment adaptively during effort-reward imbalance condition and altered rsFCs in prefrontal, dopaminergic and other brain regions.
Collapse
Affiliation(s)
- Yong-Jie Yan
- Neuropsychology and Applied Cognitive Neuroscience Laboratory, CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, 16 Lincui Road, Chaoyang District, Beijing, 100101, People's Republic of China
- Sino-Danish College of University of Chinese Academy of Sciences, Beijing, People's Republic of China
- Sino-Danish Centre for Education and Research, Beijing, People's Republic of China
| | - Hui-Xin Hu
- Neuropsychology and Applied Cognitive Neuroscience Laboratory, CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, 16 Lincui Road, Chaoyang District, Beijing, 100101, People's Republic of China
- Department of Psychology, The University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Yi-Jing Zhang
- Neuropsychology and Applied Cognitive Neuroscience Laboratory, CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, 16 Lincui Road, Chaoyang District, Beijing, 100101, People's Republic of China
- Department of Psychology, The University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Ling-Ling Wang
- Neuropsychology and Applied Cognitive Neuroscience Laboratory, CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, 16 Lincui Road, Chaoyang District, Beijing, 100101, People's Republic of China
- Department of Psychology, The University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Yi-Ming Pan
- Neuropsychology and Applied Cognitive Neuroscience Laboratory, CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, 16 Lincui Road, Chaoyang District, Beijing, 100101, People's Republic of China
- Department of Psychology, The University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Simon S Y Lui
- Department of Psychiatry, School of Clinical Medicine, The University of Hong Kong, Hong Kong Special Administrative Region , People's Republic of China
| | - Jia Huang
- Neuropsychology and Applied Cognitive Neuroscience Laboratory, CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, 16 Lincui Road, Chaoyang District, Beijing, 100101, People's Republic of China.
- Department of Psychology, The University of Chinese Academy of Sciences, Beijing, People's Republic of China.
| | - Raymond C K Chan
- Neuropsychology and Applied Cognitive Neuroscience Laboratory, CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, 16 Lincui Road, Chaoyang District, Beijing, 100101, People's Republic of China.
- Sino-Danish College of University of Chinese Academy of Sciences, Beijing, People's Republic of China.
- Department of Psychology, The University of Chinese Academy of Sciences, Beijing, People's Republic of China.
| |
Collapse
|
6
|
Li Z, Wu X, Gao H, Xiang T, Zhou J, Zou Z, Tong L, Yan B, Zhang C, Wang L, Wang W, Yang T, Li F, Ma H, Zhao X, Mi N, Yu Z, Li H, Zeng Q, Li Y. Intermittent energy restriction changes the regional homogeneity of the obese human brain. Front Neurosci 2023; 17:1201169. [PMID: 37600013 PMCID: PMC10434787 DOI: 10.3389/fnins.2023.1201169] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 07/21/2023] [Indexed: 08/22/2023] Open
Abstract
Background Intermittent energy restriction (IER) is an effective weight loss strategy. However, the accompanying changes in spontaneous neural activity are unclear, and the relationship among anthropometric measurements, biochemical indicators, and adipokines remains ambiguous. Methods Thirty-five obese adults were recruited and received a 2-month IER intervention. Data were collected from anthropometric measurements, blood samples, and resting-state functional magnetic resonance imaging at four time points. The regional homogeneity (ReHo) method was used to explore the effects of the IER intervention. The relationships between the ReHo values of altered brain regions and changes in anthropometric measurements, biochemical indicators, and adipokines (leptin and adiponectin) were analyzed. Results Results showed that IER significantly improved anthropometric measurements, biochemical indicators, and adipokine levels in the successful weight loss group. The IER intervention for weight loss was associated with a significant increase in ReHo in the bilateral lingual gyrus, left calcarine, and left postcentral gyrus and a significant decrease in the right middle temporal gyrus and right cerebellum (VIII). Follow-up analyses showed that the increase in ReHo values in the right LG had a significant positive correlation with a reduction in Three-factor Eating Questionnaire (TFEQ)-disinhibition and a significant negative correlation with an increase in TFEQ-cognitive control. Furthermore, the increase in ReHo values in the left calcarine had a significant positive correlation with the reduction in TFEQ-disinhibition. However, no significant difference in ReHo was observed in the failed weight loss group. Conclusion Our study provides objective evidence that the IER intervention reshaped the ReHo of some brain regions in obese individuals, accompanied with improved anthropometric measurements, biochemical indicators, and adipokines. These results illustrated that the IER intervention for weight loss may act by decreasing the motivational drive to eat, reducing reward responses to food cues, and repairing damaged food-related self-control processes. These findings enhance our understanding of the neurobiological basis of IER for weight loss in obesity.
Collapse
Affiliation(s)
- Zhonglin Li
- Department of Radiology, Henan Provincial People’s Hospital, Zhengzhou University People’s Hospital, Henan University People’s Hospital, Zhengzhou, China
| | - Xiaoling Wu
- Department of Nuclear Medicine, Henan Provincial People’s Hospital, Zhengzhou University People’s Hospital, Henan University People’s Hospital, Zhengzhou, China
| | - Hui Gao
- Henan Key Laboratory of Imaging and Intelligent Processing, PLA Strategic Support Force Information Engineering University, Zhengzhou, China
| | - Tianyuan Xiang
- Health Mangement Institute, The Second Medical Center and National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China
| | - Jing Zhou
- Department of Nephrology, Henan Provincial Clinical Research Center for Kidney Disease, Henan Provincial Key Laboratory of Kidney Disease and Immunology, Henan Provincial People’s Hospital, Zhengzhou University People’s Hospital, Zhengzhou, China
| | - Zhi Zou
- Department of Radiology, Henan Provincial People’s Hospital, Zhengzhou University People’s Hospital, Henan University People’s Hospital, Zhengzhou, China
| | - Li Tong
- Henan Key Laboratory of Imaging and Intelligent Processing, PLA Strategic Support Force Information Engineering University, Zhengzhou, China
| | - Bin Yan
- Henan Key Laboratory of Imaging and Intelligent Processing, PLA Strategic Support Force Information Engineering University, Zhengzhou, China
| | - Chi Zhang
- Henan Key Laboratory of Imaging and Intelligent Processing, PLA Strategic Support Force Information Engineering University, Zhengzhou, China
| | - Linyuan Wang
- Henan Key Laboratory of Imaging and Intelligent Processing, PLA Strategic Support Force Information Engineering University, Zhengzhou, China
| | - Wen Wang
- Department of Nutrition, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Henan University People’s Hospital, Zhengzhou, China
| | - Tingting Yang
- Department of Nutrition, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Henan University People’s Hospital, Zhengzhou, China
| | - Fengyun Li
- Department of Health Management, Henan Key Laboratory of Chronic Disease Management, Henan Provincial People’s Hospital, Zhengzhou University People’s Hospital, Henan University People’s Hospital, Zhengzhou, China
| | - Huimin Ma
- Department of Health Management, Henan Key Laboratory of Chronic Disease Management, Henan Provincial People’s Hospital, Zhengzhou University People’s Hospital, Henan University People’s Hospital, Zhengzhou, China
| | - Xiaojuan Zhao
- Department of Health Management, Henan Key Laboratory of Chronic Disease Management, Henan Provincial People’s Hospital, Zhengzhou University People’s Hospital, Henan University People’s Hospital, Zhengzhou, China
| | - Na Mi
- Department of Health Management, Henan Key Laboratory of Chronic Disease Management, Henan Provincial People’s Hospital, Zhengzhou University People’s Hospital, Henan University People’s Hospital, Zhengzhou, China
| | - Ziya Yu
- Henan Key Laboratory of Imaging and Intelligent Processing, PLA Strategic Support Force Information Engineering University, Zhengzhou, China
| | - Hao Li
- Department of Oral Health Management, Fuwai Central China Cardiovascular Hospital, Zhengzhou, China
| | - Qiang Zeng
- Health Mangement Institute, The Second Medical Center and National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China
| | - Yongli Li
- Department of Health Management, Henan Key Laboratory of Chronic Disease Management, Henan Provincial People’s Hospital, Zhengzhou University People’s Hospital, Henan University People’s Hospital, Zhengzhou, China
| |
Collapse
|
7
|
Li G, Hu Y, Zhang W, Wang J, Ji W, Manza P, Volkow ND, Zhang Y, Wang GJ. Brain functional and structural magnetic resonance imaging of obesity and weight loss interventions. Mol Psychiatry 2023; 28:1466-1479. [PMID: 36918706 PMCID: PMC10208984 DOI: 10.1038/s41380-023-02025-y] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 02/26/2023] [Accepted: 02/28/2023] [Indexed: 03/16/2023]
Abstract
Obesity has tripled over the past 40 years to become a major public health issue, as it is linked with increased mortality and elevated risk for various physical and neuropsychiatric illnesses. Accumulating evidence from neuroimaging studies suggests that obesity negatively affects brain function and structure, especially within fronto-mesolimbic circuitry. Obese individuals show abnormal neural responses to food cues, taste and smell, resting-state activity and functional connectivity, and cognitive tasks including decision-making, inhibitory-control, learning/memory, and attention. In addition, obesity is associated with altered cortical morphometry, a lowered gray/white matter volume, and impaired white matter integrity. Various interventions and treatments including bariatric surgery, the most effective treatment for obesity in clinical practice, as well as dietary, exercise, pharmacological, and neuromodulation interventions such as transcranial direct current stimulation, transcranial magnetic stimulation and neurofeedback have been employed and achieved promising outcomes. These interventions and treatments appear to normalize hyper- and hypoactivations of brain regions involved with reward processing, food-intake control, and cognitive function, and also promote recovery of brain structural abnormalities. This paper provides a comprehensive literature review of the recent neuroimaging advances on the underlying neural mechanisms of both obesity and interventions, in the hope of guiding development of novel and effective treatments.
Collapse
Affiliation(s)
- Guanya Li
- Center for Brain Imaging, School of Life Science and Technology, Xidian University & Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, Xi'an, Shaanxi, 710071, China
- International Joint Research Center for Advanced Medical Imaging and Intelligent Diagnosis and Treatment & Xi'an Key Laboratory of Intelligent Sensing and Regulation of trans-Scale Life Information, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, 710126, China
| | - Yang Hu
- Center for Brain Imaging, School of Life Science and Technology, Xidian University & Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, Xi'an, Shaanxi, 710071, China
- International Joint Research Center for Advanced Medical Imaging and Intelligent Diagnosis and Treatment & Xi'an Key Laboratory of Intelligent Sensing and Regulation of trans-Scale Life Information, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, 710126, China
| | - Wenchao Zhang
- Center for Brain Imaging, School of Life Science and Technology, Xidian University & Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, Xi'an, Shaanxi, 710071, China
- International Joint Research Center for Advanced Medical Imaging and Intelligent Diagnosis and Treatment & Xi'an Key Laboratory of Intelligent Sensing and Regulation of trans-Scale Life Information, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, 710126, China
| | - Jia Wang
- Center for Brain Imaging, School of Life Science and Technology, Xidian University & Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, Xi'an, Shaanxi, 710071, China
- International Joint Research Center for Advanced Medical Imaging and Intelligent Diagnosis and Treatment & Xi'an Key Laboratory of Intelligent Sensing and Regulation of trans-Scale Life Information, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, 710126, China
| | - Weibin Ji
- Center for Brain Imaging, School of Life Science and Technology, Xidian University & Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, Xi'an, Shaanxi, 710071, China
- International Joint Research Center for Advanced Medical Imaging and Intelligent Diagnosis and Treatment & Xi'an Key Laboratory of Intelligent Sensing and Regulation of trans-Scale Life Information, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, 710126, China
| | - Peter Manza
- Laboratory of Neuroimaging, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, 20892, USA
| | - Nora D Volkow
- Laboratory of Neuroimaging, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, 20892, USA
| | - Yi Zhang
- Center for Brain Imaging, School of Life Science and Technology, Xidian University & Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, Xi'an, Shaanxi, 710071, China.
- International Joint Research Center for Advanced Medical Imaging and Intelligent Diagnosis and Treatment & Xi'an Key Laboratory of Intelligent Sensing and Regulation of trans-Scale Life Information, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, 710126, China.
| | - Gene-Jack Wang
- Laboratory of Neuroimaging, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, 20892, USA.
| |
Collapse
|
8
|
Sun J, Du Z, Ma Y, Chen L, Wang Z, Guo C, Luo Y, Gao D, Hong Y, Zhang L, Han M, Cao J, Hou X, Xiao X, Tian J, Yu X, Fang J, Zhao Y. Altered functional connectivity in first-episode and recurrent depression: A resting-state functional magnetic resonance imaging study. Front Neurol 2022; 13:922207. [PMID: 36119680 PMCID: PMC9475213 DOI: 10.3389/fneur.2022.922207] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Accepted: 07/28/2022] [Indexed: 01/10/2023] Open
Abstract
Background Functional magnetic resonance imaging (fMRI) studies examining differences in the activity of brain networks between the first depressive episode (FDE) and recurrent depressive episode (RDE) are limited. The current study observed and compared the altered functional connectivity (FC) characteristics in the default mode network (DMN), cognitive control network (CCN), and affective network (AN) between the RDE and FDE. In addition, we further investigated the correlation between abnormal FC and clinical symptoms. Methods We recruited 32 patients with the RDE, 31 patients with the FDE, and 30 healthy controls (HCs). All subjects underwent resting-state fMRI. The seed-based FC method was used to analyze the abnormal brain networks in the DMN, CCN, and AN among the three groups and further explore the correlation between abnormal FC and clinical symptoms. Results One-way analysis of variance showed significant differences the FC in the DMN, CCN, and AN among the three groups in the frontal, parietal, temporal, and precuneus lobes and cerebellum. Compared with the RDE group, the FDE group generally showed reduced FC in the DMN, CCN, and AN. Compared with the HC group, the FDE group showed reduced FC in the DMN, CCN, and AN, while the RDE group showed reduced FC only in the DMN and AN. Moreover, the FC in the left posterior cingulate cortices and the right inferior temporal gyrus in the RDE group were positively correlated with the 17-item Hamilton Rating Scale for Depression (HAMD-17), and the FC in the left dorsolateral prefrontal cortices and the right precuneus in the FDE group were negatively correlated with the HAMD-17. Conclusions The RDE and FDE groups showed multiple abnormal brain networks. However, the alterations of abnormal FC were more extensive and intensive in the FDE group.
Collapse
Affiliation(s)
- Jifei Sun
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Zhongming Du
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Yue Ma
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Limei Chen
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Zhi Wang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Chunlei Guo
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yi Luo
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Deqiang Gao
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yang Hong
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Lei Zhang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Ming Han
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jiudong Cao
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiaobing Hou
- Beijing First Hospital of Integrated Chinese and Western Medicine, Beijing, China
| | - Xue Xiao
- Beijing First Hospital of Integrated Chinese and Western Medicine, Beijing, China
| | - Jing Tian
- Beijing First Hospital of Integrated Chinese and Western Medicine, Beijing, China
| | - Xue Yu
- Beijing First Hospital of Integrated Chinese and Western Medicine, Beijing, China
| | - Jiliang Fang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- *Correspondence: Jiliang Fang
| | - Yanping Zhao
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Yanping Zhao
| |
Collapse
|
9
|
Zhang P, Wu GW, Tang LR, Yu FX, Li MY, Wang Z, Yang ZH, Zhang ZT, Lv H, Liu Y, Wang ZC. Altered Brain Structural Reorganization and Hierarchical Integrated Processing in Obesity. Front Neurosci 2022; 16:796792. [PMID: 35368267 PMCID: PMC8971659 DOI: 10.3389/fnins.2022.796792] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Accepted: 02/01/2022] [Indexed: 11/17/2022] Open
Abstract
The brain receives sensory information about food, evaluates its desirability and value, and responds with approach or withdrawal. The evaluation process of food in the brain with obesity may involve a variety of neurocircuit abnormalities in the integration of internal and external information processing. There is a lack of consistency of the results extant reported for aberrant changes in the brain with obesity that prohibits key brain alterations to be identified. Moreover, most studies focus on the observation of neural plasticity of function or structure, and the evidence for functional and structural correlations in the neuronal plasticity process of obesity is still insufficient. The aims of this article are to explore the key neural structural regions and the hierarchical activity pattern of key structural nodes and evaluate the correlation between changes in functional modulation and eating behavior. Forty-two participants with obesity and 33 normal-weight volunteers were recruited. Gray matter volume (GMV) and Granger causality analysis (GCA) were performed using the DPARSF, CAT12, and DynamicBC toolbox. Compared with the normal weight group, the obesity group exhibited significantly increased GMV in the left parahippocampal gyrus (PG). The obesity group showed decreased causal inflow to the left PG from the left orbitofrontal cortex (OFC), right calcarine, and bilateral supplementary motor area (SMA). Decreased causal outflow to the left OFC, right precuneus, and right SMA from the left PG, as well as increased causal outflow to the left middle occipital gyrus (MOG) were observed in the obesity group. Negative correlations were found between DEBQ-External scores and causal outflow from the left PG to the left OFC, and DEBQ-Restraint scores and causal inflow from the left OFC to the left PG in the obesity group. Positive correlation was found between DEBQ-External scores and causal outflow from the left PG to the left MOG. These results show that the increased GMV in the PG may play an important role in obesity, which may be related to devalued reward system, altered behavioral inhibition, and the disengagement of attentional and visual function for external signals. These findings have important implications for understanding neural mechanisms in obesity and developing individual-tailored strategies for obesity prevention.
Collapse
Affiliation(s)
- Peng Zhang
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Guo-wei Wu
- Chinese Institute for Brain Research, Beijing, China
| | - Li-rong Tang
- Department of Clinical Psychology Center, Beijing Anding Hospital, Capital Medical University and National Clinical Research Center for Mental Disorders and Beijing Key Laboratory of Mental Disorders, Beijing, China
| | - Feng-xia Yu
- Medical Imaging Center, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Meng-yi Li
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University and National Clinical Research Center for Digestive Diseases, Beijing, China
| | - Zheng Wang
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Zheng-han Yang
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Zhong-tao Zhang
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University and National Clinical Research Center for Digestive Diseases, Beijing, China
| | - Han Lv
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- *Correspondence: Han Lv,
| | - Yang Liu
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University and National Clinical Research Center for Digestive Diseases, Beijing, China
- Yang Liu,
| | - Zhen-chang Wang
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- Zhen-chang Wang,
| |
Collapse
|