1
|
Liu L, Liu W, Deng W. Amylin inhibits gastric cancer progression by targeting CCN1 and affecting the PI3K/AKT signalling pathway. Ann Med 2025; 57:2480754. [PMID: 40165038 DOI: 10.1080/07853890.2025.2480754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 02/22/2025] [Accepted: 03/10/2025] [Indexed: 04/02/2025] Open
Abstract
METHODS This study used a combination of in vitro and in vivo experiments to investigate the role of amylin in the progression of GC. The expression of amylin in GC and its clinical correlation were evaluated using 38 pairs of GC and healthy human clinical samples. In vitro studies, human GC cell lines were treated with amylin to evaluate the effects of amylin on the proliferation, apoptosis and migration of GC cells. In in vivo studies, xenograft mouse models were established by subcutaneous injection of GC cells into nude mice, followed by treatment with amylin to assess tumor growth. Finally, Next-Generation Sequencing Technology (RNA-seq) was used to explore the potential mechanism of amylin on GC. RESULTS We found that amylin expression was reduced in GC compared to adjacent normal gastric tissues and that elevated amylin expression was negatively correlated with adverse pathological factors (p < 0.05). Additionally, we demonstrated that amylin impeded the growth, invasion, migration, and colony formation of GC cells and suppressed the epithelial-to-mesenchymal transformation of these cells (p < 0.05). Tumour xenograft model experiments confirmed the tumour-suppressive effect of amylin in subcutaneous tumours in nude mice (p < 0.05). Transcriptome sequencing (RNA-seq) revealed that amylin significantly down-regulated CCN1 gene expression in GC cells (p < 0.001). Further intervention targeting CCN1 verified its significance as a target of amylin's anti-carcinogenic function in GC. Additionally, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis revealed that amylin exerted its oncogenic effects by inhibiting the PI3K/Akt signalling pathway (p < 0.05). CONCLUSIONS Our findings demonstrate that amylin plays a crucial role in suppressing gastric cancer progression by targeting CCN1 and inhibiting the PI3K/Akt signalling pathway. These results suggest that amylin could serve as a potential therapeutic agent for GC treatment.
Collapse
Affiliation(s)
- Li Liu
- Department of General Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Wenxuan Liu
- Department of General Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Wenhong Deng
- Department of General Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| |
Collapse
|
2
|
Volčanšek Š, Koceva A, Jensterle M, Janež A, Muzurović E. Amylin: From Mode of Action to Future Clinical Potential in Diabetes and Obesity. Diabetes Ther 2025:10.1007/s13300-025-01733-8. [PMID: 40332747 DOI: 10.1007/s13300-025-01733-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Accepted: 03/19/2025] [Indexed: 05/08/2025] Open
Abstract
Precision diabetology is increasingly becoming diabetes phenotype-driven, whereby the specific hormonal imbalances involved are taken into consideration. Concomitantly, body weight-favorable therapeutic approaches are being dictated by the obesity pandemic, which extends to all diabetes subpopulations. Amylin, an anorexic neuroendocrine hormone co-secreted with insulin, is deficient in individuals with diabetes and plays an important role in postprandial glucose homeostasis, with additional potential cardiovascular and neuroprotective functions. Its actions include suppressing glucagon secretion, delaying gastric emptying, increasing energy expenditure and promoting satiety. While amylin holds promise as a therapeutic agent, its translation into clinical practice is hampered by complex receptor biology, the limitations of animal models, its amyloidogenic properties and pharmacokinetic challenges. In individuals with advanced β-cell dysfunction, supplementing insulin therapy with pramlintide, the first and currently only approved injectable short-acting selective analog of amylin, has demonstrated efficacy in enhancing both postprandial and overall glycemic control in both type 2 diabetes (T2D) and type 1 diabetes (T1D) without increasing the risk of hypoglycemia or weight gain. Current research focuses on several key strategies, from enhancing amylin stability by attaching polyethylene glycol or carbohydrate molecules to amylin, to developing oral amylin formulations to improve patients' convenience, as well as developing various combination therapies to enhance weight loss and glucose regulation by targeting multiple receptors in metabolic pathways. The novel synergistically acting glucagon-like peptide-1 (GLP-1) receptor agonist combined with the amylin agonist, CagriSema, shows promising results in both glucose regulation and weight management. As such, amylin agonists (combined with other members of the incretin class) could represent the elusive drug candidate to address the multi-hormonal dysregulations of diabetes subtypes and qualify as a precision medicine approach that surpasses the long overdue division into T1DM and T2DM. Further development of amylin-based therapies or delivery systems is crucial to fully unlock the therapeutic potential of this intriguing hormone.Graphical abstract available for this article.
Collapse
Affiliation(s)
- Špela Volčanšek
- Department of Endocrinology, Diabetes and Metabolic Diseases, University Medical Center Ljubljana, Ljubljana, Slovenia
- Medical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Andrijana Koceva
- Department of Endocrinology and Diabetology, University Medical Centre Maribor, Maribor, Slovenia
- Faculty of Medicine, University of Maribor, Maribor, Slovenia
| | - Mojca Jensterle
- Department of Endocrinology, Diabetes and Metabolic Diseases, University Medical Center Ljubljana, Ljubljana, Slovenia
- Medical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Andrej Janež
- Department of Endocrinology, Diabetes and Metabolic Diseases, University Medical Center Ljubljana, Ljubljana, Slovenia
- Medical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Emir Muzurović
- Endocrinology Section, Department of Internal Medicine, Clinical Centre of Montenegro, Podgorica, Montenegro.
- Faculty of Medicine, University of Montenegro, Podgorica, Montenegro.
| |
Collapse
|
3
|
Hadid S, Frishman WH, Aronow WS. Advancing Diabetes Management and Glycemic Control While Exploring CagriSema's Impact on Obesity Management. Cardiol Rev 2025:00045415-990000000-00488. [PMID: 40327810 DOI: 10.1097/crd.0000000000000940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/08/2025]
Abstract
Diabetes is a complex metabolic disorder affecting over 37 million people in the United States. Without proper management, diabetes can lead to a myriad of complications, including cardiovascular disease, kidney failure, and vision loss. Obesity is a major contributor to type 2 diabetes, but genetic and physiological factors make weight loss difficult, necessitating medication management for both conditions. Government-approved weight loss medications, including glucagon-like peptide-1 agonists and amylin analogs, have proven to be effective for both conditions. However, intensive glycemic control involving antidiabetic medications, while beneficial for reducing diabetic complications, can often precipitate hypoglycemic events, which are characterized by cardiac arrhythmias, coma, confusion, and even mortality. A new drug under investigation, CagriSema, combines cagrilintide, an amylin analog, with semaglutide, a glucagon-like peptide-1 agonist. This drug is being marketed as a safe and potentially superior medication to lower both Hemoglobin A1c and body weight. In this article, the pathophysiology, current guidelines, and management of diabetes will be reviewed, with an emphasis on the clinical evidence for tight glucose control and avoiding hypoglycemic events. Following this, an overview of recent trials on antidiabetic medications, including those involving CagriSema, will be presented, along with prospects for future trials in this promising area of research.
Collapse
Affiliation(s)
- Somar Hadid
- From the Department of Medicine, New York Medical College, Valhalla, NY
| | | | - Wilbert S Aronow
- Departments of Cardiology and Medicine, Westchester Medical Center and New York Medical College, Valhalla, NY
| |
Collapse
|
4
|
Almeida MS, Sanches MP, Tonet NS, Zuglianello C, Morari J, Velloso LA, Lemos-Senna E, Rafacho A. Intranasal pramlintide matches intraperitoneal effects on food intake and gastric emptying in mice. Endocrine 2025:10.1007/s12020-025-04220-z. [PMID: 40169506 DOI: 10.1007/s12020-025-04220-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Accepted: 03/20/2025] [Indexed: 04/03/2025]
Abstract
PURPOSE Pramlintide is an amylin analog developed as a complementary treatment for diabetes. However, it requires several subcutaneous injections, reducing patients' adherence. Since the intranasal route might be an alternative for drug administration, we evaluated whether intranasal pramlintide treatment exerts comparable actions with intraperitoneal administration. METHODS Adult male Swiss mice were submitted to a refeeding test in a dose-response study with intraperitoneal (PRAM i.p.) or intranasal (PRAM i.n.) pramlintide administration. Intraperitoneal liraglutide served as a positive control (LIRA). Then, the selected dose was administered to analyze gastric emptying after an acute exposure. We also evaluated an 8-day treatment (once daily) to determine food intake and body mass. Blood glucose and plasma triacylglycerides were measured on the euthanasia day. RESULTS In the refeeding test, the anorexigenic dose for the PRAM i.p. or LIRA i.p groups was 200 µg/kg and 400 µg/kg, respectively. The PRAM i.n. group (200 µg/kg) exhibited a trend for that. The reduction in gastric emptying occurred for all treated groups compared with their respective controls (vehicle-treated). Neither the PRAM i.p. nor the PRAM i.n. groups exhibited reduced body mass and food intake in the subchronic experiment. No impact on biochemical parameters was observed regardless of the route of pramlintide administration. CONCLUSION Although intranasal pramlintide is not comparable in magnitude to intraperitoneal administration at an equivalent administered dose, our evidence corroborates the development of novel intranasal formulations destined to overpass the bioavailability issue and potentially serve as an alternative route.
Collapse
Affiliation(s)
- Milena S Almeida
- Laboratory of Investigation of Chronic Diseases, Department of Physiological Sciences, Biological Sciences Center, Florianópolis, Santa Catarina, Brazil
| | - Mariele P Sanches
- Laboratory of Pharmaceutical Technology, Department of Pharmaceutical Sciences, Health Sciences Center, Florianópolis, Santa Catarina, Brazil
| | - Natália S Tonet
- Laboratory of Investigation of Chronic Diseases, Department of Physiological Sciences, Biological Sciences Center, Florianópolis, Santa Catarina, Brazil
- Laboratory of Cell Signaling, Obesity and Comorbidities Research Center, University of Campinas, Campinas, Brazil
| | - Carine Zuglianello
- Laboratory of Pharmaceutical Technology, Department of Pharmaceutical Sciences, Health Sciences Center, Florianópolis, Santa Catarina, Brazil
| | - Joseane Morari
- Laboratory of Cell Signaling, Obesity and Comorbidities Research Center, University of Campinas, Campinas, Brazil
| | - Licio A Velloso
- Laboratory of Cell Signaling, Obesity and Comorbidities Research Center, University of Campinas, Campinas, Brazil
| | - Elenara Lemos-Senna
- Laboratory of Pharmaceutical Technology, Department of Pharmaceutical Sciences, Health Sciences Center, Florianópolis, Santa Catarina, Brazil
| | - Alex Rafacho
- Laboratory of Investigation of Chronic Diseases, Department of Physiological Sciences, Biological Sciences Center, Florianópolis, Santa Catarina, Brazil.
| |
Collapse
|
5
|
Iglesias-Fortes S, Lockwood AC, González-Blanco C, Lozano D, García-Aguilar A, Palomino O, García G, Fernández-Millán E, Benito M, Guillén C. Amylin is incorporated into extracellular vesicles in an ESCRT-dependent manner and regulates senescence. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167699. [PMID: 39892470 DOI: 10.1016/j.bbadis.2025.167699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 01/10/2025] [Accepted: 01/23/2025] [Indexed: 02/03/2025]
Abstract
Type 2 diabetes mellitus is a disease which initiates with insulin resistance. Then, pancreatic β cells start to counteract this situation by increasing insulin secretion, which is known as pre-diabetic state. Amylin protein or islet amyloid polypeptide (IAPP), has multiple physiological roles such as the regulation of satiety and avoiding gastric emptying. However, amylin is able to aggregate, forming insoluble structures that affects pancreatic β cell survival. Interestingly, not all the amylin from the different species has this aggregate-prone capacity. There are species, which possesses non-amyloidogenic capacity and does not aggregate such as the rodents. However, there are versions of the protein, for instance from humans and primates, which can aggregate. Previously, we observed that small oligomers could be found in extracellular vesicles (EVs). Now, we have used a pancreatic β cell which overexpresses human amylin (hIAPP) (INS1E-hIAPP) and we have explored the capacity of amylin to be incorporated into EVs and how amylin could affect to different essential signaling pathways such as the mammalian target of rapamycin complex 1, endoplasmic-reticulum stress and senescence. Here, we report that amylin can be incorporated into EVs in an endosomal sorting complexes required for transport (ESCRT)-dependent manner. When we treated the cells with the neutral sphingomyelinase inhibitor, GW4869, one of the pathways for EV biogenesis and under high glucose conditions, there was an increased incorporation of soluble amylin into vesicles. Interestingly in this condition, when we isolated the EVs, we clearly observed that the size of the vesicles was higher, compatible with microvesicles (MVs). Resveratrol increased a pro-senescent phenotype but, it was able to revert either the high glucose or GW4869-associated senescent. In summary, these results indicate that amylin can be recruited in an ESCRT-dependent manner into EVs and, resveratrol presents an important role in inducing senescence in INS1E-hIAPP pancreatic β cells.
Collapse
Affiliation(s)
- S Iglesias-Fortes
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Complutense University of Madrid, Plaza Ramón y Cajal s/n, Ciudad Universitaria, 28040 Madrid, Spain
| | - A C Lockwood
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Complutense University of Madrid, Plaza Ramón y Cajal s/n, Ciudad Universitaria, 28040 Madrid, Spain; CIBER de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III, 28040 Madrid, Spain; Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Complutense University of Madrid, IdISSC, Madrid, Spain
| | - C González-Blanco
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Complutense University of Madrid, Plaza Ramón y Cajal s/n, Ciudad Universitaria, 28040 Madrid, Spain; CIBER de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III, 28040 Madrid, Spain; Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Complutense University of Madrid, IdISSC, Madrid, Spain
| | - D Lozano
- Instituto de Investigación I+12, Madrid, Spain; Departamento de Química en Ciencias Farmacéuticas, Universidad Complutense de Madrid, Spain; Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto de Salud Carlos III, Spain
| | - A García-Aguilar
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III, 28040 Madrid, Spain; Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Complutense University of Madrid, IdISSC, Madrid, Spain; Department of Pharmacology, Pharmacognosy and Botany, Faculty of Pharmacy, Complutense University of Madrid, Madrid, Spain
| | - O Palomino
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III, 28040 Madrid, Spain; Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Complutense University of Madrid, IdISSC, Madrid, Spain; Department of Pharmacology, Pharmacognosy and Botany, Faculty of Pharmacy, Complutense University of Madrid, Madrid, Spain
| | - G García
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III, 28040 Madrid, Spain; Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Complutense University of Madrid, IdISSC, Madrid, Spain
| | - E Fernández-Millán
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Complutense University of Madrid, Plaza Ramón y Cajal s/n, Ciudad Universitaria, 28040 Madrid, Spain; CIBER de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III, 28040 Madrid, Spain
| | - M Benito
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Complutense University of Madrid, Plaza Ramón y Cajal s/n, Ciudad Universitaria, 28040 Madrid, Spain
| | - C Guillén
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Complutense University of Madrid, Plaza Ramón y Cajal s/n, Ciudad Universitaria, 28040 Madrid, Spain; CIBER de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III, 28040 Madrid, Spain; Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Complutense University of Madrid, IdISSC, Madrid, Spain.
| |
Collapse
|
6
|
Byun S, Maric I, Börchers S, Sotzen MR, Olekanma D, Hayes MR, Skibicka KP. From the pancreas to the amygdala: New brain area critical for ingestive and motivated behavior control exerted by amylin. iScience 2025; 28:112040. [PMID: 40124523 PMCID: PMC11928841 DOI: 10.1016/j.isci.2025.112040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 01/13/2025] [Accepted: 02/13/2025] [Indexed: 03/25/2025] Open
Abstract
Amylin, a pancreatic peptide, has a well-established role in feeding behavior control. Amylin analogues are clinically utilized in patients with diabetes and are under investigation as potential anti-obesity pharmacotherapies. The neural circuits underlying actions of amylin on behavior are not well understood. While amylin was found to bind to the central amygdala (CeA) of rodents and primates and we found that all components of amylin receptors are present in the CeA, their potential role in physiology or behavior remains unknown. Here, we investigated the impact of this potential pancreas - CeA amylin-mediated communication - on ingestive and motivated behaviors. Activation of CeA amylin receptors resulted in a robust hypophagia, reduced food-motivated behavior, and altered macronutrient preference in male and female rats. Clinically used amylin analogue, pramlintide, reduced meal size and frequency by acting on the CeA. Disruption of CeA amylin signaling led to hyperphagia and body weight gain in a sex divergent manner. Importantly, CeA amylin signaling was required for appetite suppression induced by peripherally applied amylin, highlighting translational relevance of this brain site. Our data indicate the CeA is a critical neural substrate for amylin signaling.
Collapse
Affiliation(s)
- Suyeun Byun
- Department of Nutritional Sciences, Pennsylvania State University, State College, PA, USA
| | - Ivana Maric
- Department of Nutritional Sciences, Pennsylvania State University, State College, PA, USA
- Institute of Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden
| | - Stina Börchers
- Department of Nutritional Sciences, Pennsylvania State University, State College, PA, USA
- Institute of Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden
| | - Morgan R. Sotzen
- Department of Nutritional Sciences, Pennsylvania State University, State College, PA, USA
- Huck Institutes of Life Science, Pennsylvania State University, State College, PA, USA
| | - Doris Olekanma
- Department of Nutritional Sciences, Pennsylvania State University, State College, PA, USA
- Huck Institutes of Life Science, Pennsylvania State University, State College, PA, USA
| | - Matthew R. Hayes
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, USA
| | - Karolina P. Skibicka
- Department of Nutritional Sciences, Pennsylvania State University, State College, PA, USA
- Institute of Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden
- Huck Institutes of Life Science, Pennsylvania State University, State College, PA, USA
| |
Collapse
|
7
|
Zhou Q, Li G, Hang K, Li J, Yang D, Wang MW. Weight Loss Blockbuster Development: A Role for Unimolecular Polypharmacology. Annu Rev Pharmacol Toxicol 2025; 65:191-213. [PMID: 39259982 DOI: 10.1146/annurev-pharmtox-061324-011832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
Obesity and type 2 diabetes mellitus (T2DM) impact more than 2.5 billion adults worldwide, necessitating innovative therapeutic approaches. Unimolecular polypharmacology, which involves designing single molecules to target multiple receptors or pathways simultaneously, has revolutionized treatment strategies. Blockbuster drugs such as tirzepatide and retatrutide have shown unprecedented success in managing obesity and T2DM, demonstrating superior efficacy compared to conventional single agonists. Tirzepatide, in particular, has garnered tremendous attention for its remarkable effectiveness in promoting weight loss and improving glycemic control, while offering additional cardiovascular and renal benefits. Despite their promises, such therapeutic agents also face challenges that include gastrointestinal side effects, patient compliance issues, and body weight rebound after cessation of the treatment. Nonetheless, the development of these therapies marks a significant leap forward, underscoring the transformative potential of unimolecular polypharmacology in addressing metabolic diseases and paving the way for future innovations in personalized medicine.
Collapse
Affiliation(s)
- Qingtong Zhou
- Research Center for Deepsea Bioresources, Sanya, Hainan, China
- Department of Pharmacology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Guanyi Li
- School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai, China
- Research Center for Deepsea Bioresources, Sanya, Hainan, China
| | - Kaini Hang
- Department of Pharmacology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Jie Li
- Department of Pharmacology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Dehua Yang
- University of Chinese Academy of Sciences, Beijing, China
- State Key Laboratory of Chemical Biology and The National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China;
- Research Center for Deepsea Bioresources, Sanya, Hainan, China
| | - Ming-Wei Wang
- Engineering Research Center of Tropical Medicine Innovation and Transformation of Ministry of Education, School of Pharmacy, Hainan Medical University, Haikou, China
- Department of Chemistry, School of Science, The University of Tokyo, Tokyo, Japan
- State Key Laboratory of Chemical Biology and The National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China;
- Department of Pharmacology, School of Basic Medical Sciences, Fudan University, Shanghai, China
- Research Center for Deepsea Bioresources, Sanya, Hainan, China
- Translational Research Center for Structural Biology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
8
|
Kundnani NR, Lolescu B, Dinu AR, Berceanu-Vaduva DM, Dumitrescu P, Tamaș TP, Sharma A, Popa MD. Biotechnology Revolution Shaping the Future of Diabetes Management. Biomolecules 2024; 14:1563. [PMID: 39766270 PMCID: PMC11674738 DOI: 10.3390/biom14121563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 11/28/2024] [Accepted: 12/05/2024] [Indexed: 01/11/2025] Open
Abstract
INTRODUCTION Diabetes mellitus (DM) has a millennia-long history, with early references dating back to ancient Egypt and India. However, it was not until the 20th century that the connection between diabetes and insulin was fully understood. The sequencing of insulin in the 1950s initiated the convergence of biotechnology and diabetes management, leading to the development of recombinant human insulin in 1982. This marked the start of peptide-based therapies in DM. Recombinant peptides for DM treatment: Numerous recombinant peptides have been developed since, starting with modified insulin molecules, with the aim of bettering DM management through fine-tuning the glycemic response to insulin. Peptide-based therapies in DM have expanded substantially beyond insulin to include agonists of Glucagon-like peptide-1 receptor and Glucose-dependent insulinotropic polypeptide receptor, glucagon receptor antagonists, and even peptides exerting multiple receptor agonist effects, for better metabolic control. Insulin pumps, continuous glucose monitoring, and automated insulin delivery systems: The development of modern delivery systems combined with real-time glucose monitoring has significantly advanced diabetes care. Insulin pumps evolved from early large devices to modern sensor-augmented pumps with automated shutoff features and hybrid closed-loop systems, requiring minimal user input. The second-generation systems have demonstrated superior outcomes, proving highly effective in diabetes management. Islet cell transplantation, organoids, and biological pancreas augmentation represent innovative approaches to diabetes management. Islet cell transplantation aims to restore insulin production by transplanting donor beta cells, though challenges persist regarding graft survival and the need for immunosuppression. Organoids are a promising platform for generating insulin-producing cells, although far from clinical use. Biological pancreas augmentation relies on therapies that promote beta-cell (re)generation, reduce stress, and induce immune tolerance. Further biotechnology-driven perspectives in DM will include metabolic control via biotechnology-enabled tools such as custom-designed insulin hybrid molecules, machine-learning algorithms to control peptide release, and engineering cells for optimal peptide production and secretion.
Collapse
Affiliation(s)
- Nilima Rajpal Kundnani
- Department of Cardiology—Internal Medicine and Ambulatory Care, Prevention and Cardiovascular Recovery, “Victor Babeș” University of Medicine and Pharmacy, 300041 Timisoara, Romania; (N.R.K.)
- Research Centre of Timisoara Institute of Cardiovascular Diseases, “Victor Babeșs” University of Medicine and Pharmacy, 300041 Timisoara, Romania
| | - Bogdan Lolescu
- Doctoral School Medicine-Pharmacy, “Victor Babeș” University of Medicine and Pharmacy from Timisoara, Eftimie Murgu Sq. No. 2, 300041 Timisoara, Romania
| | - Anca-Raluca Dinu
- Department XVI, Medical Recovery, “Victor Babeş” University of Medicine and Pharmacy, 300041 Timisoara, Romania
- Research Center for Assessment of Human Motion and Functionality and Disability, “Victor Babeșs” University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania
- “Pius Brinzeu” Emergency Clinical County Hospital, Bld Liviu Rebreanu, No. 156, 300723 Timisoara, Romania
| | - Delia Mira Berceanu-Vaduva
- Discipline of Microbiology, Department XIV Microbiology, University of Medicine and Pharmacy from Timisoara, Eftimie Murgu Sq. No. 2, 300041 Timisoara, Romania; (D.M.B.-V.)
| | - Patrick Dumitrescu
- Faculty of Medicine, University of Medicine and Pharmacy from Timisoara, Eftimie Murgu Sq. No. 2, 300041 Timisoara, Romania
| | - Tudor-Paul Tamaș
- Discipline of Physiology, Department III—Functional Sciences, University of Medicine and Pharmacy from Timisoara, Eftimie Murgu Sq. No. 2, 300041 Timisoara, Romania
| | - Abhinav Sharma
- Department of Cardiology—Internal Medicine and Ambulatory Care, Prevention and Cardiovascular Recovery, “Victor Babeș” University of Medicine and Pharmacy, 300041 Timisoara, Romania; (N.R.K.)
| | - Mihaela-Diana Popa
- Discipline of Microbiology, Department XIV Microbiology, University of Medicine and Pharmacy from Timisoara, Eftimie Murgu Sq. No. 2, 300041 Timisoara, Romania; (D.M.B.-V.)
| |
Collapse
|
9
|
Iglesias-Fortes S, González-Blanco C, García-Carrasco A, Izquierdo-Lahuerta A, García G, García-Aguilar A, Lockwood A, Palomino O, Medina-Gómez G, Benito M, Guillén C. The overexpression of human amylin in pancreatic β cells facilitate the appearance of amylin aggregates in the kidney contributing to diabetic nephropathy. Sci Rep 2024; 14:24729. [PMID: 39433955 PMCID: PMC11494195 DOI: 10.1038/s41598-024-77063-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 10/18/2024] [Indexed: 10/23/2024] Open
Abstract
Diabetic nephropathy is one of the most frequent complications of diabetic patients and is the leading cause of end-stage renal disease worldwide. The complex physiopathology of this complication raises a challenge in the development of effective medical treatments. Therefore, a better understanding of this disease is necessary for producing more targeted therapies. In this work we propose human amylin as a possible mediator in the development of diabetic nephropathy. Islet amyloid polypeptide or amylin is a hormone co-secreted with insulin. The human isoform has the ability to fold and form amyloid aggregates in the pancreas of patients with type 2 diabetes mellitus, disrupting cellular homeostasis due to its ability to form pores in lipid bilayers. It has been described that hIAPP can be secreted and exported in extracellular vesicles outside the pancreas, being a plausible connecting mechanism between the β-cell and other peripheral tissues such as the kidney. Here, we demonstrate that tubular, podocytes and mesangial cells can incorporate hIAPP coming from β-cells. Then, this hIAPP can form aggregates inside these kidney cells, contributing to its failure. In order to study the consequences in vivo, we found amylin aggregates in the kidney of mice overexpressing hIAPP after feeding a high fat diet. In addition, we observed an increase in glomerulosclerosis index and inflammation. Specifically, there were significant changes in signalling pathways directly involved in the diabetic nephropathy such as an increased in mTORC1 signaling pathway, an alteration in mitochondrial dynamics and an increased in endoplasmic reticulum stress. All these results demonstrate the importance of hIAPP in the kidney and its possible contribution in the development of diabetic nephropathy.
Collapse
Affiliation(s)
- S Iglesias-Fortes
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Complutense University of Madrid, Plaza Ramón y Cajal s/n, Ciudad Universitaria, IdISSC, Madrid, 28040, Spain
| | - C González-Blanco
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Complutense University of Madrid, Plaza Ramón y Cajal s/n, Ciudad Universitaria, IdISSC, Madrid, 28040, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III, Madrid, 28040, Spain
| | - A García-Carrasco
- Department of Basic Sciences of Health, Area of Biochemistry and Molecular Biology, Universidad Rey Juan Carlos, Alcorcon, 28922, Spain
| | - A Izquierdo-Lahuerta
- Department of Basic Sciences of Health, Area of Biochemistry and Molecular Biology, Universidad Rey Juan Carlos, Alcorcon, 28922, Spain
| | - G García
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Complutense University of Madrid, Plaza Ramón y Cajal s/n, Ciudad Universitaria, IdISSC, Madrid, 28040, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III, Madrid, 28040, Spain
| | - A García-Aguilar
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Complutense University of Madrid, Plaza Ramón y Cajal s/n, Ciudad Universitaria, IdISSC, Madrid, 28040, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III, Madrid, 28040, Spain
- Department of Pharmacology, Pharmacognosy and Botany, Faculty of Pharmacy, Complutense University of Madrid, Madrid, Spain
| | - A Lockwood
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Complutense University of Madrid, Plaza Ramón y Cajal s/n, Ciudad Universitaria, IdISSC, Madrid, 28040, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III, Madrid, 28040, Spain
| | - O Palomino
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Complutense University of Madrid, Plaza Ramón y Cajal s/n, Ciudad Universitaria, IdISSC, Madrid, 28040, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III, Madrid, 28040, Spain
- Department of Pharmacology, Pharmacognosy and Botany, Faculty of Pharmacy, Complutense University of Madrid, Madrid, Spain
| | - G Medina-Gómez
- Department of Basic Sciences of Health, Area of Biochemistry and Molecular Biology, Universidad Rey Juan Carlos, Alcorcon, 28922, Spain
| | - M Benito
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Complutense University of Madrid, Plaza Ramón y Cajal s/n, Ciudad Universitaria, IdISSC, Madrid, 28040, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III, Madrid, 28040, Spain
| | - C Guillén
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Complutense University of Madrid, Plaza Ramón y Cajal s/n, Ciudad Universitaria, IdISSC, Madrid, 28040, Spain.
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III, Madrid, 28040, Spain.
| |
Collapse
|
10
|
Holst JJ. GLP-1 physiology in obesity and development of incretin-based drugs for chronic weight management. Nat Metab 2024; 6:1866-1885. [PMID: 39160334 DOI: 10.1038/s42255-024-01113-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 07/17/2024] [Indexed: 08/21/2024]
Abstract
The introduction of the highly potent incretin receptor agonists semaglutide and tirzepatide has marked a new era in the treatment of type 2 diabetes and obesity. With normalisation of glycated haemoglobin levels and weight losses around 15-25%, therapeutic goals that were previously unrealistic are now within reach, and clinical trials have documented that these effects are associated with reduced risk of cardiovascular events and premature mortality. Here, I review this remarkable development from the earliest observations of glucose lowering and modest weight losses with native glucagon-like peptide (GLP)-1 and short acting compounds, to the recent development of highly active formulations and new molecules. I will classify these agents as GLP-1-based therapies in the understanding that these compounds or combinations may have actions on other receptors as well. The physiology of GLP-1 is discussed as well as its mechanisms of actions in obesity, in particular, the role of sensory afferents and GLP-1 receptors in the brain. I provide details regarding the development of GLP-1 receptor agonists for anti-obesity therapy and discuss the possible mechanism behind their beneficial effects on adverse cardiovascular events. Finally, I highlight new pharmacological developments, including oral agents, and discuss important questions regarding maintenance therapy.
Collapse
Affiliation(s)
- Jens Juul Holst
- Novo Nordisk Foundation Center for Basic Metabolic Research and Department of Biomedical Sciences. Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
11
|
Babych M, Garelja ML, Nguyen PT, Hay DL, Bourgault S. Converting the Amyloidogenic Islet Amyloid Polypeptide into a Potent Nonaggregating Peptide Ligand by Side Chain-to-Side Chain Macrocyclization. J Am Chem Soc 2024; 146:25513-25526. [PMID: 39225636 DOI: 10.1021/jacs.4c05297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
The islet amyloid polypeptide (IAPP), also known as amylin, is a hormone playing key physiological roles. However, its aggregation and deposition in the pancreatic islets are associated with type 2 diabetes. While this peptide adopts mainly a random coil structure in solution, its secondary conformational conversion into α-helix represents a critical step for receptor activation and contributes to amyloid formation and associated cytotoxicity. Considering the large conformational landscape and high amyloidogenicity of the peptide, as well as the complexity of the self-assembly process, it is challenging to delineate the delicate interplay between helical folding, peptide aggregation, and receptor activation. In the present study, we probed the roles of helical folding on the function-toxicity duality of IAPP by restricting its conformational ensemble through side chain-to-side chain stapling via azide-alkyne cycloaddition. Intramolecular macrocyclization (i; i + 4) constrained IAPP into α-helix and inhibited its aggregation into amyloid fibrils. These helical derivatives slowed down the self-assembly of unmodified IAPP. Site-specific macrocyclization modulated the capacity of IAPP to perturb lipid bilayers and cell plasma membrane and reduced, or even fully inhibited, the cytotoxicity associated with aggregation. Furthermore, the α-helical IAPP analogs showed moderate to high potency toward cognate G protein-coupled receptors. Overall, these results indicate that macrocyclization represents a promising strategy to protect an amyloidogenic peptide hormone from aggregation and associated toxicity, while maintaining high receptor activity.
Collapse
Affiliation(s)
- Margaryta Babych
- Department of Chemistry, Université du Québec à Montréal, C.P. 8888, Succursale Centre-Ville, Montréal H3C 3P8, Canada
- Quebec Network for Research on Protein Function, Engineering and Applications, PROTEO, C.P. 8888, Succursale Centre-Ville, Montréal H3C 3P8, Canada
| | - Michael L Garelja
- Department of Pharmacology and Toxicology, University of Otago, 18 Frederick Street, Dunedin 9016, New Zealand
| | - Phuong Trang Nguyen
- Department of Chemistry, Université du Québec à Montréal, C.P. 8888, Succursale Centre-Ville, Montréal H3C 3P8, Canada
- Quebec Network for Research on Protein Function, Engineering and Applications, PROTEO, C.P. 8888, Succursale Centre-Ville, Montréal H3C 3P8, Canada
| | - Debbie L Hay
- Department of Pharmacology and Toxicology, University of Otago, 18 Frederick Street, Dunedin 9016, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, 3A Symonds Street, Auckland 92019, New Zealand
| | - Steve Bourgault
- Department of Chemistry, Université du Québec à Montréal, C.P. 8888, Succursale Centre-Ville, Montréal H3C 3P8, Canada
- Quebec Network for Research on Protein Function, Engineering and Applications, PROTEO, C.P. 8888, Succursale Centre-Ville, Montréal H3C 3P8, Canada
| |
Collapse
|
12
|
Rubinić I, Kurtov M, Likić R. Novel Pharmaceuticals in Appetite Regulation: Exploring emerging gut peptides and their pharmacological prospects. Pharmacol Res Perspect 2024; 12:e1243. [PMID: 39016695 PMCID: PMC11253306 DOI: 10.1002/prp2.1243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 03/23/2024] [Accepted: 06/22/2024] [Indexed: 07/18/2024] Open
Abstract
Obesity, a global health challenge, necessitates innovative approaches for effective management. Targeting gut peptides in the development of anti-obesity pharmaceuticals has already demonstrated significant efficacy. Ghrelin, peptide YY (PYY), cholecystokinin (CCK), and amylin are crucial in appetite regulation offering promising targets for pharmacological interventions in obesity treatment using both peptide-based and small molecule-based pharmaceuticals. Ghrelin, a sole orexigenic gut peptide, has a potential for anti-obesity therapies through various approaches, including endogenous ghrelin neutralization, ghrelin receptor antagonists, ghrelin O-acyltransferase, and functional inhibitors. Anorexigenic gut peptides, peptide YY, cholecystokinin, and amylin, have exhibited appetite-reducing effects in animal models and humans. Overcoming substantial obstacles is imperative for translating these findings into clinically effective pharmaceuticals. Peptide YY and cholecystokinin analogues, characterized by prolonged half-life and resistance to proteolytic enzymes, present viable options. Positive allosteric modulators emerge as a novel approach for modulating the cholecystokinin pathway. Amylin is currently the most promising, with both amylin analogues and dual amylin and calcitonin receptor agonists (DACRAs) progressing to advanced stages of clinical trials. Despite persistent challenges, innovative pharmaceutical strategies provide a glimpse into the future of anti-obesity therapies.
Collapse
Affiliation(s)
- Igor Rubinić
- Department of Basic and Clinical Pharmacology and Toxicology, Faculty of MedicineUniversity of RijekaRijekaCroatia
- Clinical Pharmacology unitClinical Hospital Center RijekaRijekaCroatia
| | - Marija Kurtov
- Division of Clinical Pharmacology and Toxicology, Department of Internal MedicineUniversity Hospital “Sveti Duh”ZagrebCroatia
| | - Robert Likić
- Department of Internal MedicineSchool of Medicine University of ZagrebZagrebCroatia
| |
Collapse
|
13
|
Dahl K, Raun K, Hansen JL, Poulsen C, de la Cour CD, Clausen TR, Hansen AMK, John LM, Plesner A, Sun G, Schlein M, Skyggebjerg RB, Kruse T. NN1213 - A Potent, Long-Acting, and Selective Analog of Human Amylin. J Med Chem 2024; 67:11688-11700. [PMID: 38960379 PMCID: PMC11284788 DOI: 10.1021/acs.jmedchem.4c00022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 05/01/2024] [Accepted: 05/23/2024] [Indexed: 07/05/2024]
Abstract
Amylin, a member of the calcitonin family, acts via amylin receptors in the hindbrain and hypothalamus to suppress appetite. Native ligands of these receptors are peptides with short half-lives. Conjugating fatty acids to these peptides can increase their half-lives. The long-acting human amylin analog, NN1213, was generated from structure-activity efforts optimizing solubility, stability, receptor affinity, and selectivity, as well as in vivo potency and clearance. In both rats and dogs, a single dose of NN1213 reduced appetite in a dose-dependent manner and with a long duration of action. Consistent with the effect on appetite, studies in obese rats demonstrated that daily NN1213 dosing resulted in a dose-dependent reduction in body weight over a 21-day period. Magnetic resonance imaging indicated that this was primarily driven by loss of fat mass. Based on these data, NN1213 could be considered an attractive option for weight management in the clinical setting.
Collapse
Affiliation(s)
- Kirsten Dahl
- Novo
Nordisk A/S, Novo Nordisk
Park, DK-2760 Maaloev, Denmark
| | - Kirsten Raun
- Novo
Nordisk A/S, Novo Nordisk
Park, DK-2760 Maaloev, Denmark
| | | | | | | | | | | | - Linu M. John
- Novo
Nordisk A/S, Novo Nordisk
Park, DK-2760 Maaloev, Denmark
- Novo
Nordisk China, Novo Nordisk Research Center China, Building 2, 20 Life Science Park Road, Changping
District, 102206 Beijing, China
| | - Annette Plesner
- Novo
Nordisk A/S, Novo Nordisk
Park, DK-2760 Maaloev, Denmark
| | - Gao Sun
- Novo
Nordisk China, Novo Nordisk Research Center China, Building 2, 20 Life Science Park Road, Changping
District, 102206 Beijing, China
| | - Morten Schlein
- Novo
Nordisk A/S, Novo Nordisk
Park, DK-2760 Maaloev, Denmark
| | | | - Thomas Kruse
- Novo
Nordisk A/S, Novo Nordisk
Park, DK-2760 Maaloev, Denmark
| |
Collapse
|
14
|
Leibold N, Bain JR, Despa F. Type-2 Diabetes, Pancreatic Amylin, and Neuronal Metabolic Remodeling in Alzheimer's Disease. Mol Nutr Food Res 2024; 68:e2200405. [PMID: 36708219 PMCID: PMC10374875 DOI: 10.1002/mnfr.202200405] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 09/26/2022] [Indexed: 01/29/2023]
Abstract
Type-2 diabetes raises the risk for Alzheimer's disease (AD)-type dementia and the conversion from mild cognitive impairment to dementia, yet mechanisms connecting type-2 diabetes to AD remain largely unknown. Amylin, a pancreatic β-cell hormone co-secreted with insulin, participates in the central regulation of satiation, but also forms pancreatic amyloid in persons with type-2 diabetes and synergistically interacts with brain amyloid β (Aβ) pathology, in both sporadic and familial Alzheimer's disease (AD). Growing evidence from studies of tumor growth, together with early observations in skeletal muscle, indicates amylin as a potential trigger of cellular metabolic reprogramming. Because the blood, cerebrospinal fluid, and brain parenchyma in humans with AD have increased concentrations of amylin, amylin-mediated pathological processes in the brain may involve neuronal metabolic remodeling. This review summarizes recent progress in understanding the link between prediabetic hypersecretion of amylin and risk of neuronal metabolic remodeling and AD and suggests nutritional and medical effects of food constituents that might prevent and/or ameliorate amylin-mediated neuronal metabolic remodeling.
Collapse
Affiliation(s)
- Noah Leibold
- Department of Pharmacology and Nutritional Sciences, The University of Kentucky, Lexington, KY, USA
- The Research Center for Healthy Metabolism, The University of Kentucky, Lexington, KY, USA
| | - James R. Bain
- Division of Endocrinology, Metabolism, and Nutrition, Department of Medicine, Claude D. Pepper Older Americans Independence Center, and Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC, USA
| | - Florin Despa
- Department of Pharmacology and Nutritional Sciences, The University of Kentucky, Lexington, KY, USA
- The Research Center for Healthy Metabolism, The University of Kentucky, Lexington, KY, USA
- Department of Neurology, The University of Kentucky, Lexington, KY, USA
| |
Collapse
|
15
|
Melander SA, Larsen AT, Karsdal MA, Henriksen K. Are insulin sensitizers the new strategy to treat Type 1 diabetes? A long-acting dual amylin and calcitonin receptor agonist improves insulin-mediated glycaemic control and controls body weight. Br J Pharmacol 2024; 181:1829-1842. [PMID: 38378168 DOI: 10.1111/bph.16329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 12/19/2023] [Accepted: 01/08/2024] [Indexed: 02/22/2024] Open
Abstract
BACKGROUND AND PURPOSE Insulin therapies for Type 1 diabetes (T1D) have limitations, such as glucose fluctuations, hypoglycaemia, and weight gain. Only pramlintide is approved with insulin. However, its short half-life limits efficacy, requiring multiple daily injections and increasing hypoglycaemia risk. New strategies are needed to improve glycaemic control. Dual amylin and calcitonin receptor agonists are potent insulin sensitizers developed for Type 2 diabetes (T2D) as they improve glucose control, reduce body weight, and attenuate hyperglucagonemia. However, it is uncertain if they could be used to treat T1D. EXPERIMENTAL APPROACH Sprague Dawley rats received a single intravenous injection of streptozotocin (STZ) (50 mg·kg-1) to induce T1D. Humulin (1 U/200 g·day-1 or 2 U/200 g·day-1) was continuously infused, while half of the rats received additional KBP-336 (4.5 nmol·kg-1 Q3D) treatment. Bodyweight, food intake, and blood glucose were monitored throughout the study. An oral glucose tolerance test was performed during the study. KEY RESULTS Treatment with Humulin or Humulin + KBP-336 improved the health of STZ rats. Humulin increased body weight in STZ rats, but KBP-336 attenuated these increases and maintained a significant weight loss. The combination exhibited greater blood glucose reductions than Humulin-treated rats alone, reflected by improved HbA1c levels and glucose control. The combination prevented hyperglucagonemia, reduced amylin levels, and increased pancreatic insulin content, indicating improved insulin sensitivity and beta-cell preservation. CONCLUSION AND IMPLICATIONS The insulin sensitizer KBP-336 lowered glucagon secretion while attenuating insulin-induced weight gain. Additionally, KBP-336 may prevent hypoglycaemia and improve insulin resistance, which could be a significant advantage for individuals with T1D seeking therapeutic benefits.
Collapse
Affiliation(s)
| | | | | | - Kim Henriksen
- Nordic Bioscience, Herlev, Denmark
- KeyBioscience AG, Stans, Switzerland
| |
Collapse
|
16
|
Ramasamy I. Physiological Appetite Regulation and Bariatric Surgery. J Clin Med 2024; 13:1347. [PMID: 38546831 PMCID: PMC10932430 DOI: 10.3390/jcm13051347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 02/22/2024] [Accepted: 02/24/2024] [Indexed: 04/10/2024] Open
Abstract
Obesity remains a common metabolic disorder and a threat to health as it is associated with numerous complications. Lifestyle modifications and caloric restriction can achieve limited weight loss. Bariatric surgery is an effective way of achieving substantial weight loss as well as glycemic control secondary to weight-related type 2 diabetes mellitus. It has been suggested that an anorexigenic gut hormone response following bariatric surgery contributes to weight loss. Understanding the changes in gut hormones and their contribution to weight loss physiology can lead to new therapeutic treatments for weight loss. Two distinct types of neurons in the arcuate hypothalamic nuclei control food intake: proopiomelanocortin neurons activated by the anorexigenic (satiety) hormones and neurons activated by the orexigenic peptides that release neuropeptide Y and agouti-related peptide (hunger centre). The arcuate nucleus of the hypothalamus integrates hormonal inputs from the gut and adipose tissue (the anorexigenic hormones cholecystokinin, polypeptide YY, glucagon-like peptide-1, oxyntomodulin, leptin, and others) and orexigeneic peptides (ghrelin). Replicating the endocrine response to bariatric surgery through pharmacological mimicry holds promise for medical treatment. Obesity has genetic and environmental factors. New advances in genetic testing have identified both monogenic and polygenic obesity-related genes. Understanding the function of genes contributing to obesity will increase insights into the biology of obesity. This review includes the physiology of appetite control, the influence of genetics on obesity, and the changes that occur following bariatric surgery. This has the potential to lead to the development of more subtle, individualised, treatments for obesity.
Collapse
Affiliation(s)
- Indra Ramasamy
- Department of Blood Sciences, Conquest Hospital, Hastings TN37 7RD, UK
| |
Collapse
|
17
|
Furió-Novejarque C, Sala-Mira I, Díez JL, Bondia J. A model of subcutaneous pramlintide pharmacokinetics and its effect on gastric emptying: Proof-of-concept based on populational data. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2024; 244:107968. [PMID: 38064957 DOI: 10.1016/j.cmpb.2023.107968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/12/2023] [Accepted: 12/01/2023] [Indexed: 01/26/2024]
Abstract
Pramlintide, an amylin analog, has been coming up as an agent in type 1 diabetes dual-hormone therapies (insulin/pramlintide). Since pramlintide slows down gastric emptying, it allows for easing glucose control and reducing the burden of meal announcements. Pre-clinical in silico evaluations are a key step in the development of any closed-loop strategy. However, mathematical models are needed, and pramlintide models in the literature are scarce. This work proposes a proof-of-concept pramlintide model, describing its subcutaneous pharmacokinetics (PK) and its effect on gastric emptying (PD). The model is validated with published populational (clinical) data. The model development is divided into three stages: intravenous PK, subcutaneous PK, and PD modeling. In each stage, a set of model structures are proposed, and their performance is assessed using the Akaike Information Criterion (AIC) and the Bayesian Information Criterion (BIC). In order to evaluate the modulation of the rate of gastric emptying, a literature meal model was used. The final pramlintide model comprises four compartments and a function that modulates gastric emptying depending on plasma pramlintide. Results show an appropriate fit for the data. Some aspects are left as open questions due to the lack of specific data (e.g., the influence of meal composition on the pramlintide effect). Moreover, further validation with individual data is necessary to propose a virtual cohort of patients.
Collapse
Affiliation(s)
- Clara Furió-Novejarque
- Instituto Universitario de Automática e Informática Industrial, Universitat Politècnica de València, C/ Camí de Vera, s/n, València, 46022, Spain.
| | - Iván Sala-Mira
- Instituto Universitario de Automática e Informática Industrial, Universitat Politècnica de València, C/ Camí de Vera, s/n, València, 46022, Spain.
| | - José-Luis Díez
- Instituto Universitario de Automática e Informática Industrial, Universitat Politècnica de València, C/ Camí de Vera, s/n, València, 46022, Spain; Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III, Av. Monforte de Lemos, 3-5. Pabellón 11, Madrid, 28029, Spain.
| | - Jorge Bondia
- Instituto Universitario de Automática e Informática Industrial, Universitat Politècnica de València, C/ Camí de Vera, s/n, València, 46022, Spain; Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III, Av. Monforte de Lemos, 3-5. Pabellón 11, Madrid, 28029, Spain.
| |
Collapse
|
18
|
Eržen S, Tonin G, Jurišić Eržen D, Klen J. Amylin, Another Important Neuroendocrine Hormone for the Treatment of Diabesity. Int J Mol Sci 2024; 25:1517. [PMID: 38338796 PMCID: PMC10855385 DOI: 10.3390/ijms25031517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 01/18/2024] [Accepted: 01/23/2024] [Indexed: 02/12/2024] Open
Abstract
Diabetes mellitus is a devastating chronic metabolic disease. Since the majority of type 2 diabetes mellitus patients are overweight or obese, a novel term-diabesity-has emerged. The gut-brain axis plays a critical function in maintaining glucose and energy homeostasis and involves a variety of peptides. Amylin is a neuroendocrine anorexigenic polypeptide hormone, which is co-secreted with insulin from β-cells of the pancreas in response to food consumption. Aside from its effect on glucose homeostasis, amylin inhibits homeostatic and hedonic feeding, induces satiety, and decreases body weight. In this narrative review, we summarized the current evidence and ongoing studies on the mechanism of action, clinical pharmacology, and applications of amylin and its analogs, pramlintide and cagrilintide, in the field of diabetology, endocrinology, and metabolism disorders, such as obesity.
Collapse
Affiliation(s)
- Stjepan Eržen
- Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia
| | - Gašper Tonin
- Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
- Faculty of Arts, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Dubravka Jurišić Eržen
- Department of Endocrinology and Diabetology, University Hospital Centre, 51000 Rijeka, Croatia
- Department of Internal Medicine, Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia
| | - Jasna Klen
- Division of Surgery, Department of Abdominal Surgery, University Medical Centre Ljubljana, 1000 Ljubljana, Slovenia
- Department of Internal Medicine, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
| |
Collapse
|
19
|
D'Ascanio AM, Mullally JA, Frishman WH. Cagrilintide: A Long-Acting Amylin Analog for the Treatment of Obesity. Cardiol Rev 2024; 32:83-90. [PMID: 36883831 DOI: 10.1097/crd.0000000000000513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
Abstract
Despite the worldwide epidemic of obesity, there remain few approved pharmacological treatment options to bridge the gap between lifestyle therapy and bariatric surgery. Cagrilintide is an amylin-analog, now being developed in combination with the GLP-1 agonist semaglutide to achieve sustained weight loss in persons with overweight and obesity. Amylin, released with insulin from beta cells in the pancreas, induces its satiating effect via both the homoeostatic and hedonic regions of the brain. Semaglutide, a GLP-1 receptor agonist, reduces appetite via GLP-1 receptors in the hypothalamus and increases the production of insulin, and reduces glucagon secretion, delaying gastric emptying. These separate, but related mechanisms of action of an amylin-analog and a GLP-1 receptor agonist appear to have an additive effect on appetite reduction. Given the heterogeneity and complex pathogenesis of obesity, combination therapy with multiple pathophysiological targets is a logical approach to increasing weight loss response with pharmacotherapy. Cagrilintide alone, as well as cagrilintide in combination with semaglutide have shown promising weight loss in clinical trials that supports the further development of this therapy for sustained weight management.
Collapse
Affiliation(s)
| | - Jamie A Mullally
- Department of Medicine, Division of Endocrinology, New York Medical College/Westchester Medical Center, Valhalla, NY
| | | |
Collapse
|
20
|
Zhu J, Wilding JPH. Body Fat Depletion: the Yin Paradigm for Treating Type 2 Diabetes. Curr Atheroscler Rep 2024; 26:1-10. [PMID: 38148417 PMCID: PMC10776473 DOI: 10.1007/s11883-023-01181-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/04/2023] [Indexed: 12/28/2023]
Abstract
PURPOSE OF REVIEW To highlight that body fat depletion (the Yin paradigm) with glucose-lowering treatments (the Yang paradigm) are associated with metabolic benefits for patients with type 2 diabetes mellitus (T2DM). RECENT FINDINGS The sodium-glucose cotransporter-2 inhibitor-mediated sodium/glucose deprivation can directly improve glycemic control and kidney outcome in patients with T2DM. The glucose deprivation might also promote systemic fatty acid β-oxidation to deplete ectopic/visceral fat and thereby contribute to the prevention of cardiovascular diseases. As with metabolic surgery, bioengineered incretin-based medications with potent anorexigenic and insulinotropic efficacy can significantly reduce blood glucose as well as body weight (especially in the ectopic/visceral fat depots). The latter effects could be a key contributor to their cardiovascular-renal protective effects. In addition to a healthy diet, the newer glucose-lowering medications, with body fat reduction effects, should be prioritized when treating patients with T2DM, especially for those with established cardiovascular/renal risks or diseases.
Collapse
Affiliation(s)
- Jingjing Zhu
- Department of Endocrinology and Metabolism, the Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, People's Republic of China
- Department of Cardiovascular and Metabolic Medicine, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, UK
- Clinical Sciences Centre, Liverpool University Hospitals NHS Foundation Trust, Longmoor Lane, Liverpool, UK
| | - John P H Wilding
- Department of Cardiovascular and Metabolic Medicine, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, UK.
- Clinical Sciences Centre, Liverpool University Hospitals NHS Foundation Trust, Longmoor Lane, Liverpool, UK.
| |
Collapse
|
21
|
Chen W, Binbin G, Lidan S, Qiang Z, Jing H. Evolution of peptide YY analogs for the management of type 2 diabetes and obesity. Bioorg Chem 2023; 140:106808. [PMID: 37666110 DOI: 10.1016/j.bioorg.2023.106808] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 07/13/2023] [Accepted: 08/22/2023] [Indexed: 09/06/2023]
Abstract
Peptide YY (PYY) is a gastrointestinal hormone consisting of 36 amino acids, that is predominantly secreted by intestinal l-cells. Originally extracted from pig intestines, it belongs to the pancreatic polypeptide (PP) family, but has functions distinct from those of PP and neuropeptide Y (NPY). PYY is a potential treatment for type 2 diabetes mellitus (T2DM) because of its ability to delay gastric emptying, reduce appetite, decrease weight, and lower blood glucose. However, the clinical use of PYY is limited because it is rapidly cleared by the kidneys and degraded by enzymes. In recent years, researchers have conducted various structural modifications, including amino acid substitution, PEGylation, lipidation, and fusion of PYY with other proteins to prolong its half-life and enhance its biological activity. This study presents an overview of the recent progress on PYY, including its physiological functions, metabolites and structure-activity relationships.
Collapse
Affiliation(s)
- Wang Chen
- College of Medicine, Jiaxing University, The Affiliated Hospital of Jiaxing University, Jiaxing 314001, China
| | - Gong Binbin
- College of Pharmacy, Zhejiang University of Technology, Hangzhou 310000, China
| | - Sun Lidan
- College of Medicine, Jiaxing University, The Affiliated Hospital of Jiaxing University, Jiaxing 314001, China.
| | - Zhou Qiang
- College of Medicine, Jiaxing University, The Affiliated Hospital of Jiaxing University, Jiaxing 314001, China.
| | - Han Jing
- School of Chemistry & Materials Science, Jiangsu Normal University, Xuzhou 221116, China
| |
Collapse
|
22
|
Nandeshwar, Rout J, Panda SM, Tripathy U. Phytoconstituents of Ashwagandha as potential inhibitors of human islet amyloid polypeptide (hIAPP): an in silico investigation. J Biomol Struct Dyn 2023; 42:11020-11036. [PMID: 37753786 DOI: 10.1080/07391102.2023.2259491] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 09/09/2023] [Indexed: 09/28/2023]
Abstract
Amylin or human islet amyloid polypeptide (hIAPP) is a small peptide co-secreted with insulin. Its peripheral aggregation on the lipid bilayer leads to fibril formation. The formation of hIAPP fibrils is hypothesized to rupture the membrane of β -cells, which culminates in β-cell death. Following additional studies, amylin fibril formation is a hallmark of T2DM and is also implicitly responsible for Alzheimer's disease. This study reports the virtual screening of 1000 phytoconstituents of traditional Indian medicinal plants to get potential inhibitors of amylin, which will likely restrict and block amyloid aggregation, preventing the progression of T2DM and Alzheimer's illness. The compounds having drug-likeness properties (acquired from ADMET calculations) and highest binding affinities (from molecular docking) are subjected to molecular dynamics (MD) simulation to investigate the temporal stability of the conformations of the complexes. This study discovers that Withaferin A and Withacoagulin have the highest binding affinity for amylin, and their stability with amylin was verified further by parameters such as RMSD, RMSF, number of H-bonds and MMPBSA. Individual principle component analysis (PCA) confirms the stable complex formation of amylin with Withaferin A and Withacoagulin. We strongly believe that wet-lab experiments and clinical trials will help to validate our computational findings.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Nandeshwar
- Department of Physics, Indian Institute of Technology (Indian School of Mines), Dhanbad, Jharkhand, India
| | - Janmejaya Rout
- Department of Physics, Indian Institute of Technology (Indian School of Mines), Dhanbad, Jharkhand, India
| | - Smita Manjari Panda
- Department of Physics, Indian Institute of Technology (Indian School of Mines), Dhanbad, Jharkhand, India
| | - Umakanta Tripathy
- Department of Physics, Indian Institute of Technology (Indian School of Mines), Dhanbad, Jharkhand, India
| |
Collapse
|
23
|
Tang Y, Zhang D, Gong X, Zheng J. Cross-seeding enables repurposing of aurein antimicrobial peptides as a promoter of human islet amyloid polypeptide (hIAPP). J Mater Chem B 2023; 11:7920-7932. [PMID: 37431688 DOI: 10.1039/d3tb01099f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2023]
Abstract
Since hIAPP (human islet amyloid polypeptide) aggregation and microbial infection are recognized as significant risk factors that contribute to the pathogenesis of type II diabetes (T2D), targeting these catastrophic processes simultaneously may have a greater impact on the prevention and treatment of T2D. Different from the well-studied hIAPP inhibitors, here we propose and demonstrate a repurposing strategy for an antimicrobial peptide, aurein, which can simultaneously modulate hIAPP aggregation and inhibit microbial infection. Collective data from protein, cell, and bacteria assays revealed multiple functions of aurein including (i) promotion of hIAPP aggregation at a low molar ratio of aurein:hIAPP = 0.5 : 1-2 : 1, (ii) reduction of hIAPP-induced cytotoxicity in RIN-m5F cells, and (iii) preservation of original antimicrobial activity against E. coli., S.A., and S.E. strains in the presence of hIAPP. These functions of aurein are mainly derived from its strong binding to different hIAPP seeds through conformationally similar β-sheet association. Our study provides a promising avenue for the repurposing of antimicrobial peptides (such as aurein) as amyloid modulators for blocking at least two pathological pathways in T2D.
Collapse
Affiliation(s)
- Yijing Tang
- Department of Chemical, Biomolecular, and Corrosion Engineering, The University of Akron, Ohio, USA.
| | - Dong Zhang
- Department of Chemical, Biomolecular, and Corrosion Engineering, The University of Akron, Ohio, USA.
| | - Xiong Gong
- School of Polymer Science and Polymer Engineering, The University of Akron, Ohio, USA
| | - Jie Zheng
- Department of Chemical, Biomolecular, and Corrosion Engineering, The University of Akron, Ohio, USA.
| |
Collapse
|
24
|
Abdel-Malek M, Yang L, Miras AD. Pharmacotherapy for chronic obesity management: a look into the future. Intern Emerg Med 2023; 18:1019-1030. [PMID: 37249754 PMCID: PMC10326094 DOI: 10.1007/s11739-023-03237-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 02/17/2023] [Indexed: 05/31/2023]
Abstract
Substantial leaps have been made in the drug discovery front in tackling the growing pandemic of obesity and its metabolic co-morbidities. Greater mechanistic insight and understanding of the gut-brain molecular pathways at play have enabled the pursuit of novel therapeutic agents that possess increasingly efficacious weight-lowering potential whilst remaining safe and tolerable for clinical use. In the wake of glucagon-like peptide 1 (GLP-1) based therapy, we look at recent advances in gut hormone biology that have fermented the development of next generation pharmacotherapy in diabesity that harness synergistic potential. In this paper, we review the latest data from the SURPASS and SURMOUNT clinical trials for the novel 'twincretin', known as Tirzepatide, which has demonstrated sizeable body weight reduction as well as glycaemic efficacy. We also provide an overview of amylin-based combination strategies and other emerging therapies in the pipeline that are similarly providing great promise for the future of chronic management of obesity.
Collapse
Affiliation(s)
| | - Lisa Yang
- Imperial College Healthcare NHS Trust, London, UK
| | - Alexander Dimitri Miras
- School of Medicine, Ulster University, Derry~Londonderry, UK
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| |
Collapse
|
25
|
Lutz TA. Mammalian models of diabetes mellitus, with a focus on type 2 diabetes mellitus. Nat Rev Endocrinol 2023; 19:350-360. [PMID: 36941447 DOI: 10.1038/s41574-023-00818-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/21/2023] [Indexed: 03/23/2023]
Abstract
Although no single animal model replicates all aspects of diabetes mellitus in humans, animal models are essential for the study of energy balance and metabolism control as well as to investigate the reasons for their imbalance that could eventually lead to overt metabolic diseases such as type 2 diabetes mellitus. The most frequently used animal models in diabetes mellitus research are small rodents that harbour spontaneous genetic mutations or that can be manipulated genetically or by other means to influence their nutrient metabolism and nutrient handling. Non-rodent species, including pigs, cats and dogs, are also useful models in diabetes mellitus research. This Review will outline the advantages and disadvantages of selected animal models of diabetes mellitus to build a basis for their most appropriate use in biomedical research.
Collapse
Affiliation(s)
- Thomas A Lutz
- Institute of Veterinary Physiology, Vetsuisse Faculty University of Zurich, Zurich, Switzerland.
| |
Collapse
|
26
|
Kosmalski M, Deska K, Bąk B, Różycka-Kosmalska M, Pietras T. Pharmacological Support for the Treatment of Obesity-Present and Future. Healthcare (Basel) 2023; 11:433. [PMID: 36767008 PMCID: PMC9914730 DOI: 10.3390/healthcare11030433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 01/25/2023] [Accepted: 02/01/2023] [Indexed: 02/05/2023] Open
Abstract
Obesity is a growing civilization problem, associated with a number of negative health consequences affecting almost all tissues and organs. Currently, obesity treatment includes lifestyle modifications (including diet and exercise), pharmacologic therapies, and in some clinical situations, bariatric surgery. These treatments seem to be the most effective method supporting the treatment of obesity. However, they are many limitations to the options, both for the practitioners and patients. Often the comorbidities, cost, age of the patient, and even geographic locations may influence the choices. The pharmacotherapy of obesity is a fast-growing market. Currently, we have at our disposal drugs with various mechanisms of action (directly reducing the absorption of calories-orlistat, acting centrally-bupropion with naltrexone, phentermine with topiramate, or multidirectional-liraglutide, dulaglutide, semaglutide). The drugs whose weight-reducing effect is used in the course of the pharmacotherapy of other diseases (e.g., glucose-sodium cotransporter inhibitors, exenatide) are also worth mentioning. The obesity pharmacotherapy is focusing on novel therapeutic agents with improved safety and efficacy profiles. These trends also include an assessment of the usefulness of the weight-reducing properties of the drugs previously used for other diseases. The presented paper is an overview of the studies related to both drugs currently used in the pharmacotherapy of obesity and those undergoing clinical trials, taking into account the individual approach to the patient.
Collapse
Affiliation(s)
- Marcin Kosmalski
- Department of Clinical Pharmacology, Medical University of Lodz, 90-153 Łódź, Poland
| | - Kacper Deska
- Students’ Scientific Association Clinical Pharmacology, Medical University of Lodz, 90-153 Łódź, Poland
| | - Bartłomiej Bąk
- 2nd Department of Psychiatry, Institute of Psychiatry and Neurology in Warsaw, 02-957 Warszawa, Poland
| | | | - Tadeusz Pietras
- Department of Clinical Pharmacology, Medical University of Lodz, 90-153 Łódź, Poland
- 2nd Department of Psychiatry, Institute of Psychiatry and Neurology in Warsaw, 02-957 Warszawa, Poland
| |
Collapse
|
27
|
Jastreboff AM, Kushner RF. New Frontiers in Obesity Treatment: GLP-1 and Nascent Nutrient-Stimulated Hormone-Based Therapeutics. Annu Rev Med 2023; 74:125-139. [PMID: 36706749 DOI: 10.1146/annurev-med-043021-014919] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Nearly half of Americans are projected to have obesity by 2030, underscoring the pressing need for effective treatments. Glucagon-like peptide 1 receptor agonists (GLP-1 RAs) represent the first agents in a rapidly evolving, highly promising landscape of nascent hormone-based obesity therapeutics. With the understanding of the neurobiology of obesity rapidly expanding, these emerging entero-endocrine and endo-pancreatic agents combined or coformulated with GLP-1 RAs herald a new era of targeted, mechanism-based treatment of obesity. This article reviews GLP-1 RAs in the treatment of obesity and previews the imminent future of nutrient-stimulated hormone-based anti-obesity therapeutics.
Collapse
Affiliation(s)
- Ania M Jastreboff
- Departments of Medicine (Endocrinology & Metabolism) and Pediatrics (Pediatric Endocrinology), Yale University School of Medicine, New Haven, Connecticut, USA;
| | - Robert F Kushner
- Departments of Medicine (Endocrinology) and Medical Education, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA;
| |
Collapse
|
28
|
Przybysz JT, DiBrog AM, Kern KA, Mukherjee A, Japa JE, Waite MH, Mietlicki-Baase EG. Macronutrient intake: Hormonal controls, pathological states, and methodological considerations. Appetite 2023; 180:106365. [PMID: 36347305 PMCID: PMC10563642 DOI: 10.1016/j.appet.2022.106365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 10/31/2022] [Accepted: 11/01/2022] [Indexed: 11/07/2022]
Abstract
A plethora of studies to date has examined the roles of feeding-related peptides in the control of food intake. However, the influence of these peptides on the intake of particular macronutrient constituents of food - carbohydrate, fat, and protein - has not been as extensively addressed in the literature. Here, the roles of several feeding-related peptides in controlling macronutrient intake are reviewed. Next, the relationship between macronutrient intake and diseases including diabetes mellitus, obesity, and eating disorders are examined. Finally, some key considerations in macronutrient intake research are discussed. We hope that this review will shed light onto this underappreciated topic in ingestive behavior research and will help to guide further scientific investigation in this area.
Collapse
Affiliation(s)
- Johnathan T Przybysz
- Exercise and Nutrition Sciences, School of Public Health and Health Professions, University at Buffalo, State University of New York, Buffalo, NY, 14214, USA
| | - Adrianne M DiBrog
- Exercise and Nutrition Sciences, School of Public Health and Health Professions, University at Buffalo, State University of New York, Buffalo, NY, 14214, USA
| | - Katherine A Kern
- Exercise and Nutrition Sciences, School of Public Health and Health Professions, University at Buffalo, State University of New York, Buffalo, NY, 14214, USA
| | - Ashmita Mukherjee
- Psychology, University at Buffalo, State University of New York, Buffalo, NY, 14260, USA
| | - Jason E Japa
- Biotechnical and Clinical Laboratory Sciences, University at Buffalo, State University of New York, Buffalo, NY, 14214, USA
| | - Mariana H Waite
- Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, 14214, USA
| | - Elizabeth G Mietlicki-Baase
- Exercise and Nutrition Sciences, School of Public Health and Health Professions, University at Buffalo, State University of New York, Buffalo, NY, 14214, USA; Center for Ingestive Behavior Research, University at Buffalo, State University of New York, Buffalo, NY, 14260, USA.
| |
Collapse
|
29
|
Nagy-Pénzes M, Hajnády Z, Regdon Z, Demény MÁ, Kovács K, El-Hamoly T, Maléth J, Hegyi P, Hegedűs C, Virág L. Tricetin Reduces Inflammation and Acinar Cell Injury in Cerulein-Induced Acute Pancreatitis: The Role of Oxidative Stress-Induced DNA Damage Signaling. Biomedicines 2022; 10:1371. [PMID: 35740393 PMCID: PMC9219693 DOI: 10.3390/biomedicines10061371] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 06/06/2022] [Accepted: 06/07/2022] [Indexed: 12/29/2022] Open
Abstract
Acute pancreatitis (AP) poses a worldwide challenge due to the growing incidence and its potentially life-threatening course and complications. Specific targeted therapies are not available, prompting the identification of new pathways and novel therapeutic approaches. Flavonoids comprise several groups of biologically active compounds with wide-ranging effects. The flavone compound, tricetin (TCT), has not yet been investigated in detail but sporadic reports indicate diverse biological activities. In the current study, we evaluated the potential protective effects of TCT in AP. TCT (30 μM) protected isolated primary murine acinar cells from the cytotoxic effects of cerulein, a cholecystokinin analog peptide. The protective effects of TCT were observed in a general viability assay (calcein ester hydrolysis), in an apoptosis assay (caspase activity), and in necrosis assays (propidium iodide uptake and lactate dehydrogenase release). The effects of TCT were not related to its potential antioxidant effects, as TCT did not protect against H2O2-induced acinar cell death despite possessing radical scavenging activity. Cerulein-induced expression of IL1β, IL6, and matrix metalloproteinase 2 and activation of nuclear factor-κB (NFκB) were reduced by 30 μM TCT. In vivo experiments confirmed the protective effect of TCT in a mouse model of cerulein-induced AP. TCT suppressed edema formation and apoptosis in the pancreas and reduced lipase and amylase levels in the serum. Moreover, TCT inhibited interleukin-1β (IL1β), interleukin-6 (IL6), and tumor necrosis factor-α (TNFα) expression in the pancreas and reduced the activation of the oxidative DNA damage sensor enzyme poly(ADP-ribose) polymerase-1 (PARP-1). Our data indicate that TCT can be a potential treatment option for AP.
Collapse
Affiliation(s)
- Máté Nagy-Pénzes
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (M.N.-P.); (Z.H.); (Z.R.); (K.K.); (T.E.-H.); (C.H.)
- Doctoral School of Molecular Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - Zoltán Hajnády
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (M.N.-P.); (Z.H.); (Z.R.); (K.K.); (T.E.-H.); (C.H.)
- Doctoral School of Molecular Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - Zsolt Regdon
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (M.N.-P.); (Z.H.); (Z.R.); (K.K.); (T.E.-H.); (C.H.)
| | - Máté Á. Demény
- MTA-DE Cell Biology and Signaling Research Group, 4032 Debrecen, Hungary;
| | - Katalin Kovács
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (M.N.-P.); (Z.H.); (Z.R.); (K.K.); (T.E.-H.); (C.H.)
- MTA-DE Cell Biology and Signaling Research Group, 4032 Debrecen, Hungary;
| | - Tarek El-Hamoly
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (M.N.-P.); (Z.H.); (Z.R.); (K.K.); (T.E.-H.); (C.H.)
- Drug Radiation Research Department, National Centre for Radiation Research and Technology, Egyptian Atomic Energy Authority, Cairo 11787, Egypt
| | - József Maléth
- First Department of Medicine, University of Szeged, 6720 Szeged, Hungary; (J.M.); (P.H.)
- HAS-USZ Momentum Epithelial Cell Signalling and Secretion Research Group, 6720 Szeged, Hungary
- Department of Public Health, University of Szeged, 6720 Szeged, Hungary
| | - Péter Hegyi
- First Department of Medicine, University of Szeged, 6720 Szeged, Hungary; (J.M.); (P.H.)
- Institute for Translational Medicine, János Szentágothai Research Centre, University of Pécs Medical School, 7624 Pécs, Hungary
- Division of Pancreatic Diseases, Heart and Vascular Center, Semmelweis University, 1122 Budapest, Hungary
| | - Csaba Hegedűs
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (M.N.-P.); (Z.H.); (Z.R.); (K.K.); (T.E.-H.); (C.H.)
| | - László Virág
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (M.N.-P.); (Z.H.); (Z.R.); (K.K.); (T.E.-H.); (C.H.)
- MTA-DE Cell Biology and Signaling Research Group, 4032 Debrecen, Hungary;
| |
Collapse
|