1
|
Barazandeh M, Kriti D, Fickel J, Nislow C. The Addis Ababa Lions: Whole-Genome Sequencing of a Rare and Precious Population. Genome Biol Evol 2024; 16:evae021. [PMID: 38302110 PMCID: PMC10871700 DOI: 10.1093/gbe/evae021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 12/18/2023] [Accepted: 01/23/2024] [Indexed: 02/03/2024] Open
Abstract
Lions are widely known as charismatic predators that once roamed across the globe, but their populations have been greatly affected by environmental factors and human activities over the last 150 yr. Of particular interest is the Addis Ababa lion population, which has been maintained in captivity at around 20 individuals for over 75 yr, while many wild African lion populations have become extinct. In order to understand the molecular features of this unique population, we conducted a whole-genome sequencing study on 15 Addis Ababa lions and detected 4.5 million distinct genomic variants compared with the reference African lion genome. Using functional annotation, we identified several genes with mutations that potentially impact various traits such as mane color, body size, reproduction, gastrointestinal functions, cardiovascular processes, and sensory perception. These findings offer valuable insights into the genetics of this threatened lion population.
Collapse
Affiliation(s)
- Marjan Barazandeh
- Pharmaceutical Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Divya Kriti
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Jörns Fickel
- Institute for Biochemistry and Biology, University Potsdam, Potsdam, Germany
- Department of Evolutionary Genetics, Research Institute for Zoo and Wildlife Research (IZW), Berlin, Germany
| | - Corey Nislow
- Pharmaceutical Sciences, University of British Columbia, Vancouver, BC, Canada
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
2
|
Barabas AJ, Soini HA, Novotny MV, Lucas JR, Erasmus MA, Cheng HW, Palme R, Gaskill BN. Assessing the effect of compounds from plantar foot sweat, nesting material, and urine on social behavior in male mice, Mus musculus. PLoS One 2022; 17:e0276844. [PMID: 36322597 PMCID: PMC9629637 DOI: 10.1371/journal.pone.0276844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 10/12/2022] [Indexed: 11/07/2022] Open
Abstract
Home cage aggression causes poor welfare in male laboratory mice and reduces data quality. One of the few proven strategies to reduce aggression involves preserving used nesting material at cage change. Volatile organic compounds from the nesting material and several body fluids not only correlate with less home cage aggression, but with more affiliative allo-grooming behavior. To date, these compounds have not been tested for a direct influence on male mouse social behavior. This study aimed to determine if 4 previously identified volatile compounds impact home cage interactions. A factorial design was used with cages equally split between C57BL/6N and SJL male mice (N = 40). Treatments were randomly assigned across cages and administered by spraying one compound solution on each cage's nesting material. Treatments were refreshed after day 3 and during cage change on day 7. Home cage social behavior was observed throughout the study week and immediately after cage change. Several hours after cage change, feces were collected from individual mice to measure corticosterone metabolites as an index of social stress. Wound severity was also assessed after euthanasia. Measures were analyzed with mixed models. Compound treatments did not impact most study measures. For behavior, SJL mice performed more aggression and submission, and C57BL/6N mice performed more allo-grooming. Wound severity was highest in the posterior region of both strains, and the middle back region of C57BL/6N mice. Posterior wounding also increased with more observed aggression. Corticosterone metabolites were higher in C57BL/6N mice and in mice treated with 3,4-dimethyl-1,2-cyclopentanedione with more wounding. These data confirm previous strain patterns in social behavior and further validates wound assessment as a measure of escalated aggression. The lack of observed treatment effects could be due to limitations in the compound administration procedure and/or the previous correlation study, which is further discussed.
Collapse
Affiliation(s)
- Amanda J. Barabas
- Department of Animal Science, Purdue University, West Lafayette, Indiana, United States of America
| | - Helena A. Soini
- Department of Chemistry, Indiana University, Bloomington, Indiana, United States of America
| | - Milos V. Novotny
- Department of Chemistry, Indiana University, Bloomington, Indiana, United States of America
| | - Jeffrey R. Lucas
- Department of Biological Science, Purdue University, West Lafayette, Indiana, United States of America
| | - Marisa A. Erasmus
- Department of Animal Science, Purdue University, West Lafayette, Indiana, United States of America
| | - Heng-Wei Cheng
- USDA-ARS, Livestock Behavior Research Unit, Purdue University, West Lafayette, Indiana, United States of America
| | - Rupert Palme
- Unit of Physiology, Pathophysiology, and Experimental Endocrinology, University of Veterinary Medicine, Vienna, Austria
| | - Brianna N. Gaskill
- Department of Animal Science, Purdue University, West Lafayette, Indiana, United States of America
| |
Collapse
|
3
|
Protein profiles from used nesting material, saliva, and urine correspond with social behavior in group housed male mice, Mus musculus. J Proteomics 2022; 266:104685. [PMID: 35843598 DOI: 10.1016/j.jprot.2022.104685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 07/08/2022] [Accepted: 07/09/2022] [Indexed: 11/23/2022]
Abstract
Current understanding of how odors impact intra-sex social behavior is based on those that increase intermale aggression. Yet, odors are often promoted to reduce fighting among male laboratory mice. It has been shown that a cage of male mice contains many proteins used for identification purposes. However, it is unknown if these proteins relate to social behavior or if they are uniformly produced across strains. This study aimed to compare proteomes from used nesting material and three sources (sweat, saliva, and urine) from three strains and compare levels of known protein odors with rates of social behavior. Used nesting material samples from each cage were analyzed using LC-MS/MS. Sweat, saliva, and urine samples from each cage's dominant and subordinate mouse were also analyzed. Proteomes were assessed using principal component analyses and compared to behavior by calculating correlation coefficients between PC scores and behavior proportions. Twenty-one proteins from nesting material either correlated with affiliative behavior or negatively correlated with aggression. Notably, proteins from the major urinary protein family, odorant binding protein family, and secretoglobin family displayed at least one of these patterns, making them candidates for future work. These findings provide preliminary information about how proteins can influence male mouse behavior. SIGNIFICANCE: Research on how olfactory signals influence same sex social behavior is primarily limited to those that promote intermale aggression. However, exploring how olfaction modulates a more diverse behavioral repertoire will improve our foundational understanding of this sensory modality. In this proteome analysis we identified a short list of protein signals that correspond to lower rates of aggression and higher rates of socio-positive behavior. While this study is only correlational, it sets a foundation for future work that can identify protein signals that directly influence social behavior and potentially identify new murine pheromones.
Collapse
|
4
|
Highlights of published papers in applied Animal Behaviour Science in 2021. Appl Anim Behav Sci 2022. [DOI: 10.1016/j.applanim.2021.105533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|