1
|
Kumar P, Hama S, Cheung HYW, Hadjichristodoulou C, Mouchtouri VA, Anagnostopoulos L, Kourentis L, Wang Z, Galea ER, Ewer J, Grandison A, Jia F, Siilin N. Airborne pathogen monitoring and dispersion modelling on passenger ships: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 980:179571. [PMID: 40318375 DOI: 10.1016/j.scitotenv.2025.179571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2025] [Revised: 04/08/2025] [Accepted: 04/28/2025] [Indexed: 05/07/2025]
Abstract
The COVID-19 pandemic demonstrated a profound inability of pre-pandemic passenger ship policies implemented by both ship operators and governmental authorities to detect and address newly emerging diseases. The essentiality of maritime transport puts into focus the risk of approach to address known and new emerging airborne infectious diseases that, due to increasing capacity, are likely to occur on passenger ships. In order to enhance the passenger experience, prepare shipping for pandemics like COVID-19, and improve the resilience and safety of the industry, this review critically synthesises existing literature on (1) monitoring ventilation conditions and aerosol dispersion, linking them to airborne transmission risk using airborne aerosols and ventilation performance as input parameters for computational fluid dynamics (CFD) simulations, and (2) modelling airborne disease transmission risk in controlled passenger ship environments. This review analysed 39 studies on aerosol monitoring, thermal comfort, and infection risk modelling on passenger ships (2000-2023). Additionally, 55 papers on CFD modelling of airborne pathogen dispersion were reviewed: 22 included validation, with most focused on built environments and only four specifically addressing ship environments. Two major challenges relate to the complexity and poorly characterised ventilation boundary conditions on passenger ships, and the other is the lack of suitable validation data. For this reason, ship experimental studies are required for CFD model validation. Only a handful of studies were found that have measured aerosol concentrations on board passenger ships. To the best of our knowledge, there have been no studies conducted on aerosol mass or airborne transmission sampling on board passenger ships or other types of vessels. The results of this review have the potential to create synergistic connections between experimental and modelling studies to inform, characterise and improve the development of numerical models that can accurately estimate infection risk on ships for prevention, mitigation and management of outbreaks.
Collapse
Affiliation(s)
- Prashant Kumar
- Global Centre for Clean Air Research (GCARE), School of Engineering, Civil and Environmental Engineering, Faculty of Engineering and Physical Sciences, University of Surrey, Guildford GU2 7XH, United Kingdom; Institute for Sustainability, University of Surrey, Guildford GU2 7XH, Surrey, United Kingdom.
| | - Sarkawt Hama
- Global Centre for Clean Air Research (GCARE), School of Engineering, Civil and Environmental Engineering, Faculty of Engineering and Physical Sciences, University of Surrey, Guildford GU2 7XH, United Kingdom
| | - Ho Yin Wickson Cheung
- Global Centre for Clean Air Research (GCARE), School of Engineering, Civil and Environmental Engineering, Faculty of Engineering and Physical Sciences, University of Surrey, Guildford GU2 7XH, United Kingdom
| | | | - Varvara A Mouchtouri
- Laboratory of Hygiene and Epidemiology, Faculty of Medicine, University of Thessaly, Larissa 41222, Greece
| | - Lemonia Anagnostopoulos
- Laboratory of Hygiene and Epidemiology, Faculty of Medicine, University of Thessaly, Larissa 41222, Greece
| | - Leonidas Kourentis
- Laboratory of Hygiene and Epidemiology, Faculty of Medicine, University of Thessaly, Larissa 41222, Greece
| | - Zhaozhi Wang
- Fire Safety Engineering Group, School of Computing and Mathematical Sciences, Faculty of Engineering and Science, University of Greenwich, Greenwich SE10 9LS, United Kingdom
| | - Edwin R Galea
- Fire Safety Engineering Group, School of Computing and Mathematical Sciences, Faculty of Engineering and Science, University of Greenwich, Greenwich SE10 9LS, United Kingdom
| | - John Ewer
- Fire Safety Engineering Group, School of Computing and Mathematical Sciences, Faculty of Engineering and Science, University of Greenwich, Greenwich SE10 9LS, United Kingdom
| | - Angus Grandison
- Fire Safety Engineering Group, School of Computing and Mathematical Sciences, Faculty of Engineering and Science, University of Greenwich, Greenwich SE10 9LS, United Kingdom
| | - Fuchen Jia
- Fire Safety Engineering Group, School of Computing and Mathematical Sciences, Faculty of Engineering and Science, University of Greenwich, Greenwich SE10 9LS, United Kingdom
| | - Niko Siilin
- VTT Technical Research Centre of Finland Ltd, 02150 Espoo, Finland; Aalto University, Department of Civil Engineering, 00076 Espoo, Finland
| |
Collapse
|
2
|
Nagy A, Czitrovszky A, Lehoczki A, Farkas Á, Füri P, Osán J, Groma V, Kugler S, Micsinai A, Horváth A, Ungvári Z, Müller V. Creating respiratory pathogen-free environments in healthcare and nursing-care settings: a comprehensive review. GeroScience 2025; 47:543-571. [PMID: 39392557 PMCID: PMC11872867 DOI: 10.1007/s11357-024-01379-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 10/03/2024] [Indexed: 10/12/2024] Open
Abstract
Hospital- and nursing-care-acquired infections are a growing problem worldwide, especially during epidemics, posing a significant threat to older adults in geriatric settings. Intense research during the COVID-19 pandemic highlighted the prominent role of aerosol transmission of pathogens. Aerosol particles can easily adsorb different airborne pathogens, carrying them for a long time. Understanding the dynamics of airborne pathogen transmission is essential for controlling the spread of many well-known pathogens, like the influenza virus, and emerging ones like SARS-CoV-2. Particles smaller than 50 to 100 µm remain airborne and significantly contribute to pathogen transmission. This review explores the journey of pathogen-carrying particles from formation in the airways, through airborne travel, to deposition in the lungs. The physicochemical properties of emitted particles depend on health status and emission modes, such as breathing, speaking, singing, coughing, sneezing, playing wind instruments, and medical interventions. After emission, sedimentation and evaporation primarily determine particle fate. Lung deposition of inhaled aerosol particles can be studied through in vivo, in vitro, or in silico methods. We discuss several numerical lung models, such as the Human Respiratory Tract Model, the LUng Dose Evaluation Program software (LUDEP), the Stochastic Lung Model, and the Computational Fluid Dynamics (CFD) techniques, and real-time or post-evaluation methods for detecting and characterizing these particles. Various air purification methods, particularly filtration, are reviewed for their effectiveness in healthcare settings. In the discussion, we analyze how this knowledge can help create environments with reduced PM2.5 and pathogen levels, enhancing safety in healthcare and nursing-care settings. This is particularly crucial for protecting older adults, who are more vulnerable to infections due to weaker immune systems and the higher prevalence of chronic conditions. By implementing effective airborne pathogen control measures, we can significantly improve health outcomes in geriatric settings.
Collapse
Affiliation(s)
- Attila Nagy
- Department of Applied and Nonlinear Optics, HUN-REN Wigner Research Centre for Physics, Konkoly-Thege Miklós St. 29-33, 1121, Budapest, Hungary.
| | - Aladár Czitrovszky
- Department of Applied and Nonlinear Optics, HUN-REN Wigner Research Centre for Physics, Konkoly-Thege Miklós St. 29-33, 1121, Budapest, Hungary
| | - Andrea Lehoczki
- Doctoral College, Health Sciences Program, Semmelweis University, Budapest, Hungary
- Institute of Preventive Medicine and Public Health, Semmelweis University, Budapest, Hungary
| | - Árpád Farkas
- Environmental Physics Department, HUN-REN Centre for Energy Research, Budapest, Hungary
| | - Péter Füri
- Environmental Physics Department, HUN-REN Centre for Energy Research, Budapest, Hungary
| | - János Osán
- Environmental Physics Department, HUN-REN Centre for Energy Research, Budapest, Hungary
| | - Veronika Groma
- Environmental Physics Department, HUN-REN Centre for Energy Research, Budapest, Hungary
| | - Szilvia Kugler
- Environmental Physics Department, HUN-REN Centre for Energy Research, Budapest, Hungary
| | | | - Alpár Horváth
- Department of Pulmonology, Semmelweis University, Budapest, Hungary
| | - Zoltán Ungvári
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience and Healthy Brain Aging, Department of Biochemistry & Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 731042, USA
- Peggy and Charles Stephenson Cancer Center, Oklahoma City, OK, 73104, USA
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Institute of Preventive Medicine and Public Health, Semmelweis University, Budapest, Hungary
| | - Veronika Müller
- Department of Pulmonology, Semmelweis University, Budapest, Hungary
| |
Collapse
|
3
|
Andrup L, Krogfelt KA, Stephansen L, Hansen KS, Graversen BK, Wolkoff P, Madsen AM. Reduction of acute respiratory infections in day-care by non-pharmaceutical interventions: a narrative review. Front Public Health 2024; 12:1332078. [PMID: 38420031 PMCID: PMC10899481 DOI: 10.3389/fpubh.2024.1332078] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 02/02/2024] [Indexed: 03/02/2024] Open
Abstract
Objective Children who start in day-care have 2-4 times as many respiratory infections compared to children who are cared for at home, and day-care staff are among the employees with the highest absenteeism. The extensive new knowledge that has been generated in the COVID-19 era should be used in the prevention measures we prioritize. The purpose of this narrative review is to answer the questions: Which respiratory viruses are the most significant in day-care centers and similar indoor environments? What do we know about the transmission route of these viruses? What evidence is there for the effectiveness of different non-pharmaceutical prevention measures? Design Literature searches with different terms related to respiratory infections in humans, mitigation strategies, viral transmission mechanisms, and with special focus on day-care, kindergarten or child nurseries, were conducted in PubMed database and Web of Science. Searches with each of the main viruses in combination with transmission, infectivity, and infectious spread were conducted separately supplemented through the references of articles that were retrieved. Results Five viruses were found to be responsible for ≈95% of respiratory infections: rhinovirus, (RV), influenza virus (IV), respiratory syncytial virus (RSV), coronavirus (CoV), and adenovirus (AdV). Novel research, emerged during the COVID-19 pandemic, suggests that most respiratory viruses are primarily transmitted in an airborne manner carried by aerosols (microdroplets). Conclusion Since airborne transmission is dominant for the most common respiratory viruses, the most important preventive measures consist of better indoor air quality that reduces viral concentrations and viability by appropriate ventilation strategies. Furthermore, control of the relative humidity and temperature, which ensures optimal respiratory functionality and, together with low resident density (or mask use) and increased time outdoors, can reduce the occurrence of respiratory infections.
Collapse
Affiliation(s)
- Lars Andrup
- The National Research Centre for the Working Environment, Copenhagen, Denmark
| | - Karen A Krogfelt
- Department of Science and Environment, Molecular and Medical Biology, PandemiX Center, Roskilde University, Roskilde, Denmark
| | - Lene Stephansen
- Gladsaxe Municipality, Social and Health Department, Gladsaxe, Denmark
| | | | | | - Peder Wolkoff
- The National Research Centre for the Working Environment, Copenhagen, Denmark
| | - Anne Mette Madsen
- The National Research Centre for the Working Environment, Copenhagen, Denmark
| |
Collapse
|
4
|
Mao Y, Xie H, Liang J, He J, Ren J. Experimental study on the control effects of different strategies on particle transportation in a conference room: Mechanical ventilation, baffle, portable air cleaner, and desk air cleaner. ATMOSPHERIC POLLUTION RESEARCH 2023; 14:101716. [PMID: 36942301 PMCID: PMC9996463 DOI: 10.1016/j.apr.2023.101716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 03/08/2023] [Accepted: 03/08/2023] [Indexed: 06/18/2023]
Abstract
To control the spread and transmission of airborne particles (especially SARS-CoV-2 coronavirus, recently) in the indoor environment, many control strategies have been employed. Comparisons of these strategies enable a reasonable choice for indoor environment control and cost-effectiveness. In this study, a series of experiments were conducted in a full-scale chamber to simulate a conference room. The control effects of four different strategies (a ventilation system (320 m3/h) with and without a baffle, a specific type of portable air cleaner (400 m3/h) and a specific type of desk air cleaner (DAC, 160 m3/h)) on the transportation of particles of different sizes were studied. In addition, the effects of coupling the ventilation strategies with five forms of indoor airflow organization (side supply and side or ceiling return, ceiling supply and ceiling or side return, floor supply and ceiling return) were evaluated. The cumulative exposure level (CEL) and infection probability were selected as evaluation indexes. The experimental results showed that among the four strategies, the best particle control effect was achieved by the PAC. The reduction in CEL for particles in the overall size range was 22.1% under the ventilation system without a baffle, 34.3% under the ventilation system with a baffle, 46.4% with the PAC, and 10.1% with the DAC. The average infection probabilities under the four control strategies were 11.3-11.8%, 11.1-11.8%, 9.1-9.5%, and 18.2-19.7%, respectively. Among the five different forms of airflow organization, the floor supply and ceiling return mode exhibited the best potential ability to remove particles.
Collapse
Affiliation(s)
- Yanhui Mao
- School of Architecture and Transportation Engineering, Ningbo University of Technology, Ningbo, 315211, China
| | - Honglei Xie
- Architectural Design & Research Institute of Ningbo University, Ningbo, 315211, China
| | - Jianzhou Liang
- School of Architecture and Transportation Engineering, Ningbo University of Technology, Ningbo, 315211, China
| | - Junjie He
- School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, 300401, China
| | - Jianlin Ren
- School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, 300401, China
| |
Collapse
|