1
|
Liu X, Qian Z, Li Y, Wang Y, Zhang Y, Zhang Y, Enoch IVMV. Unveiling synergies: Integrating TCM herbal medicine and acupuncture with conventional approaches in stroke management. Neuroscience 2025; 567:109-122. [PMID: 39730019 DOI: 10.1016/j.neuroscience.2024.12.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 12/09/2024] [Accepted: 12/21/2024] [Indexed: 12/29/2024]
Abstract
This review explores the mechanisms and treatment strategies of ischemic stroke, a leading cause of morbidity and mortality worldwide. Ischemic stroke results from the obstruction of blood flow to the brain, leading to significant neurological impairment. The paper categorizes ischemic stroke into subtypes based on etiology, including cardioembolism and large artery atherosclerosis, and discusses the challenges of current therapeutic approaches. Conventional treatments like tissue plasminogen activator (tPA) and surgical interventions are limited by narrow windows and potential complications. The review highlights the promise of acupuncture, which offers neuroprotective benefits by promoting cerebral ischemic tolerance and neural regeneration. Integrating acupuncture with conventional treatments may enhance patient outcomes. Emphasis is placed on understanding the pathophysiology to develop targeted therapies that mitigate neuronal damage and enhance recovery.
Collapse
Affiliation(s)
- Xiliang Liu
- Department of Rehabilitation Medicine, Dezhou Traditional Chinese Medicine Hospital, Dezhou 253000, China
| | - Zhendong Qian
- Department of Rehabilitation Medicine, Dezhou Traditional Chinese Medicine Hospital, Dezhou 253000, China
| | - Yuxuan Li
- Department of Rehabilitation Medicine, Dezhou Traditional Chinese Medicine Hospital, Dezhou 253000, China
| | - Yanwei Wang
- Department of Rehabilitation Medicine, Dezhou Traditional Chinese Medicine Hospital, Dezhou 253000, China
| | - Yan Zhang
- Department of Rehabilitation Medicine, Dezhou Traditional Chinese Medicine Hospital, Dezhou 253000, China
| | - Yu Zhang
- Department of Rehabilitation Medicine, Dezhou Traditional Chinese Medicine Hospital, Dezhou 253000, China.
| | - Israel V M V Enoch
- Centre for Nanoscience and Genomics, Karunya Institute of Technology and Sciences (Deemed University), Coimbatore 641114, Tamil Nadu, India
| |
Collapse
|
2
|
Choi YH, Hsu M, Laaker C, Port J, Kovács KG, Herbath M, Yang H, Cismaru P, Johnson AM, Spellman B, Wigand K, Sandor M, Fabry Z. Dual role of vascular endothelial growth factor-C in post-stroke recovery. J Exp Med 2025; 222:e20231816. [PMID: 39665829 PMCID: PMC11636551 DOI: 10.1084/jem.20231816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 09/25/2024] [Accepted: 11/11/2024] [Indexed: 12/13/2024] Open
Abstract
Cerebrospinal fluid (CSF), antigens, and antigen-presenting cells drain from the central nervous system (CNS) into lymphatic vessels near the cribriform plate and dura, yet the role of these vessels during stroke is unclear. Using a mouse model of ischemic stroke, transient middle cerebral artery occlusion (tMCAO), we demonstrate stroke-induced lymphangiogenesis near the cribriform plate, peaking at day 7 and regressing by day 14. Lymphangiogenesis is restricted to the cribriform plate and deep cervical lymph nodes and is regulated by VEGF-C/VEGFR-3 signaling. The use of a VEGFR-3 inhibitor prevented lymphangiogenesis and led to improved stroke outcomes at earlier time points, with no effects at later time points. VEGF-C delivery after tMCAO did not further increase post-stroke lymphangiogenesis, but instead induced larger brain infarcts. Our data support the damaging role of VEGF-C acutely and a pro-angiogenic role chronically. This nuanced understanding of VEGFR-3 and VEGF-C in stroke pathology advises caution regarding therapeutic VEGF-C use in stroke.
Collapse
Affiliation(s)
- Yun Hwa Choi
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA
- Waisman Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Martin Hsu
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, Chapel Hill, NC, USA
| | - Collin Laaker
- Neuroscience Training Program, University of Wisconsin-Madison, Madison, WI, USA
| | - Jenna Port
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Kristóf G. Kovács
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Melinda Herbath
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Heeyoon Yang
- College of Agricultural and Life Sciences, University of Wisconsin-Madison, Madison, WI, USA
| | - Peter Cismaru
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Alexis M. Johnson
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Bailey Spellman
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Kelsey Wigand
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Matyas Sandor
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Zsuzsanna Fabry
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
3
|
Yang W, Lei X, Liu F, Sui X, Yang Y, Xiao Z, Cui Z, Sun Y, Yang J, Yang X, Lin X, Bao Z, Li W, Ma Y, Wang Y, Luo Y. Meldonium, as a potential neuroprotective agent, promotes neuronal survival by protecting mitochondria in cerebral ischemia-reperfusion injury. J Transl Med 2024; 22:771. [PMID: 39148053 PMCID: PMC11325598 DOI: 10.1186/s12967-024-05222-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 04/19/2024] [Indexed: 08/17/2024] Open
Abstract
BACKGROUND Stroke is a globally dangerous disease capable of causing irreversible neuronal damage with limited therapeutic options. Meldonium, an inhibitor of carnitine-dependent metabolism, is considered an anti-ischemic drug. However, the mechanisms through which meldonium improves ischemic injury and its potential to protect neurons remain largely unknown. METHODS A rat model with middle cerebral artery occlusion (MCAO) was used to investigate meldonium's neuroprotective efficacy in vivo. Infarct volume, neurological deficit score, histopathology, neuronal apoptosis, motor function, morphological alteration and antioxidant capacity were explored via 2,3,5-Triphenyltetrazolium chloride staining, Longa scoring method, hematoxylin and eosin staining, terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end labeling assay, rotarod test, transmission electron microscopy and Oxidative stress index related kit. A primary rat hippocampal neuron model subjected to oxygen-glucose deprivation reperfusion was used to study meldonium's protective ability in vitro. Neuronal viability, mitochondrial membrane potential, mitochondrial morphology, respiratory function, ATP production, and its potential mechanism were assayed by MTT cell proliferation and cytotoxicity assay kit, cell-permeant MitoTracker® probes, mitochondrial stress, real-time ATP rate and western blotting. RESULTS Meldonium markedly reduced the infarct size, improved neurological function and motor ability, and inhibited neuronal apoptosis in vivo. Meldonium enhanced the morphology, antioxidant capacity, and ATP production of mitochondria and inhibited the opening of the mitochondrial permeability transition pore in the cerebral cortex and hippocampus during cerebral ischemia-reperfusion injury (CIRI) in rats. Additionally, meldonium improved the damaged fusion process and respiratory function of neuronal mitochondria in vitro. Further investigation revealed that meldonium activated the Akt/GSK-3β signaling pathway to inhibit mitochondria-dependent neuronal apoptosis. CONCLUSION Our study demonstrated that meldonium shows a neuroprotective function during CIRI by preserving the mitochondrial function, thus prevented neurons from apoptosis.
Collapse
Affiliation(s)
- Weijie Yang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Xiuxing Lei
- Lu'An Hospital of Traditional Chinese Medicine, Anhui, China
| | - Fengying Liu
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Xin Sui
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Yi Yang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Zhenyu Xiao
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Ziqi Cui
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Yangyang Sun
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Jun Yang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Xinyi Yang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Xueyang Lin
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Zhenghao Bao
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Weidong Li
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Yingkai Ma
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Yongan Wang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China.
| | - Yuan Luo
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China.
| |
Collapse
|
4
|
Mumtaz SM, Khan MA, Jamal A, Hattiwale SH, Parvez S. Toxin-derived peptides: An unconventional approach to alleviating cerebral stroke burden and neurobehavioral impairments. Life Sci 2024; 351:122777. [PMID: 38851419 DOI: 10.1016/j.lfs.2024.122777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 03/25/2024] [Accepted: 06/04/2024] [Indexed: 06/10/2024]
Abstract
Cerebral stroke is a pressing global health concern, ranking as the second leading cause of mortality and resulting in persistent neurobehavioral impairments. Cerebral strokes, triggered by various embolic events, initiate complex signaling pathways involving neuroexcitotoxicity, ionic imbalances, inflammation, oxidative stress, acidosis, and mitochondrial dysfunction, leading to programmed cell death. Currently, the FDA has approved tissue plasminogen activator as a relatively benign intervention for cerebral stroke, leaving a significant treatment gap. However, a promising avenue has emerged from Earth's toxic creatures. Animal venoms harbor bioactive molecules, particularly neuropeptides, with potential in innovative healthcare applications. These venomous components, affecting ion channels, receptors, and transporters, encompass neurochemicals, amino acids, and peptides, making them prime candidates for treating cerebral ischemia and neurological disorders. This review explores the composition, applications, and significance of toxin-derived peptides as viable therapeutic agents. It also investigates diverse toxins from select venomous creatures, with the primary objective of shedding light on current stroke treatments and paving the way for pioneering therapeutic strategies capable of addressing neurobehavioral deficits.
Collapse
Affiliation(s)
- Sayed Md Mumtaz
- Department of Toxicology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110062, India; Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Mohammad Ahmed Khan
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Azfar Jamal
- Department of Biology, College of Science Al-Zulfi, Majmaah University, Al-Majmaah 11952, Saudi Arabia; Health and Basic Science Research Centre, Majmaah University, Al-Majmaah 11952, Saudi Arabia
| | - Shaheenkousar H Hattiwale
- Department of Basic Medical Sciences, College of Medicine, Majmaah University, Al-Majmaah 11952, Saudi Arabia
| | - Suhel Parvez
- Department of Toxicology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110062, India.
| |
Collapse
|
5
|
Parmar J, von Jonquieres G, Gorlamandala N, Chung B, Craig AJ, Pinyon JL, Birnbaumer L, Klugmann M, Moorhouse AJ, Power JM, Housley GD. TRPC Channels Activated by G Protein-Coupled Receptors Drive Ca 2+ Dysregulation Leading to Secondary Brain Injury in the Mouse Model. Transl Stroke Res 2024; 15:844-858. [PMID: 37462831 PMCID: PMC11226524 DOI: 10.1007/s12975-023-01173-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/29/2023] [Accepted: 06/30/2023] [Indexed: 07/06/2024]
Abstract
Canonical transient receptor potential (TRPC) non-selective cation channels, particularly those assembled with TRPC3, TRPC6, and TRPC7 subunits, are coupled to Gαq-type G protein-coupled receptors for the major classes of excitatory neurotransmitters. Sustained activation of this TRPC channel-based pathophysiological signaling hub in neurons and glia likely contributes to prodigious excitotoxicity-driven secondary brain injury expansion. This was investigated in mouse models with selective Trpc gene knockout (KO). In adult cerebellar brain slices, application of glutamate and the class I metabotropic glutamate receptor agonist (S)-3,5-dihydroxyphenylglycine to Purkinje neurons expressing the GCaMP5g Ca2+ reporter demonstrated that the majority of the Ca2+ loading in the molecular layer dendritic arbors was attributable to the TRPC3 effector channels (Trpc3KO compared with wildtype (WT)). This Ca2+ dysregulation was associated with glutamate excitotoxicity causing progressive disruption of the Purkinje cell dendrites (significantly abated in a GAD67-GFP-Trpc3KO reporter brain slice model). Contribution of the Gαq-coupled TRPC channels to secondary brain injury was evaluated in a dual photothrombotic focal ischemic injury model targeting cerebellar and cerebral cortex regions, comparing day 4 post-injury in WT mice, Trpc3KO, and Trpc1/3/6/7 quadruple knockout (TrpcQKO), with immediate 2-h (primary) brain injury. Neuroprotection to secondary brain injury was afforded in both brain regions by Trpc3KO and TrpcQKO models, with the TrpcQKO showing greatest neuroprotection. These findings demonstrate the contribution of the Gαq-coupled TRPC effector mechanism to excitotoxicity-based secondary brain injury expansion, which is a primary driver for mortality and morbidity in stroke, traumatic brain injury, and epilepsy.
Collapse
Affiliation(s)
- Jasneet Parmar
- Translational Neuroscience Facility and Department of Physiology, School of Biomedical Sciences, UNSW Sydney, Sydney, NSW, 2052, Australia
| | - Georg von Jonquieres
- Translational Neuroscience Facility and Department of Physiology, School of Biomedical Sciences, UNSW Sydney, Sydney, NSW, 2052, Australia
| | - Nagarajesh Gorlamandala
- Translational Neuroscience Facility and Department of Physiology, School of Biomedical Sciences, UNSW Sydney, Sydney, NSW, 2052, Australia
| | - Brandon Chung
- Translational Neuroscience Facility and Department of Physiology, School of Biomedical Sciences, UNSW Sydney, Sydney, NSW, 2052, Australia
| | - Amanda J Craig
- Translational Neuroscience Facility and Department of Physiology, School of Biomedical Sciences, UNSW Sydney, Sydney, NSW, 2052, Australia
| | - Jeremy L Pinyon
- Translational Neuroscience Facility and Department of Physiology, School of Biomedical Sciences, UNSW Sydney, Sydney, NSW, 2052, Australia
| | - Lutz Birnbaumer
- Institute of Biomedical Research (BIOMED), Pontifical Catholic University of Argentina, Av. A Moreau de Justo 1300, C1107AFF, Buenos Aires CABA, Argentina
- Laboratory of Signal Transduction, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, 27709, USA
| | - Matthias Klugmann
- Translational Neuroscience Facility and Department of Physiology, School of Biomedical Sciences, UNSW Sydney, Sydney, NSW, 2052, Australia
| | - Andrew J Moorhouse
- Translational Neuroscience Facility and Department of Physiology, School of Biomedical Sciences, UNSW Sydney, Sydney, NSW, 2052, Australia
| | - John M Power
- Translational Neuroscience Facility and Department of Physiology, School of Biomedical Sciences, UNSW Sydney, Sydney, NSW, 2052, Australia
| | - Gary D Housley
- Translational Neuroscience Facility and Department of Physiology, School of Biomedical Sciences, UNSW Sydney, Sydney, NSW, 2052, Australia.
| |
Collapse
|
6
|
Li G, Zhao Y, Ma W, Gao Y, Zhao C. Systems-level computational modeling in ischemic stroke: from cells to patients. Front Physiol 2024; 15:1394740. [PMID: 39015225 PMCID: PMC11250596 DOI: 10.3389/fphys.2024.1394740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Accepted: 06/14/2024] [Indexed: 07/18/2024] Open
Abstract
Ischemic stroke, a significant threat to human life and health, refers to a class of conditions where brain tissue damage is induced following decreased cerebral blood flow. The incidence of ischemic stroke has been steadily increasing globally, and its disease mechanisms are highly complex and involve a multitude of biological mechanisms at various scales from genes all the way to the human body system that can affect the stroke onset, progression, treatment, and prognosis. To complement conventional experimental research methods, computational systems biology modeling can integrate and describe the pathogenic mechanisms of ischemic stroke across multiple biological scales and help identify emergent modulatory principles that drive disease progression and recovery. In addition, by running virtual experiments and trials in computers, these models can efficiently predict and evaluate outcomes of different treatment methods and thereby assist clinical decision-making. In this review, we summarize the current research and application of systems-level computational modeling in the field of ischemic stroke from the multiscale mechanism-based, physics-based and omics-based perspectives and discuss how modeling-driven research frameworks can deliver insights for future stroke research and drug development.
Collapse
Affiliation(s)
- Geli Li
- Gusu School, Nanjing Medical University, Suzhou, China
- School of Pharmacy, Nanjing Medical University, Nanjing, China
| | - Yanyong Zhao
- School of Pharmacy, Nanjing Medical University, Nanjing, China
| | - Wen Ma
- School of Pharmacy, Nanjing Medical University, Nanjing, China
| | - Yuan Gao
- QSPMed Technologies, Nanjing, China
| | - Chen Zhao
- School of Pharmacy, Nanjing Medical University, Nanjing, China
- The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
7
|
Noll JM, Sherafat AA, Ford GD, Ford BD. The case for neuregulin-1 as a clinical treatment for stroke. Front Cell Neurosci 2024; 18:1325630. [PMID: 38638304 PMCID: PMC11024452 DOI: 10.3389/fncel.2024.1325630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Accepted: 03/01/2024] [Indexed: 04/20/2024] Open
Abstract
Ischemic stroke is the leading cause of serious long-term disability and the 5th leading cause of death in the United States. Revascularization of the occluded cerebral artery, either by thrombolysis or endovascular thrombectomy, is the only effective, clinically-approved stroke therapy. Several potentially neuroprotective agents, including glutamate antagonists, anti-inflammatory compounds and free radical scavenging agents were shown to be effective neuroprotectants in preclinical animal models of brain ischemia. However, these compounds did not demonstrate efficacy in clinical trials with human patients following stroke. Proposed reasons for the translational failure include an insufficient understanding on the cellular and molecular pathophysiology of ischemic stroke, lack of alignment between preclinical and clinical studies and inappropriate design of clinical trials based on the preclinical findings. Therefore, novel neuroprotective treatments must be developed based on a clearer understanding of the complex spatiotemporal mechanisms of ischemic stroke and with proper clinical trial design based on the preclinical findings from specific animal models of stroke. We and others have demonstrated the clinical potential for neuregulin-1 (NRG-1) in preclinical stroke studies. NRG-1 significantly reduced ischemia-induced neuronal death, neuroinflammation and oxidative stress in rodent stroke models with a therapeutic window of >13 h. Clinically, NRG-1 was shown to be safe in human patients and improved cardiac function in multisite phase II studies for heart failure. This review summarizes previous stroke clinical candidates and provides evidence that NRG-1 represents a novel, safe, neuroprotective strategy that has potential therapeutic value in treating individuals after acute ischemic stroke.
Collapse
Affiliation(s)
- Jessica M. Noll
- Division of Biomedical Sciences, University of California-Riverside School of Medicine, Riverside, CA, United States
- Nanostring Technologies, Seattle, WA, United States
| | - Arya A. Sherafat
- Division of Biomedical Sciences, University of California-Riverside School of Medicine, Riverside, CA, United States
| | - Gregory D. Ford
- Southern University-New Orleans, New Orleans, LA, United States
| | - Byron D. Ford
- Department of Anatomy, Howard University College of Medicine, Washington, DC, United States
| |
Collapse
|
8
|
Chung S, Yi Y, Ullah I, Chung K, Park S, Lim J, Kim C, Pyun SH, Kim M, Kim D, Lee M, Rhim T, Lee SK. Systemic Treatment with Fas-Blocking Peptide Attenuates Apoptosis in Brain Ischemia. Int J Mol Sci 2024; 25:661. [PMID: 38203830 PMCID: PMC10780202 DOI: 10.3390/ijms25010661] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 12/30/2023] [Accepted: 01/02/2024] [Indexed: 01/12/2024] Open
Abstract
Apoptosis plays a crucial role in neuronal injury, with substantial evidence implicating Fas-mediated cell death as a key factor in ischemic strokes. To address this, inhibition of Fas-signaling has emerged as a promising strategy in preventing neuronal cell death and alleviating brain ischemia. However, the challenge of overcoming the blood-brain barrier (BBB) hampers the effective delivery of therapeutic drugs to the central nervous system (CNS). In this study, we employed a 30 amino acid-long leptin peptide to facilitate BBB penetration. By conjugating the leptin peptide with a Fas-blocking peptide (FBP) using polyethylene glycol (PEG), we achieved specific accumulation in the Fas-expressing infarction region of the brain following systemic administration. Notably, administration in leptin receptor-deficient db/db mice demonstrated that leptin facilitated the delivery of FBP peptide. We found that the systemic administration of leptin-PEG-FBP effectively inhibited Fas-mediated apoptosis in the ischemic region, resulting in a significant reduction of neuronal cell death, decreased infarct volumes, and accelerated recovery. Importantly, neither leptin nor PEG-FBP influenced apoptotic signaling in brain ischemia. Here, we demonstrate that the systemic delivery of leptin-PEG-FBP presents a promising and viable strategy for treating cerebral ischemic stroke. Our approach not only highlights the therapeutic potential but also emphasizes the importance of overcoming BBB challenges to advance treatments for neurological disorders.
Collapse
Affiliation(s)
- Sungeun Chung
- Department of Bioengineering and Institute of Nanoscience and Technology, Hanyang University, Seoul 04763, Republic of Korea (Y.Y.); (M.L.)
| | - Yujong Yi
- Department of Bioengineering and Institute of Nanoscience and Technology, Hanyang University, Seoul 04763, Republic of Korea (Y.Y.); (M.L.)
| | - Irfan Ullah
- Department of Bioengineering and Institute of Nanoscience and Technology, Hanyang University, Seoul 04763, Republic of Korea (Y.Y.); (M.L.)
- Department of Internal Medicine, Yale University, New Haven, CT 06520, USA
| | - Kunho Chung
- Department of Bioengineering and Institute of Nanoscience and Technology, Hanyang University, Seoul 04763, Republic of Korea (Y.Y.); (M.L.)
- Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Seongjun Park
- Department of Bioengineering and Institute of Nanoscience and Technology, Hanyang University, Seoul 04763, Republic of Korea (Y.Y.); (M.L.)
| | - Jaeyeoung Lim
- Department of Bioengineering and Institute of Nanoscience and Technology, Hanyang University, Seoul 04763, Republic of Korea (Y.Y.); (M.L.)
| | - Chaeyeon Kim
- Department of Bioengineering and Institute of Nanoscience and Technology, Hanyang University, Seoul 04763, Republic of Korea (Y.Y.); (M.L.)
| | - Seon-Hong Pyun
- Department of Bioengineering and Institute of Nanoscience and Technology, Hanyang University, Seoul 04763, Republic of Korea (Y.Y.); (M.L.)
| | - Minkyung Kim
- Department of Bioengineering and Institute of Nanoscience and Technology, Hanyang University, Seoul 04763, Republic of Korea (Y.Y.); (M.L.)
| | - Dokyoung Kim
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea;
| | - Minhyung Lee
- Department of Bioengineering and Institute of Nanoscience and Technology, Hanyang University, Seoul 04763, Republic of Korea (Y.Y.); (M.L.)
| | - Taiyoun Rhim
- Department of Bioengineering and Institute of Nanoscience and Technology, Hanyang University, Seoul 04763, Republic of Korea (Y.Y.); (M.L.)
| | - Sang-Kyung Lee
- Department of Bioengineering and Institute of Nanoscience and Technology, Hanyang University, Seoul 04763, Republic of Korea (Y.Y.); (M.L.)
| |
Collapse
|
9
|
Fan G, Liu M, Liu J, Huang Y, Mu W. Traditional Chinese medicines treat ischemic stroke and their main bioactive constituents and mechanisms. Phytother Res 2024; 38:411-453. [PMID: 38051175 DOI: 10.1002/ptr.8033] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 09/12/2023] [Accepted: 09/24/2023] [Indexed: 12/07/2023]
Abstract
Ischemic stroke (IS) remains one of the leading causes of death and disability in humans. Unfortunately, none of the treatments effectively provide functional benefits to patients with IS, although many do so by targeting different aspects of the ischemic cascade response. The advantages of traditional Chinese medicine (TCM) in preventing and treating IS are obvious in terms of early treatment and global coordination. The efficacy of TCM and its bioactive constituents has been scientifically proven over the past decades. Based on clinical trials, this article provides a review of commonly used TCM patent medicines and herbal decoctions indicated for IS. In addition, this paper also reviews the mechanisms of bioactive constituents in TCM for the treatment of IS in recent years, both domestically and internationally. A comprehensive review of preclinical and clinical studies will hopefully provide new ideas to address the threat of IS.
Collapse
Affiliation(s)
- Genhao Fan
- Tianjin University of Chinese Medicine, Tianjin, China
- Clinical Pharmacology Department, Second Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Menglin Liu
- Tianjin University of Chinese Medicine, Tianjin, China
| | - Jia Liu
- Clinical Pharmacology Department, Second Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yuhong Huang
- Clinical Pharmacology Department, Second Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Wei Mu
- Clinical Pharmacology Department, Second Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
10
|
Liu WS, Zhu SF, Guo YL, Huang R, Yang X. Effect of microbubbles on transcranial doppler ultrasound-assisted intracranial recombinant tissue-type plasminogen activator thrombolysis. Vascular 2023; 31:1194-1200. [PMID: 35799413 DOI: 10.1177/17085381221079109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
OBJECTIVES The aim of this study was to evaluate the effect of microbubbles on the efficacy of transcranial doppler (TCD) ultrasound-assisted thrombolytic therapy of recombinant tissue-type plasminogen activator (rt-PA). METHODS Male New Zealand white rabbits (n = 36) were randomly divided into an rt-PA group (n = 18) and an rt-PA plus microbubble group (n = 18). After the cerebral infarction model was constructed with autologous blood clots, rt-PA and rt-PA plus microbubble intervention were performed, respectively. The hemodynamic changes and infarct size of the two groups were recorded. In addition, the ELISA method was used to detect the level of nitric oxide (NO), superoxide dismutase (SOD), and malondialdehyde (MDA) in the brain tissue of the two-group graph model and high-sensitivity C-reactive protein (hs-CRP) in the serum. RESULTS In the rt-PA group, the recanalization rate was 38.9% and the average infarct size was 11.8%. In the rt-PA plus microbubble group, the recanalization rate was 66.7% and the average infarct size was 8.2%. In addition, the average values for NO, SOD, MDA, and hs-CRP were 16.48 ± 5.39 μmol/L, 730.2 ± 9.86 U/mg, 0.92 ± 0.43 nmol/mg, and 8.56 ± 1.64 mg/L in the rt-PA group, respectively, and the average values were 9.18 ± 3.37 μmol/L, 426.2 ± 6.39 U/mg, 0.73 ± 0.44 nmol/mg, and 5.23 ± 0.94 mg/L in the rt-PA plus microbubble group, respectively. CONCLUSIONS The addition of microbubbles enhanced the effects of TCD-assisted rrt-PA thrombolysis.
Collapse
Affiliation(s)
- Wei-Song Liu
- Department of Internal Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Shao-Fen Zhu
- Department of Internal Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Yuan-Ling Guo
- Department of Internal Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Rong Huang
- Department of Internal Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Xue Yang
- Department of Internal Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| |
Collapse
|
11
|
Choi YH, Hsu M, Laaker C, Herbath M, Yang H, Cismaru P, Johnson AM, Spellman B, Wigand K, Sandor M, Fabry Z. Dual role of Vascular Endothelial Growth Factor-C (VEGF-C) in post-stroke recovery. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.30.555144. [PMID: 37693558 PMCID: PMC10491156 DOI: 10.1101/2023.08.30.555144] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Using a mouse model of ischemic stroke, this study characterizes stroke-induced lymphangiogenesis at the cribriform plate (CP). While blocking CP lymphangiogenesis with a VEGFR-3 inhibitor improves stroke outcome, administration of VEGF-C induced larger brain infarcts. Abstract Cerebrospinal fluid (CSF), antigens, and antigen-presenting cells drain from the central nervous system (CNS) into lymphatic vessels near the cribriform plate and dural meningeal lymphatics. However, the pathological roles of these lymphatic vessels surrounding the CNS during stroke are not well understood. Using a mouse model of ischemic stroke, transient middle cerebral artery occlusion (tMCAO), we show that stroke induces lymphangiogenesis near the cribriform plate. Interestingly, lymphangiogenesis is restricted to lymphatic vessels at the cribriform plate and downstream cervical lymph nodes, without affecting the conserved network of lymphatic vessels in the dura. Cribriform plate lymphangiogenesis peaks at day 7 and regresses by day 14 following tMCAO and is regulated by VEGF-C/VEGFR-3. These newly developed lymphangiogenic vessels transport CSF and immune cells to the cervical lymph nodes. Inhibition of VEGF-C/VEGFR-3 signaling using a blocker of VEGFR-3 prevented lymphangiogenesis and led to improved stroke outcomes at earlier time points but had no effects at later time points following stroke. Administration of VEGF-C after tMCAO did not further increase post-stroke lymphangiogenesis, but instead induced larger brain infarcts. The differential roles for VEGFR-3 inhibition and VEGF-C in regulating stroke pathology call into question recent suggestions to use VEGF-C therapeutically for stroke.
Collapse
|
12
|
Yang Q, Pu W, Hu K, Hu Y, Feng Z, Cai J, Li C, Li L, Zhou Z, Zhang J. Reactive Oxygen Species-Responsive Transformable and Triple-Targeting Butylphthalide Nanotherapy for Precision Treatment of Ischemic Stroke by Normalizing the Pathological Microenvironment. ACS NANO 2023; 17:4813-4833. [PMID: 36802489 DOI: 10.1021/acsnano.2c11363] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
High potency and safe therapies are still required for ischemic stroke, which is a leading cause of global death and disability. Herein, a reactive oxygen species (ROS)-responsive, transformable, and triple-targeting dl-3-n-butylphthalide (NBP) nanotherapy was developed for ischemic stroke. To this end, a ROS-responsive nanovehicle (OCN) was first constructed using a cyclodextrin-derived material, which showed considerably enhanced cellular uptake in brain endothelial cells due to notably reduced particle size, morphological transformation, and surface chemistry switching upon triggering via pathological signals. Compared to a nonresponsive nanovehicle, this ROS-responsive and transformable nanoplatform OCN exhibited a significantly higher brain accumulation in a mouse model of ischemic stroke, thereby affording notably potentiated therapeutic effects for the nanotherapy derived from NBP-containing OCN. For OCN decorated with a stroke-homing peptide (SHp), we found significantly increased transferrin receptor-mediated endocytosis, in addition to the previously recognized targeting capability to activated neurons. Consistently, the engineered transformable and triple-targeting nanoplatform, i.e., SHp-decorated OCN (SON), displayed a more efficient distribution in the injured brain in mice with ischemic stroke, showing considerable localization in endothelial cells and neurons. Furthermore, the finally formulated ROS-responsive transformable and triple-targeting nanotherapy (NBP-loaded SON) demonstrated highly potent neuroprotective activity in mice, which outperformed the SHp-deficient nanotherapy at a 5-fold higher dose. Mechanistically, our bioresponsive, transformable, and triple-targeting nanotherapy attenuated the ischemia/reperfusion-induced endothelial permeability and improved dendritic remodeling and synaptic plasticity of neurons in the injured brain tissue, thereby promoting much better functional recovery, which were achieved by efficiently enhancing NBP delivery to the ischemic brain tissue, targeting injured endothelial cells and activated neurons/microglial cells, and normalizing the pathological microenvironment. Moreover, preliminary studies indicated that the ROS-responsive NBP nanotherapy displayed a good safety profile. Consequently, the developed triple-targeting NBP nanotherapy with desirable targeting efficiency, spatiotemporally controlled drug release performance, and high translational potential holds great promise for precision therapy of ischemic stroke and other brain diseases.
Collapse
Affiliation(s)
- Qinghua Yang
- Department of Neurology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
- Department of Pharmaceutics, College of Pharmacy, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Wendan Pu
- Department of Pharmaceutics, College of Pharmacy, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Kaiyao Hu
- Department of Pharmaceutics, College of Pharmacy, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Yi Hu
- Department of Pharmaceutics, College of Pharmacy, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Zhiqiang Feng
- Department of Pharmaceutics, College of Pharmacy, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Jiajun Cai
- Department of Pharmaceutics, College of Pharmacy, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Chenwen Li
- Department of Pharmaceutics, College of Pharmacy, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Lanlan Li
- Department of Pharmaceutical Analysis, College of Pharmacy, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Zhenhua Zhou
- Department of Neurology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Jianxiang Zhang
- Department of Neurology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
- Department of Pharmaceutics, College of Pharmacy, Third Military Medical University (Army Medical University), Chongqing 400038, China
- State Key Lab of Trauma, Burn and Combined Injury, Institute of Combined Injury, Third Military Medical University (Army Medical University), Chongqing 400038, China
| |
Collapse
|
13
|
Liu X, Ma Y, Wang Y, Zhang Q. Effects of NBP injection on the inflammatory response, oxidative stress response and vascular endothelial function in patients with ACI: A systematic review and meta-analysis. Medicine (Baltimore) 2023; 102:e33226. [PMID: 36897673 PMCID: PMC9997797 DOI: 10.1097/md.0000000000033226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 02/16/2023] [Indexed: 03/11/2023] Open
Abstract
BACKGROUND Acute cerebral infarction (ACI) is a common medical emergency. This study is the first systematic review of the use of Dl-3-n-butylphthalide (NBP) injection in the treatment of ACI. The purpose of this study was to systematically evaluate the effects of NBP injection on the inflammatory response, oxidative stress response and vascular endothelial function in patients with acute ACI. The objective is to provide reference for clinical application. METHODS From the establishment of the database until August 2022, we systematically searched EMbase, PubMed, Cochrane Library, Web of Science, CNKI, VIP, and Wanfang Database. RCTs and retrospective studies were included in this study, and the results that qualified for inclusion were screened by 2 researchers and cross-checked. After the relevant data were extracted, a meta-analysis was performed using RevMan5.3 software. RESULTS A total of 3307 patients with ACI from 34 studies were analyzed. The meta-analysis showed that the C-reactive protein levels in the NBP combined group were effectively reduced compared with those in the control group (MD = -3.75, 95% confidence intervals [95% CI] [-4.95, -2.56], P < .00001). Based on comparison with the control group, it is evident that combination treatment with NBP is more effective than control group in reducing the oxidative stress response of ACI (MD[superoxide dismutase levels] = 22.16, 95% CI [14.20,30.11], P < .00001; MD[malondialdehyde levels] = -1.97, 95% CI [-2.62, -1.32], P < .00001). Comparison with the control group shows that combination treatment with NBP is more effective in improving vascular endothelial function in ACI patients (MD[vascular endothelial growth factor levels] = 71.44, 95% CI [41.22, 101.66], P < .00001; MD[endothelin-1 levels] = -11.47, 95% CI [-17.39, -5.55], P = .0001; MD[nitric oxide levels] = 9.54, 95% CI [8.39, 10.68], P < .00001) than control group. The NBP combined group also showed a greater reduction in cerebral infarct volume (CIV) and cerebral infarct size (CIS) of ACI (MD[CIV] = -1.52, 95% CI [-2.23, -0.81], P < .0001; MD[CIS] = -2.79, 95% CI [-3.65, -1.94], P < .00001). The NBP combined group did not show an increase in the incidence of adverse reactions compared with the control group (odds ratio = 1.06, 95% CI [0.73, 1.53], P = .77). CONCLUSION In summary, the use of NBP in combination with control group for ACI can reduce the degree of nerve damage, reduce inflammation and oxidative stress, improve vascular endothelial function, and reduce CIS and CIV in ACI patients, without increasing the incidence of clinical adverse events.
Collapse
Affiliation(s)
- Xinxin Liu
- Department of First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong Province, China
| | - Yingqi Ma
- Department of First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong Province, China
| | - Yiguo Wang
- Department of Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, China
| | - Qiming Zhang
- Department of First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong Province, China
- Department of Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
14
|
Kadir RRA, Alwjwaj M, Rakkar K, Othman OA, Sprigg N, Bath PM, Bayraktutan U. Outgrowth Endothelial Cell Conditioned Medium Negates TNF-α-Evoked Cerebral Barrier Damage: A Reverse Translational Research to Explore Mechanisms. Stem Cell Rev Rep 2023; 19:503-515. [PMID: 36056287 PMCID: PMC9902316 DOI: 10.1007/s12015-022-10439-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/28/2022] [Indexed: 02/07/2023]
Abstract
Improved understanding of the key mechanisms underlying cerebral ischemic injury is essential for the discovery of efficacious novel therapeutics for stroke. Through detailed analysis of plasma samples obtained from a large number of healthy volunteers (n = 90) and ischemic stroke patients (n = 81), the current study found significant elevations in the levels of TNF-α at baseline (within the first 48 h of stroke) and on days 7, 30, 90 after ischaemic stroke. It then assessed the impact of this inflammatory cytokine on an in vitro model of human blood-brain barrier (BBB) and revealed dramatic impairments in both barrier integrity and function, the main cause of early death after an ischemic stroke. Co-treatment of BBB models in similar experiments with outgrowth endothelial cell-derived conditioned media (OEC-CM) negated the deleterious effects of TNF-α on BBB. Effective suppression of anti-angiogenic factor endostatin, stress fiber formation, oxidative stress, and apoptosis along with concomitant improvements in extracellular matrix adhesive and tubulogenic properties of brain microvascular endothelial cells and OECs played an important role in OEC-CM-mediated benefits. Significant increases in pro-angiogenic endothelin-1 and monocyte chemoattractant protein-1 in OEC-CM compared to the secretomes of OEC and HBMEC, detected by proteome profiling assay, accentuate the beneficial effects of OEC-CM. In conclusion, this reverse translational study identifies TNF-α as an important mediator of post-ischemic cerebral barrier damage and proposes OEC-CM as a potential vasculoprotective therapeutic strategy by demonstrating its ability to regulate a wide range of mechanisms associated with BBB function. Clinical trial registration NCT02980354.
Collapse
Affiliation(s)
- Rais Reskiawan A Kadir
- Academic Unit of Mental Health and Clinical Neuroscience, Clinical Sciences Building, School of Medicine, The University of Nottingham, Hucknall Road, Nottingham, NG5 1PB, UK
| | - Mansour Alwjwaj
- Academic Unit of Mental Health and Clinical Neuroscience, Clinical Sciences Building, School of Medicine, The University of Nottingham, Hucknall Road, Nottingham, NG5 1PB, UK
| | - Kamini Rakkar
- Academic Unit of Mental Health and Clinical Neuroscience, Clinical Sciences Building, School of Medicine, The University of Nottingham, Hucknall Road, Nottingham, NG5 1PB, UK
| | - Othman Ahmad Othman
- Academic Unit of Mental Health and Clinical Neuroscience, Clinical Sciences Building, School of Medicine, The University of Nottingham, Hucknall Road, Nottingham, NG5 1PB, UK
| | - Nikola Sprigg
- Academic Unit of Mental Health and Clinical Neuroscience, Clinical Sciences Building, School of Medicine, The University of Nottingham, Hucknall Road, Nottingham, NG5 1PB, UK
| | - Philip M Bath
- Academic Unit of Mental Health and Clinical Neuroscience, Clinical Sciences Building, School of Medicine, The University of Nottingham, Hucknall Road, Nottingham, NG5 1PB, UK
| | - Ulvi Bayraktutan
- Academic Unit of Mental Health and Clinical Neuroscience, Clinical Sciences Building, School of Medicine, The University of Nottingham, Hucknall Road, Nottingham, NG5 1PB, UK.
| |
Collapse
|
15
|
Neuroprotection of boropinol-B in cerebral ischemia-reperfusion injury by inhibiting inflammation and apoptosis. Brain Res 2023; 1798:148132. [DOI: 10.1016/j.brainres.2022.148132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 09/02/2022] [Accepted: 10/24/2022] [Indexed: 11/21/2022]
|
16
|
Wong A, Bhuiyan MIH, Rothman J, Drew K, Pourrezaei K, Sun D, Barati Z. Near infrared spectroscopy detection of hemispheric cerebral ischemia following middle cerebral artery occlusion in rats. Neurochem Int 2023; 162:105460. [PMID: 36455748 PMCID: PMC10263189 DOI: 10.1016/j.neuint.2022.105460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 11/22/2022] [Accepted: 11/25/2022] [Indexed: 11/29/2022]
Abstract
Timely and sensitive in vivo estimation of ischemic stroke-induced brain infarction are necessary to guide diagnosis and evaluation of treatments' efficacy. The gold standard for estimation of the cerebral infarction volume is magnetic resonance imaging (MRI), which is expensive and not readily accessible. Measuring regional cerebral blood flow (rCBF) with Laser Doppler flowmetry (LDF) is the status quo for confirming reduced blood flow in experimental ischemic stroke models. However, rCBF reduction following cerebral artery occlusion often does not correlate with subsequent infarct volume. In the present study, we employed the continuous-wave near infrared spectroscopy (NIRS) technique to monitor cerebral oxygenation during 90 min of the intraluminal middle cerebral artery occlusion (MCAO) in Sprague-Dawley rats (n = 8, male). The NIRS device consisted of a controller module and an optical sensor with two LED light sources and two photodiodes making up two parallel channels for monitoring left and right cerebral hemispheres. Optical intensity measurements were converted to deoxyhemoglobin (Hb) and oxyhemoglobin (HbO2) changes relative to a 2-min window prior to MCAO. Area under the curve (auc) for Hb and HbO2 was calculated for the 90-min occlusion period for each hemisphere (ipsilateral and contralateral). To obtain a measure of total ischemia, auc of the contralateral side was subtracted from the ipsilateral side resulting in ΔHb and ΔHbO2 parameters. Infarct volume (IV) was calculated by triphenyl tetrazolium chloride (TTC) staining at 24h reperfusion. Results showed a significant negative correlation (r = -0.81, p = 0.03) between ΔHb and infarct volume. In conclusion, our results show feasibility of using a noninvasive optical imaging instrument, namely NIRS, in monitoring cerebral ischemia in a rodent stroke model. This cost-effective, non-invasive technique may improve the rigor of experimental models of ischemic stroke by enabling in vivo longitudinal assessment of cerebral oxygenation and ischemic injury.
Collapse
Affiliation(s)
- Ardy Wong
- Drexel University School of Biomedical Engineering, Science and Health Systems, Philadelphia, PA, USA
| | - Mohammad Iqbal Hossain Bhuiyan
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA, PA, 15260, USA; Veterans Affairs Pittsburgh Health Care System, Geriatric Research, Education and Clinical Center, Pennsylvania, PA, 15260, USA; Department of Pharmaceutical Sciences, School of Pharmacy, University of Texas at El Paso, El Paso, TX, 79968, USA
| | | | - Kelly Drew
- Center for Transformative Research in Metabolism, Institute of Arctic Biology, University of Alaska Fairbanks, USA
| | - Kambiz Pourrezaei
- Drexel University School of Biomedical Engineering, Science and Health Systems, Philadelphia, PA, USA
| | - Dandan Sun
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA, PA, 15260, USA; Veterans Affairs Pittsburgh Health Care System, Geriatric Research, Education and Clinical Center, Pennsylvania, PA, 15260, USA
| | - Zeinab Barati
- Barati Medical LLC, Fairbanks, AK, USA; Center for Transformative Research in Metabolism, Institute of Arctic Biology, University of Alaska Fairbanks, USA.
| |
Collapse
|
17
|
Bone M, Malik M, Crilly S. Identifying applications of virtual reality to benefit the stroke translational pipeline. Brain Neurosci Adv 2023; 7:23982128231182506. [PMID: 37360628 PMCID: PMC10288399 DOI: 10.1177/23982128231182506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 05/31/2023] [Indexed: 06/28/2023] Open
Abstract
As a leading cause of mortality and morbidity, stroke and its management have been studied extensively. Despite numerous pre-clinical studies identifying therapeutic targets, development of effective, specific pharmacotherapeutics remain limited. One significant limitation is a break in the translational pipeline - promising pre-clinical results have not always proven replicable in the clinic. Recent developments in virtual reality technology might help generate a better understanding of injury and recovery across the whole research pipeline in search of optimal stroke management. Here, we review the technologies that can be applied both clinically and pre-clinically to stroke research. We discuss how virtual reality technology is used to quantify clinical outcomes in other neurological conditions that have potential to be applied in stroke research. We also review current uses in stroke rehabilitation and suggest how immersive programmes would better facilitate the quantification of stroke injury severity and patient recovery comparable to pre-clinical study design. By generating continuous, standardised and quantifiable data from injury onset to rehabilitation, we propose that by paralleling pre-clinical outcomes, we can apply a better reverse-translational strategy and apply this understanding to animal studies. We hypothesise this combination of translational research strategies may improve the reliability of pre-clinical research outcomes and culminate in real-life translation of stroke management regimens and medications.
Collapse
Affiliation(s)
- Matan Bone
- School of Medical Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre and The University of Manchester, Manchester, UK
| | - Maham Malik
- School of Medical Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre and The University of Manchester, Manchester, UK
| | - Siobhan Crilly
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre and The University of Manchester, Manchester, UK
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance and The University of Manchester, Manchester, UK
| |
Collapse
|
18
|
Singh AA, Kharwar A, Dandekar MP. A Review on Preclinical Models of Ischemic Stroke: Insights Into the Pathomechanisms and New Treatment Strategies. Curr Neuropharmacol 2022; 20:1667-1686. [PMID: 34493185 PMCID: PMC9881062 DOI: 10.2174/1570159x19666210907092928] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 07/21/2021] [Accepted: 08/26/2021] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Stroke is a serious neurovascular problem and the leading cause of disability and death worldwide. The disrupted demand to supply ratio of blood and glucose during cerebral ischemia develops hypoxic shock, and subsequently necrotic neuronal death in the affected regions. Multiple causal factors like age, sex, race, genetics, diet, and lifestyle play an important role in the occurrence as well as progression of post-stroke deleterious events. These biological and environmental factors may be contributed to vasculature variable architecture and abnormal neuronal activity. Since recombinant tissue plasminogen activator is the only clinically effective clot bursting drug, there is a huge unmet medical need for newer therapies for the treatment of stroke. Innumerous therapeutic interventions have shown promise in the experimental models of stroke but failed to translate it into clinical counterparts. METHODS Original publications regarding pathophysiology, preclinical experimental models, new targets and therapies targeting ischemic stroke have been reviewed since the 1970s. RESULTS We highlighted the critical underlying pathophysiological mechanisms of cerebral stroke and preclinical stroke models. We discuss the strengths and caveats of widely used ischemic stroke models, and commented on the potential translational problems. We also describe the new emerging treatment strategies, including stem cell therapy, neurotrophic factors and gut microbiome-based therapy for the management of post-stroke consequences. CONCLUSION There are still many inter-linked pathophysiological alterations with regards to stroke, animal models need not necessarily mimic the same conditions of stroke pathology and newer targets and therapies are the need of the hour in stroke research.
Collapse
Affiliation(s)
- Aditya A. Singh
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Balanagar, TS 500037, India
| | - Akash Kharwar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Balanagar, TS 500037, India
| | - Manoj P. Dandekar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Balanagar, TS 500037, India,Address correspondence to this author at the Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Balanagar, TS 500037, India; Tel: +91-40-23074750; E-mail:
| |
Collapse
|
19
|
A multiomics and network pharmacological study reveals the neuroprotective efficacy of Fu-Fang-Dan-Zhi tablets against glutamate-induced oxidative cell death. Comput Biol Med 2022; 148:105873. [PMID: 35868043 DOI: 10.1016/j.compbiomed.2022.105873] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 07/08/2022] [Accepted: 07/09/2022] [Indexed: 11/20/2022]
Abstract
Neuroprotective therapy after ischemic stroke remains a significant need, but current measures are still insufficient. The Fu-Fang-Dan-Zhi tablet (FFDZT) is a proprietary Chinese medicine clinically employed to treat ischemic stroke in the recovery period. This work aims to systematically investigate the neuroprotective mechanism of FFDZT. A systems strategy that integrated metabolomics, transcriptomics, network pharmacology, and in vivo and in vitro experiments was used. First, middle cerebral artery occlusion (MCAO) model rats were treated with FFDZT. FFDZT treatment significantly reduced the infarct volume in the brains of middle cerebral artery occlusion (MCAO) model rats. Then, samples of serum and brain tissue were taken for metabolomics and transcriptomics studies, respectively; gene expression profiles of MCF7 cells treated with FFDZT and its 4 active compounds (senkyunolide I, formononetin, drilodefensin, and tanshinone IIA) were produced for CMAP analysis. Computational analysis of metabolomics and transcriptomics results suggested that FFDZT regulated glutamate and oxidative stress-related metabolites (2-hydroxybutanoic acid and 2-hydroxyglutaric acid), glutamate receptors (NMDAR, KA, and AMPA), glutamate involved pathways (glutamatergic synapse pathway; d-glutamine and d-glutamate metabolism; alanine, aspartate and glutamate metabolism), as well as the reactive oxygen species metabolic process. CMAP analysis indicated that two active ingredients of FFDZT (tanshinone ⅡA and senkyunolide I) could act as glutamate receptor antagonists. Next, putative therapeutic targets of FFDZT's active ingredients identified in the brain were collected from multiple resources and filtered by statistical criteria and tissue expression information. Network pharmacological analysis revealed extensive interactions between FFDZT's putative targets, anti-IS drug targets, and glutamate-related enzymes, while the resulting PPI network exhibited modular topology. The targets in two of the modules were significantly enriched in the glutamatergic synapse pathway. The interactions between FFDZT's ingredients and important targets were verified by molecular docking. Finally, in vitro experiments validated the effects of FFDZT and its ingredients in suppressing glutamate-induced PC12 cell injury and reducing the generation of reactive oxygen species. All of our findings indicated that FFDZT's efficacy for treating ischemic stroke could be due to its neuroprotection against glutamate-induced oxidative cell death.
Collapse
|
20
|
Xue D, Wei C, Zhou Y, Wang K, Zhou Y, Chen C, Li Y, Sheng L, Lu B, Zhu Z, Cai W, Ning X, Li S, Qi T, Pi J, Lin S, Yan G, Huang Y, Yin W. TRIOL Inhibits Rapid Intracellular Acidification and Cerebral Ischemic Injury: The Role of Glutamate in Neuronal Metabolic Reprogramming. ACS Chem Neurosci 2022; 13:2110-2121. [PMID: 35770894 DOI: 10.1021/acschemneuro.2c00119] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
As one of the key injury incidents, tissue acidosis in the brain occurs very quickly within several minutes upon the onset of ischemic stroke. Glutamate, an excitatory amino acid inducing neuronal excitotoxicity, has been reported to trigger the decrease in neuronal intracellular pH (pHi) via modulating proton-related membrane transporters. However, there remains a lack of clarity on the possible role of glutamate in neuronal acidosis via regulating metabolism. Here, we show that 200 μM glutamate treatment quickly promotes glycolysis and inhibits mitochondrial oxidative phosphorylation of primary cultured neurons within 15 min, leading to significant cytosolic lactate accumulation, which contributes to the rapid intracellular acidification and neuronal injury. The reprogramming of neuronal metabolism by glutamate is dependent on adenosine monophosphate-activated protein kinase (AMPK) signaling since the inhibition of AMPK activation by its selective inhibitor compound C significantly reverses these deleterious events in vitro. Moreover, 5α-androst-3β,5α,6β-TRIOL (TRIOL), a neuroprotectant we previously reported, can also remarkably reverse intracellular acidification and alleviate neuronal injury through the inhibition of AMPK signaling. Furthermore, TRIOL remarkably reduced the infarct volume and attenuated neurologic impairment in acute ischemic stroke models of middle cerebral artery occlusion in vivo. In summary, we reveal a novel role of glutamate in rapid intracellular acidification injury resulting from glutamate-induced lactate accumulation through AMPK-mediated neuronal reprogramming. Moreover, inhibition of the quick drop in neuronal pHi by TRIOL significantly reduces the cerebral damages, suggesting that it is a promising drug candidate for ischemic stroke.
Collapse
Affiliation(s)
- DongDong Xue
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510080, China
| | - CaiLv Wei
- Department of Molecular Biology and Biochemistry, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510080, China
| | - YueHan Zhou
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510080, China
| | - Kai Wang
- University College London, London WC1E 6BT, U.K
| | - YuWei Zhou
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510080, China
| | - Chen Chen
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510080, China
| | - Yuan Li
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510080, China
| | - LongXiang Sheng
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510080, China
| | - BingZheng Lu
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510080, China
| | - Zhu Zhu
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510080, China
| | - Wei Cai
- Department of Molecular Biology and Biochemistry, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510080, China
| | - XinPeng Ning
- Department of Molecular Biology and Biochemistry, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510080, China
| | - ShengLong Li
- Department of Molecular Biology and Biochemistry, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510080, China
| | - TianYu Qi
- Department of Molecular Biology and Biochemistry, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510080, China
| | - JiaKai Pi
- Guangzhou Foreign Language School, Guangzhou 511400, China
| | - SuiZhen Lin
- Guangzhou Cellprotek Pharmaceutical Co., Ltd., Guangzhou 510663, China
| | - GuangMei Yan
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510080, China
| | - YiJun Huang
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510080, China
| | - Wei Yin
- Department of Molecular Biology and Biochemistry, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510080, China
| |
Collapse
|
21
|
Kadir RRA, Alwjwaj M, Bayraktutan U. Treatment with outgrowth endothelial cells protects cerebral barrier against ischemic injury. Cytotherapy 2022; 24:489-499. [PMID: 35183443 DOI: 10.1016/j.jcyt.2021.11.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 10/24/2021] [Accepted: 11/08/2021] [Indexed: 12/17/2022]
Abstract
BACKGROUND AND AIMS We have previously reported that outgrowth endothelial cells (OECs) restore cerebral endothelial cell integrity through effective homing to the injury site. This study further investigates whether treatment with OECs can restore blood-brain barrier (BBB) function in settings of ischemia-reperfusion injury both in vitro and in vivo. METHODS An in vitro model of human BBB was established by co-culture of astrocytes, pericytes, and human brain microvascular endothelial cells (HBMECs) before exposure to oxygen-glucose deprivation alone or followed by reperfusion (OGD±R) in the absence or presence of exogenous OECs. Using a rodent model of middle cerebral artery occlusion (MCAO), we further assessed the therapeutic potential of OECs in vivo. RESULTS Owing to their prominent antioxidant, proliferative, and migratory properties, alongside their inherent capacity to incorporate into brain vasculature, treatments with OECs attenuated the extent of OGD±R injury on BBB integrity and function, as ascertained by increases in transendothelial electrical resistance and decreases in paracellular flux across the barrier. Similarly, intravenous delivery of OECs also led to better barrier protection in MCAO rats as evidenced by significant decreases in ipsilateral brain edema volumes on day 3 after treatment. Mechanistic studies subsequently showed that treatment with OECs substantially reduced oxidative stress and apoptosis in HBMECs subjected to ischemic damages. CONCLUSION This experimental study shows that OEC-based cell therapy restores BBB integrity in an effective manner by integrating into resident cerebral microvascular network, suppressing oxidative stress and cellular apoptosis.
Collapse
Affiliation(s)
- Rais Reskiawan A Kadir
- Academic Unit of Mental Health and Clinical Neuroscience, School of Medicine, The University of Nottingham, Nottingham, UK
| | - Mansour Alwjwaj
- Academic Unit of Mental Health and Clinical Neuroscience, School of Medicine, The University of Nottingham, Nottingham, UK
| | - Ulvi Bayraktutan
- Academic Unit of Mental Health and Clinical Neuroscience, School of Medicine, The University of Nottingham, Nottingham, UK.
| |
Collapse
|
22
|
Sarmah D, Datta A, Kaur H, Kalia K, Borah A, Rodriguez AM, Yavagal DR, Bhattacharya P. Sirtuin-1 - Mediated NF-κB Pathway Modulation to Mitigate Inflammasome Signaling and Cellular Apoptosis is One of the Neuroprotective Effects of Intra-arterial Mesenchymal Stem Cell Therapy Following Ischemic Stroke. Stem Cell Rev Rep 2022; 18:821-838. [PMID: 35112234 DOI: 10.1007/s12015-021-10315-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/02/2021] [Indexed: 12/14/2022]
Abstract
AIM Stroke results in long term serious disability that affect millions across the globe. Several clinical and preclinical studies have reinforced the therapeutic use of stem cells in stroke patients to enhance their quality of life. Previous studies from our lab have demonstrated that 1*105 allogeneic bone marrow-derived mesenchymal stem cells (BM-MSCs) when given intraarterially (IA) render neuroprotection by modulating the expression of inflammasomes. Sirtuins are a class of important deacylases having a significant role in cellular functioning. Sirtuin-1 (SIRT-1) is an important enzyme essential for regulating cellular metabolism, which is reduced following an ischemic episode. The present study aims to unviel the role of MSCs in regulating the brain SIRT-1 levels following stroke and the involvement of SIRT-1 in regulating inflammasome signaling to reduce cellular apoptosis towards rendering neuroprotection. MATERIALS AND METHODS 6 h post-reversible middle cerebral artery occlusion (MCAo), ovariectomized Sprague Dawley (SD) rats were infused intraarterially with 1*105 MSCs. 24 h after MCAo animals were examined for functional and behavioral outcomes. Brains were collected for assessing size of infarct and neuronal morphology. Molecular and immunofluroscence studies were also performed for assessing changes in gene and protein expressions. Extent of apoptosis was also determined in different groups. Inhibition study with SIRT-1 specific inhibitor EX-527 was also performed. RESULTS A reduction in infarct size and improvement in motor functional and behavioral outcomes following infusion of MSCs IA at 6 h post-stroke was observed. Increase in average neuronal density and neuronal length was also seen. Increased expression of SIRT-1, BDNF and concomitant reduction in the expression of different inflammatory and apoptotic markers in the brain cortical regions were observed following MSCs treatment. CONCLUSION Our study provides a preliminary evidence that post-stroke IA MSCs therapy regulates SIRT-1 to modulate NF-κB pathway to mitigate inflammasome signaling and cellular apoptosis. This study using IA approach for administering MSCs is highly relevant clinically. Our study is the first to report that neuroprotective effects of IA MSCs in rodent focal ischemia is mediated by SIRT-1 regulation of inflammasome signaling.
Collapse
Affiliation(s)
- Deepaneeta Sarmah
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar, 382355, Gujarat, India
| | - Aishika Datta
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar, 382355, Gujarat, India
| | - Harpreet Kaur
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar, 382355, Gujarat, India
| | - Kiran Kalia
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar, 382355, Gujarat, India
| | - Anupom Borah
- Cellular and Molecular Neurobiology Laboratory, Department of Life Science and Bioinformatics, Assam University, Silchar, Assam, India
| | | | - Dileep R Yavagal
- Department of Neurology and Neurosurgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Pallab Bhattacharya
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar, 382355, Gujarat, India.
| |
Collapse
|
23
|
Citicoline and COVID-19-Related Cognitive and Other Neurologic Complications. Brain Sci 2021; 12:brainsci12010059. [PMID: 35053804 PMCID: PMC8782421 DOI: 10.3390/brainsci12010059] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 12/29/2021] [Accepted: 12/30/2021] [Indexed: 02/07/2023] Open
Abstract
With growing concerns about COVID-19’s hyperinflammatory condition and its potentially damaging impact on the neurovascular system, there is a need to consider potential treatment options for managing short- and long-term effects on neurological complications, especially cognitive function. While maintaining adequate structure and function of phospholipid in brain cells, citicoline, identical to the natural metabolite phospholipid phosphatidylcholine precursor, can contribute to a variety of neurological diseases and hypothetically toward post-COVID-19 cognitive effects. In this review, we comprehensively describe in detail the potential citicoline mechanisms as adjunctive therapy and prevention of COVID-19-related cognitive decline and other neurologic complications through citicoline properties of anti-inflammation, anti-viral, neuroprotection, neurorestorative, and acetylcholine neurotransmitter synthesis, and provide a recommendation for future clinical trials.
Collapse
|
24
|
Guan Y, Li P, Liu Y, Guo L, Wu Q, Cheng Y. Protective multi‑target effects of DL‑3‑n‑butylphthalide combined with 3‑methyl‑1‑phenyl‑2‑pyrazolin‑5‑one in mice with ischemic stroke. Mol Med Rep 2021; 24:850. [PMID: 34643246 PMCID: PMC8524408 DOI: 10.3892/mmr.2021.12490] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 09/17/2021] [Indexed: 12/20/2022] Open
Abstract
DL-3-n-butylphthalide (NBP) and 3-methyl-1- phenyl-2-pyrazolin-5-one (edaravone) are acknowledged neuroprotective agents that protect against ischemic stroke. However, the underlying mechanisms of a combination therapy with NBP and edaravone have not yet been fully clarified. The aim of the present study was to explore whether the co-administration of NBP and edaravone had multi-target protective effects on the neurovascular unit (NVU) of mice affected by ischemic stroke. Male C57BL/6 mice were randomly divided into the following three groups: i) Sham operation control, ii) middle cerebral artery occlusion (MCAO) and reperfusion, iii) and MCAO/reperfusion with the co-administration of NBP (40 mg/kg) and edaravone (6 mg/kg) delivered via intraperitoneal injection at 0 and 4 h after reperfusion (NBP + edaravone). After ischemia and reperfusion, infarct volumes and neurological deficits were evaluated. The immunoreactivity of the NVU, comprising neurons, endothelial cells and astrocytes, was determined using immunofluorescence staining of neuronal nuclei (NeuN), platelet and endothelial cell adhesion molecule 1 (CD31) and glial fibrillary acidic protein (GFAP). Western blotting was used to detect the expression levels of apoptosis-related proteins. The infarct volume, neurological function scores and cell damage were increased in the MCAO group compared with the sham operation group. Furthermore, the MCAO mice had reduced NeuN and CD31 expression and increased GFAP expression compared with the sham group. By contrast, the NBP + edaravone group exhibited reduced cell damage and consequently lower infarct volume and neurological deficit scores compared with the MCAO group. The NBP + edaravone group exhibited increased NeuN and CD31 expression and decreased GFAP expression compared with the MCAO group. Furthermore, the expression levels of Bax and cleaved caspase-3 in the NBP + edaravone group were decreased significantly compared with the MCAO group, while the expression levels of Bcl-2 and mitochondrial cytochrome c were increased. In conclusion, the results of the present study demonstrated that NBP and edaravone effectively prevented ischemic stroke damage with multi-target protective effects. In addition, NBP + edaravone may be a promising combination therapy for ischemic stroke.
Collapse
Affiliation(s)
- Yali Guan
- Department of Basic Medicine, Jitang College of North China University of Science and Technology, Tangshan, Hebei 063210, P.R. China
| | - Pengfei Li
- Department of Basic Medicine, Jitang College of North China University of Science and Technology, Tangshan, Hebei 063210, P.R. China
| | - Yingshuo Liu
- Department of Basic Medicine, Jitang College of North China University of Science and Technology, Tangshan, Hebei 063210, P.R. China
| | - Lan Guo
- Department of Basic Medicine, Jitang College of North China University of Science and Technology, Tangshan, Hebei 063210, P.R. China
| | - Qingwen Wu
- Department of Rehabilitation Medicine, College of Nursing and Rehabilitation, North China University of Science and Technology, Tangshan, Hebei 063210, P.R. China
| | - Yuefa Cheng
- Department of Basic Medicine, Jitang College of North China University of Science and Technology, Tangshan, Hebei 063210, P.R. China
| |
Collapse
|
25
|
Zhang SR, Kim HA, Chu HX, Lee S, Evans MA, Li X, Ma H, Drummond GR, Sobey CG, Phan TG. Large-Scale Multivariate Analysis to Interrogate an Animal Model of Stroke: Novel Insights Into Poststroke Pathology. Stroke 2021; 52:3661-3669. [PMID: 34619986 DOI: 10.1161/strokeaha.121.036500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Shenpeng R Zhang
- Department of Physiology, Anatomy and Microbiology and Centre for Cardiovascular Biology and Disease Research, School of Life Sciences (S.R.Z., H.A.K., M.A.E., G.R.D., C.G.S.), La Trobe University, Bundoora, Victoria, Australia.,Cardiovascular Disease Program, Biomedicine Discovery Institute and Department of Pharmacology (S.R.Z., H.A.K., H.X.C., S.L., M.A.E., G.R.D., C.G.S.), Monash University, Clayton, Victoria, Australia
| | - Hyun Ah Kim
- Department of Physiology, Anatomy and Microbiology and Centre for Cardiovascular Biology and Disease Research, School of Life Sciences (S.R.Z., H.A.K., M.A.E., G.R.D., C.G.S.), La Trobe University, Bundoora, Victoria, Australia.,Cardiovascular Disease Program, Biomedicine Discovery Institute and Department of Pharmacology (S.R.Z., H.A.K., H.X.C., S.L., M.A.E., G.R.D., C.G.S.), Monash University, Clayton, Victoria, Australia
| | - Hannah X Chu
- Cardiovascular Disease Program, Biomedicine Discovery Institute and Department of Pharmacology (S.R.Z., H.A.K., H.X.C., S.L., M.A.E., G.R.D., C.G.S.), Monash University, Clayton, Victoria, Australia
| | - Seyoung Lee
- Cardiovascular Disease Program, Biomedicine Discovery Institute and Department of Pharmacology (S.R.Z., H.A.K., H.X.C., S.L., M.A.E., G.R.D., C.G.S.), Monash University, Clayton, Victoria, Australia
| | - Megan A Evans
- Department of Physiology, Anatomy and Microbiology and Centre for Cardiovascular Biology and Disease Research, School of Life Sciences (S.R.Z., H.A.K., M.A.E., G.R.D., C.G.S.), La Trobe University, Bundoora, Victoria, Australia.,Cardiovascular Disease Program, Biomedicine Discovery Institute and Department of Pharmacology (S.R.Z., H.A.K., H.X.C., S.L., M.A.E., G.R.D., C.G.S.), Monash University, Clayton, Victoria, Australia
| | - Xia Li
- Department of Mathematics and Statistics (X.L.), La Trobe University, Bundoora, Victoria, Australia
| | - Henry Ma
- Clinical Trials, Imaging and Informatics Division, Stroke and Ageing Research, Department of Medicine, School of Clinical Sciences at Monash Health (H.M., T.G.P.), Monash University, Clayton, Victoria, Australia
| | - Grant R Drummond
- Department of Physiology, Anatomy and Microbiology and Centre for Cardiovascular Biology and Disease Research, School of Life Sciences (S.R.Z., H.A.K., M.A.E., G.R.D., C.G.S.), La Trobe University, Bundoora, Victoria, Australia.,Cardiovascular Disease Program, Biomedicine Discovery Institute and Department of Pharmacology (S.R.Z., H.A.K., H.X.C., S.L., M.A.E., G.R.D., C.G.S.), Monash University, Clayton, Victoria, Australia
| | - Christopher G Sobey
- Department of Physiology, Anatomy and Microbiology and Centre for Cardiovascular Biology and Disease Research, School of Life Sciences (S.R.Z., H.A.K., M.A.E., G.R.D., C.G.S.), La Trobe University, Bundoora, Victoria, Australia.,Cardiovascular Disease Program, Biomedicine Discovery Institute and Department of Pharmacology (S.R.Z., H.A.K., H.X.C., S.L., M.A.E., G.R.D., C.G.S.), Monash University, Clayton, Victoria, Australia
| | - Thanh G Phan
- Clinical Trials, Imaging and Informatics Division, Stroke and Ageing Research, Department of Medicine, School of Clinical Sciences at Monash Health (H.M., T.G.P.), Monash University, Clayton, Victoria, Australia
| |
Collapse
|
26
|
Molecular Mechanisms of Neuroimmune Crosstalk in the Pathogenesis of Stroke. Int J Mol Sci 2021; 22:ijms22179486. [PMID: 34502395 PMCID: PMC8431165 DOI: 10.3390/ijms22179486] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/26/2021] [Accepted: 08/28/2021] [Indexed: 12/21/2022] Open
Abstract
Stroke disrupts the homeostatic balance within the brain and is associated with a significant accumulation of necrotic cellular debris, fluid, and peripheral immune cells in the central nervous system (CNS). Additionally, cells, antigens, and other factors exit the brain into the periphery via damaged blood–brain barrier cells, glymphatic transport mechanisms, and lymphatic vessels, which dramatically influence the systemic immune response and lead to complex neuroimmune communication. As a result, the immunological response after stroke is a highly dynamic event that involves communication between multiple organ systems and cell types, with significant consequences on not only the initial stroke tissue injury but long-term recovery in the CNS. In this review, we discuss the complex immunological and physiological interactions that occur after stroke with a focus on how the peripheral immune system and CNS communicate to regulate post-stroke brain homeostasis. First, we discuss the post-stroke immune cascade across different contexts as well as homeostatic regulation within the brain. Then, we focus on the lymphatic vessels surrounding the brain and their ability to coordinate both immune response and fluid homeostasis within the brain after stroke. Finally, we discuss how therapeutic manipulation of peripheral systems may provide new mechanisms to treat stroke injury.
Collapse
|
27
|
Lohkamp KJ, Kiliaan AJ, Shenk J, Verweij V, Wiesmann M. The Impact of Voluntary Exercise on Stroke Recovery. Front Neurosci 2021; 15:695138. [PMID: 34321996 PMCID: PMC8311567 DOI: 10.3389/fnins.2021.695138] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 06/15/2021] [Indexed: 12/29/2022] Open
Abstract
Stroke treatment is limited to time-critical thrombectomy and rehabilitation by physiotherapy. Studies report beneficial effects of exercise; however, a knowledge gap exists regarding underlying mechanisms that benefit recovery of brain networks and cognition. This study aims to unravel therapeutic effects of voluntary exercise in stroke-induced mice to develop better personalized treatments. Male C57Bl6/JOlaHsd mice were subjected to transient middle cerebral artery occlusion. After surgery, the animals were divided in a voluntary exercise group with access to running wheels (RW), and a control group without running wheels (NRW). During 6 days post-stroke, activity/walking patterns were measured 24/7 in digital ventilated cages. Day 7 post-surgery, animals underwent MRI scanning (11.7T) to investigate functional connectivity (rsfMRI) and white matter (WM) integrity (DTI). Additionally, postmortem polarized light imaging (PLI) was performed to quantify WM fiber density and orientation. After MRI the animals were sacrificed and neuroinflammation and cerebral vascularisation studied. Voluntary exercise promoted myelin density recovery corresponding to higher fractional anisotropy. The deteriorating impact of stroke on WM dispersion was detected only in NRW mice. Moreover, rsfMRI revealed increased functional connectivity, cerebral blood flow and vascular quality leading to improved motor skills in the RW group. Furthermore, voluntary exercise showed immunomodulatory properties post-stroke. This study not only helped determining the therapeutic value of voluntary exercise, but also provided understanding of pathological mechanisms involved in stroke.
Collapse
Affiliation(s)
- Klara J Lohkamp
- Department of Medical Imaging, Anatomy, Radboud University Medical Center, Preclinical Imaging Center - PRIME, Radboud Alzheimer Center, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, Netherlands
| | - Amanda J Kiliaan
- Department of Medical Imaging, Anatomy, Radboud University Medical Center, Preclinical Imaging Center - PRIME, Radboud Alzheimer Center, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, Netherlands
| | - Justin Shenk
- Department of Medical Imaging, Anatomy, Radboud University Medical Center, Preclinical Imaging Center - PRIME, Radboud Alzheimer Center, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, Netherlands
| | - Vivienne Verweij
- Department of Medical Imaging, Anatomy, Radboud University Medical Center, Preclinical Imaging Center - PRIME, Radboud Alzheimer Center, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, Netherlands
| | - Maximilian Wiesmann
- Department of Medical Imaging, Anatomy, Radboud University Medical Center, Preclinical Imaging Center - PRIME, Radboud Alzheimer Center, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, Netherlands
| |
Collapse
|
28
|
Liu DL, Hong Z, Li JY, Yang YX, Chen C, Du JR. Phthalide derivative CD21 attenuates tissue plasminogen activator-induced hemorrhagic transformation in ischemic stroke by enhancing macrophage scavenger receptor 1-mediated DAMP (peroxiredoxin 1) clearance. J Neuroinflammation 2021; 18:143. [PMID: 34162400 PMCID: PMC8223381 DOI: 10.1186/s12974-021-02170-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Accepted: 05/11/2021] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Hemorrhagic transformation (HT) is a critical issue in thrombolytic therapy in acute ischemic stroke. Damage-associated molecular pattern (DAMP)-stimulated sterile neuroinflammation plays a crucial role in the development of thrombolysis-associated HT. Our previous study showed that the phthalide derivative CD21 attenuated neuroinflammation and brain injury in rodent models of ischemic stroke. The present study explored the effects and underlying mechanism of action of CD21 on tissue plasminogen activator (tPA)-induced HT in a mouse model of transient middle cerebral artery occlusion (tMCAO) and cultured primary microglial cells. METHODS The tMCAO model was induced by 2 h occlusion of the left middle cerebral artery with polylysine-coated sutures in wildtype (WT) mice and macrophage scavenger receptor 1 knockout (MSR1-/-) mice. At the onset of reperfusion, tPA (10 mg/kg) was intravenously administered within 30 min, followed by an intravenous injection of CD21 (13.79 mg/kg/day). Neuropathological changes were detected in mice 3 days after surgery. The effect of CD21 on phagocytosis of the DAMP peroxiredoxin 1 (Prx1) in lysosomes was observed in cultured primary microglial cells from brain tissues of WT and MSR1-/- mice. RESULTS Seventy-two hours after brain ischemia, CD21 significantly attenuated neurobehavioral dysfunction and infarct volume. The tPA-infused group exhibited more severe brain dysfunction and hemorrhage. Compared with tPA alone, combined treatment with tPA and CD21 significantly attenuated ischemic brain injury and hemorrhage. Combined treatment significantly decreased Evans blue extravasation, matrix metalloproteinase 9 expression and activity, extracellular Prx1 content, proinflammatory cytokine mRNA levels, glial cells, and Toll-like receptor 4 (TLR4)/nuclear factor κB (NF-κB) pathway activation and increased the expression of tight junction proteins (zonula occludens-1 and claudin-5), V-maf musculoaponeurotic fibrosarcoma oncogene homolog B, and MSR1. MSR1 knockout significantly abolished the protective effect of CD21 against tPA-induced HT in tMCAO mice. Moreover, the CD21-induced phagocytosis of Prx1 was MSR1-dependent in cultured primary microglial cells from WT and MSR1-/- mice, respectively. CONCLUSION The phthalide derivative CD21 attenuated tPA-induced HT in acute ischemic stroke by promoting MSR1-induced DAMP (Prx1) clearance and inhibition of the TLR4/NF-κB pathway and neuroinflammation.
Collapse
Affiliation(s)
- Dong-Ling Liu
- Department of Pharmacology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, PR China
| | - Zhi Hong
- Department of Pharmacology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, PR China
| | - Jing-Ying Li
- Department of Pharmacology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, PR China
| | - Yu-Xin Yang
- Department of Pharmacology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, PR China.,Present address: The PRIVIS TECHNOLOGY Co., Ltd., Chengdu, 610041, PR China
| | - Chu Chen
- Sichuan Academy of Chinese Medicine Sciences, Chengdu, 610041, PR China
| | - Jun-Rong Du
- Department of Pharmacology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, PR China.
| |
Collapse
|
29
|
Ran Y, Ye L, Ding Z, Gao F, Yang S, Fang B, Liu Z, Xi J. Melatonin Protects Against Ischemic Brain Injury by Modulating PI3K/AKT Signaling Pathway via Suppression of PTEN Activity. ASN Neuro 2021; 13:17590914211022888. [PMID: 34120482 PMCID: PMC8207287 DOI: 10.1177/17590914211022888] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Stroke is one of the leading causes of death and disability worldwide with limited therapeutic options. Melatonin can attenuate ischemic brain damage with improved functional outcomes. However, the cellular mechanisms of melatonin-driven neuroprotection against post-stroke neuronal death remain unknown. Here, distal middle cerebral artery occlusion (dMCAO) was performed in C57BL/6j mice to develop an ischemic stroke in vivo model. Melatonin was injected intraperitoneally immediately after ischemia, and 24 and 48 hours later. Melatonin treatment, with 5 to 20 mg/kg, elicited a dose-dependent decrease in infarct volume and concomitant increase in sensorimotor function. At the molecular level, phosphorylation of PTEN and Akt were increased, whereas PTEN activity was decreased in melatonin treated animals 72 hours after dMCAO. At the cellular level, oxygenglucose deprivation (OGD) challenge of neuronal cell line Neuro-2a (N2a) and primary neurons supported melatonin’s direct protection against neuronal cell death. Melatonin treatment reduced LDH release and neuronal apoptosis at various time points, markedly increased Akt phosphorylation in neuronal membrane, but significantly suppressed it in the cytoplasm of post-OGD neurons. Mechanistically, melatonin-induced Akt phosphorylation and neuronal survival was blocked by Wortmannin, a potent PIP3 inhibitor, exposing increased PI3K/Akt activation as a central player in melatonin-driven neuroprotection. Finally, PTEN knock-down through siRNA significantly inhibited PI3K/Akt activation and cell survival following melatonin treatment, suggesting that melatonin protection against ischemic brain damage, is at least partially, dependent on modulation of the PTEN/PI3K/Akt signaling axis.
Collapse
Affiliation(s)
- Yuanyuan Ran
- Department of Rehabilitation, Beijing Rehabilitation Hospital, Capital Medical University, Shijingshan, China
| | - Lin Ye
- School of Materials Science and Engineering, Beijing Institute of Technology, Haidian, China
| | - Zitong Ding
- Department of Rehabilitation, Beijing Rehabilitation Hospital, Capital Medical University, Shijingshan, China
| | - Fuhai Gao
- Department of Rehabilitation, Beijing Rehabilitation Hospital, Capital Medical University, Shijingshan, China
| | - Shuiqing Yang
- Department of Rehabilitation, Beijing Rehabilitation Hospital, Capital Medical University, Shijingshan, China
| | - Boyan Fang
- Department of Neurological Rehabilitation, Beijing Rehabilitation Hospital, Capital Medical University, Shijingshan, China
| | - Zongjian Liu
- Department of Rehabilitation, Beijing Rehabilitation Hospital, Capital Medical University, Shijingshan, China
| | - Jianing Xi
- Department of Rehabilitation, Beijing Rehabilitation Hospital, Capital Medical University, Shijingshan, China
| |
Collapse
|
30
|
D'Souza A, Dave KM, Stetler RA, S. Manickam D. Targeting the blood-brain barrier for the delivery of stroke therapies. Adv Drug Deliv Rev 2021; 171:332-351. [PMID: 33497734 DOI: 10.1016/j.addr.2021.01.015] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 01/12/2021] [Accepted: 01/14/2021] [Indexed: 02/06/2023]
Abstract
A variety of neuroprotectants have shown promise in treating ischemic stroke, yet their delivery to the brain remains a challenge. The endothelial cells lining the blood-brain barrier (BBB) are emerging as a dynamic factor in the response to neurological injury and disease, and the endothelial-neuronal matrix coupling is fundamentally neuroprotective. In this review, we discuss approaches that target the endothelium for drug delivery both across the BBB and to the BBB as a viable strategy to facilitate neuroprotective effects, using the example of brain-derived neurotrophic factor (BDNF). We highlight the advances in cell-derived extracellular vesicles (EVs) used for CNS targeting and drug delivery. We also discuss the potential of engineered EVs as a potent strategy to deliver BDNF or other drug candidates to the ischemic brain, particularly when coupled with internal components like mitochondria that may increase cellular energetics in injured endothelial cells.
Collapse
|
31
|
Gao J, Qin Z, Qu X, Wu S, Xie X, Liang C, Liu J. Endogenous neuroprotective mechanism of ATP2B1 in transcriptional regulation of ischemic preconditioning. Am J Transl Res 2021; 13:1170-1183. [PMID: 33841647 PMCID: PMC8014370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 01/18/2021] [Indexed: 06/12/2023]
Abstract
UNLABELLED Ischemic stroke is the main cause of disability and mortality in the world. Clinical studies have shown that patients who undergo mild transient ischemic attack (TIA) before more severe ischemic stroke have lower clinical severity of stroke and better functional prognosis. This phenomenon is called ischemic preconditioning (IPC). IPC is a powerful intrinsic protection of the brain against ischemic injury, but the underlying mechanism of IPC-mediated endogenous protection of the brain is not clear. METHODS Using transcriptome method, we sequenced the serum of 3 stroke patients with progenitor TIA and 3 stroke patients without prodromal TIA. We explored the expression profiles of miRNAs and mRNAs in response to IPC, and predicted the regulatory pathway of IPC related genes and their expression in cerebral neurons. The methylation consistent expression of IPC-related gene ATP2B1 in blood and brain and alternative polyadenylate (APA) analysis were used to identify the pathway and molecular mechanism of endogenous neuroprotection of IPC. RESULTS We found that the brain protective effect of IPC was related to platelet homeostasis and Ca2+ concentration. IPC-related gene ATP2B1 was highly expressed in γ-aminobutyric acid (GABA)-containing neurons in the brain. From the mechanism, we speculated that ATP2B1 was representative of the same methylation in blood and brain and was affected by alternative polyadenylation. CONCLUSION We speculate that IPC can induce alternative polyadenylation of ATP2B1 and trigger the mechanism of brain endogenous neuroprotection by regulating the decrease of Ca2+ concentration in platelet homeostasis pathway and the activation of GABAB receptor.
Collapse
Affiliation(s)
- Jinggui Gao
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University in Nanning China
| | - Zhenxiu Qin
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University in Nanning China
| | - Xiang Qu
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University in Nanning China
| | - Shuang Wu
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University in Nanning China
| | - Xiaoyun Xie
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University in Nanning China
| | - Chengwei Liang
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University in Nanning China
| | - Jingli Liu
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University in Nanning China
| |
Collapse
|
32
|
Subedi L, Gaire BP. Phytochemicals as regulators of microglia/macrophages activation in cerebral ischemia. Pharmacol Res 2021; 165:105419. [DOI: 10.1016/j.phrs.2021.105419] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 12/16/2020] [Accepted: 01/02/2021] [Indexed: 12/12/2022]
|
33
|
Abstract
Acute brain injuries such as traumatic brain injury and stroke affect 85 million people a year worldwide, and many survivors suffer from long-term physical, cognitive, or psychosocial impairments. There are few FDA-approved therapies that are effective at preventing, halting, or ameliorating the state of disease in the brain after acute brain injury. To address this unmet need, one potential strategy is to leverage the unique physical and biological properties of nanomaterials. Decades of cancer nanomedicine research can serve as a blueprint for innovation in brain injury nanomedicines, both to emulate the successes and also to avoid potential pitfalls. In this review, we discuss how shared disease physiology between cancer and acute brain injuries can inform the design of novel nanomedicines for acute brain injuries. These disease hallmarks include dysregulated vasculature, an altered microenvironment, and changes in the immune system. We discuss several nanomaterial strategies that can be engineered to exploit these disease hallmarks, for example, passive accumulation, active targeting of disease-associated signals, bioresponsive designs that are "smart", and immune interactions.
Collapse
|
34
|
Li C, Kuss M, Kong Y, Nie F, Liu X, Liu B, Dunaevsky A, Fayad P, Duan B, Li X. 3D Printed Hydrogels with Aligned Microchannels to Guide Neural Stem Cell Migration. ACS Biomater Sci Eng 2021; 7:690-700. [PMID: 33507749 DOI: 10.1021/acsbiomaterials.0c01619] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Following traumatic or ischemic brain injury, rapid cell death and extracellular matrix degradation lead to the formation of a cavity at the brain lesion site, which is responsible for prolonged neurological deficits and permanent disability. Transplantation of neural stem/progenitor cells (NSCs) represents a promising strategy for reconstructing the lesion cavity and promoting tissue regeneration. In particular, the promotion of neuronal migration, organization, and integration of transplanted NSCs is critical to the success of stem cell-based therapy. This is particularly important for the cerebral cortex, the most common area involved in brain injuries, because the highly organized structure of the cerebral cortex is essential to its function. Biomaterials-based strategies show some promise for conditioning the lesion site microenvironment to support transplanted stem cells, but the progress in demonstrating organized cell engraftment and integration into the brain is very limited. An effective approach to sufficiently address these challenges has not yet been developed. Here, we have implemented a digital light-processing-based 3D printer and printed hydrogel scaffolds with a designed shape, uniaxially aligned microchannels, and tunable mechanical properties. We demonstrated the capacity to achieve high shape precision to the lesion site with brain tissue-matching mechanical properties. We also established spatial control of bioactive molecule distribution within 3D printed hydrogel scaffolds. These printed hydrogel scaffolds have shown high neuro-compatibility with aligned neuronal outgrowth along with the microchannels. This study will provide a biomaterial-based approach that can serve as a protective and guidance vehicle for transplanted NSC organization and integration for brain tissue regeneration after injuries.
Collapse
Affiliation(s)
- Cui Li
- Department of Physiology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China.,Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| | - Mitchell Kuss
- Mary & Dick Holland Regenerative Medicine Program, Division of Cardiology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| | - Yunfan Kong
- Mary & Dick Holland Regenerative Medicine Program, Division of Cardiology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| | - Fujiao Nie
- Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| | - Xiaoyan Liu
- Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| | - Bo Liu
- Mary & Dick Holland Regenerative Medicine Program, Division of Cardiology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| | - Anna Dunaevsky
- Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| | - Pierre Fayad
- Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| | - Bin Duan
- Mary & Dick Holland Regenerative Medicine Program, Division of Cardiology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| | - Xiaowei Li
- Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| |
Collapse
|
35
|
Chelluboina B, Vemuganti R. Therapeutic potential of nutraceuticals to protect brain after stroke. Neurochem Int 2020; 142:104908. [PMID: 33220386 DOI: 10.1016/j.neuint.2020.104908] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 11/14/2020] [Accepted: 11/16/2020] [Indexed: 02/07/2023]
Abstract
Stroke leads to significant neuronal death and long-term neurological disability due to synergistic pathogenic mechanisms. Stroke induces a change in eating habits and in many cases, leads to undernutrition that aggravates the post-stroke pathology. Proper nutritional regimen remains a major strategy to control the modifiable risk factors for cardiovascular and cerebrovascular diseases including stroke. Studies indicate that nutraceuticals (isolated and concentrated form of high-potency natural bioactive substances present in dietary nutritional components) can act as prophylactic as well as adjuvant therapeutic agents to prevent stroke risk, to promote ischemic tolerance and to reduce post-stroke consequences. Nutraceuticals are also thought to regulate blood pressure, delay neurodegeneration and improve overall vascular health. Nutraceuticals potentially mediate these effects by their powerful antioxidant and anti-inflammatory properties. This review discusses the studies that have highlighted the translational potential of nutraceuticals as stroke therapies.
Collapse
Affiliation(s)
- Bharath Chelluboina
- Department of Neurological Surgery, University of Wisconsin, Madison, WI, USA
| | - Raghu Vemuganti
- Department of Neurological Surgery, University of Wisconsin, Madison, WI, USA; William S. Middleton Veterans Administration Hospital, Madison, WI, USA.
| |
Collapse
|
36
|
Jiang J, Yu Y. Small molecules targeting cyclooxygenase/prostanoid cascade in experimental brain ischemia: Do they translate? Med Res Rev 2020; 41:828-857. [PMID: 33094540 DOI: 10.1002/med.21744] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 10/02/2020] [Accepted: 10/11/2020] [Indexed: 12/15/2022]
Abstract
Acute brain ischemia accounts for most of stroke cases and constitutes a leading cause of deaths among adults and permanent disabilities in survivors. Currently, the intravenous thrombolysis is the only available medication for ischemic stroke; mechanical thrombectomy is an emerging alternative treatment for occlusion of large arteries and has shown some promise in selected subsets of patients. However, the overall narrow treatment window and potential risks largely limit the patient eligibility. New druggable targets are needed to innovate the treatment of brain ischemia. As the rate-limiting enzyme in the biosyntheses of prostanoids, cyclooxygenase (COX), particularly the inducible isoform COX-2, has long been implicated in mechanisms of acute stroke-induced brain injury and inflammation. However, the notion of therapeutically targeting COX has been diminished over the past two decades due to significant complications of the cardiovascular and cerebrovascular systems caused by long-term use of COX-2 inhibitor drugs. New treatment strategies targeting the downstream prostanoid signaling receptors regulating the deleterious effects of COX cascade have been proposed. As such, a large number of selective small molecules that negatively or positively modulate these important inflammatory regulators have been evaluated for neuroprotection and other beneficial effects in various animal models of brain ischemia. These timely preclinical studies, though not yet led to clinical innovation, provided new insights into the regulation of inflammatory reactions in the ischemic brain and could guide drug discovery efforts aiming for novel adjunctive strategies, along with current reperfusion therapy, to treat acute brain ischemia with higher specificity and longer therapeutic window.
Collapse
Affiliation(s)
- Jianxiong Jiang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Ying Yu
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| |
Collapse
|
37
|
Chen X, Zhang J, Song Y, Yang P, Yang Y, Huang Z, Wang K. Deficiency of anti-inflammatory cytokine IL-4 leads to neural hyperexcitability and aggravates cerebral ischemia-reperfusion injury. Acta Pharm Sin B 2020; 10:1634-1645. [PMID: 33088684 PMCID: PMC7564329 DOI: 10.1016/j.apsb.2020.05.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Revised: 02/21/2020] [Accepted: 03/09/2020] [Indexed: 01/03/2023] Open
Abstract
Systematic administration of anti-inflammatory cytokine interleukin 4 (IL-4) has been shown to improve recovery after cerebral ischemic stroke. However, whether IL-4 affects neuronal excitability and how IL-4 improves ischemic injury remain largely unknown. Here we report the neuroprotective role of endogenous IL-4 in focal cerebral ischemia–reperfusion (I/R) injury. In multi-electrode array (MEA) recordings, IL-4 reduces spontaneous firings and network activities of mouse primary cortical neurons. IL-4 mRNA and protein expressions are upregulated after I/R injury. Genetic deletion of Il-4 gene aggravates I/R injury in vivo and exacerbates oxygen-glucose deprivation (OGD) injury in cortical neurons. Conversely, supplemental IL-4 protects Il-4−/− cortical neurons against OGD injury. Mechanistically, cortical pyramidal and stellate neurons common for ischemic penumbra after I/R injury exhibit intrinsic hyperexcitability and enhanced excitatory synaptic transmissions in Il-4−/− mice. Furthermore, upregulation of Nav1.1 channel, and downregulations of KCa3.1 channel and α6 subunit of GABAA receptors are detected in the cortical tissues and primary cortical neurons from Il-4−/− mice. Taken together, our findings demonstrate that IL-4 deficiency results in neural hyperexcitability and aggravates I/R injury, thus activation of IL-4 signaling may protect the brain against the development of permanent damage and help recover from ischemic injury after stroke.
Collapse
|
38
|
Martí-Carvajal AJ, Valli C, Martí-Amarista CE, Solà I, Martí-Fàbregas J, Bonfill Cosp X. Citicoline for treating people with acute ischemic stroke. Cochrane Database Syst Rev 2020; 8:CD013066. [PMID: 32860632 PMCID: PMC8406786 DOI: 10.1002/14651858.cd013066.pub2] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
BACKGROUND Stroke is one of the leading causes of long-lasting disability and mortality and its global burden has increased in the past two decades. Several therapies have been proposed for the recovery from, and treatment of, ischemic stroke. One of them is citicoline. This review assessed the benefits and harms of citicoline for treating patients with acute ischemic stroke. OBJECTIVES To assess the clinical benefits and harms of citicoline compared with placebo or any other control for treating people with acute ischemic stroke. SEARCH METHODS We searched in the Cochrane Stroke Group Trials Register, CENTRAL, MEDLINE Ovid, Embase Ovid, LILACS until 29 January 2020. We searched the World Health Organization Clinical Trials Search Portal and ClinicalTrials.gov. Additionally, we also reviewed reference lists of the retrieved publications and review articles, and searched the websites of the US Food and Drug Administration (FDA) and European Medicines Agency (EMA). SELECTION CRITERIA We included randomized controlled trials (RCTs) in any setting including participants with acute ischemic stroke. Trials were eligible for inclusion if they compared citicoline versus placebo or no intervention. DATA COLLECTION AND ANALYSIS We selected RCTs, assessed the risk of bias in seven domains, and extracted data by duplicate. Our primary outcomes of interest were all-cause mortality and the degree of disability or dependence in daily activities at 90 days. We estimated risk ratios (RRs) for dichotomous outcomes. We measured statistical heterogeneity using the I² statistic. We conducted our analyses using the fixed-effect and random-effects model meta-analyses. We assessed the overall quality of evidence for six pre-specified outcomes using the GRADE approach. MAIN RESULTS We identified 10 RCTs including 4281 participants. In all these trials, citicoline was given either orally, intravenously, or a combination of both compared with placebo or standard care therapy. Citicoline doses ranged between 500 mg and 2000 mg per day. We assessed all the included trials as having high risk of bias. Drug companies sponsored six trials. A pooled analysis of eight trials indicates there may be little or no difference in all-cause mortality comparing citicoline with placebo (17.3% versus 18.5%; RR 0.94, 95% CI 0.83 to 1.07; I² = 0%; low-quality evidence due to risk of bias). Four trials found no difference in the proportion of patients with disability or dependence in daily activities according to the Rankin scale comparing citicoline with placebo (21.72% versus 19.23%; RR 1.11, 95% CI 0.97 to 1.26; I² = 1%; low-quality evidence due to risk of bias). Meta-analysis of three trials indicates there may be little or no difference in serious cardiovascular adverse events comparing citicoline with placebo (8.83% versus 7.77%; RR 1.04, 95% CI 0.84 to 1.29; I² = 0%; low-quality evidence due to risk of bias). Overall, either serious or non-serious adverse events - central nervous system, gastrointestinal, musculoskeletal, etc. - were poorly reported and harms may have been underestimated. Four trials assessing functional recovery with the Barthel Index at a cut-off point of 95 points or more did not find differences comparing citicoline with placebo (32.78% versus 30.70%; RR 1.03, 95% CI 0.94 to 1.13; I² = 24%; low-quality evidence due to risk of bias). There were no differences in neurological function (National Institutes of Health Stroke Scale at a cut-off point of ≤ 1 points) comparing citicoline with placebo according to five trials (24.31% versus 22.44%; RR 1.08, 95% CI 0.96 to 1.21; I² = 27%, low-quality evidence due to risk of bias). A pre-planned Trial Sequential Analysis suggested that no more trials may be needed for the primary outcomes but no trial provided information on quality of life. AUTHORS' CONCLUSIONS This review assessed the clinical benefits and harms of citicoline compared with placebo or any other standard treatment for people with acute ischemic stroke. The findings of the review suggest there may be little to no difference between citicoline and its controls regarding all-cause mortality, disability or dependence in daily activities, severe adverse events, functional recovery and the assessment of the neurological function, based on low-certainty evidence. None of the included trials assessed quality of life and the safety profile of citicoline remains unknown. The available evidence is of low quality due to either limitations in the design or execution of the trials.
Collapse
Affiliation(s)
- Arturo J Martí-Carvajal
- Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE (Cochrane Ecuador), Quito, Ecuador
- School of Medicine, Universidad Francisco de Vitoria (Cochrane Madrid), Madrid, Spain
| | - Claudia Valli
- Iberoamerican Cochrane Centre, Biomedical Research Institute Sant Pau (IIB Sant Pau), Barcelona, Spain
| | | | - Ivan Solà
- Iberoamerican Cochrane Centre, Biomedical Research Institute Sant Pau (IIB Sant Pau), CIBER Epidemiología y Salud Pública (CIBERESP), Barcelona, Spain
| | - Joan Martí-Fàbregas
- Unitat de Malalties Vasculars Cerebrals - Stroke Unit, Servei De Neurologia - Department of Neurology, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Xavier Bonfill Cosp
- Iberoamerican Cochrane Centre, Biomedical Research Institute Sant Pau (IIB Sant Pau), Universitat Autònoma de Barcelona, CIBER Epidemiología y Salud Pública (CIBERESP), Barcelona, Spain
| |
Collapse
|
39
|
Yeh CY, Schulien AJ, Molyneaux BJ, Aizenman E. Lessons from Recent Advances in Ischemic Stroke Management and Targeting Kv2.1 for Neuroprotection. Int J Mol Sci 2020; 21:ijms21176107. [PMID: 32854248 PMCID: PMC7503403 DOI: 10.3390/ijms21176107] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/20/2020] [Accepted: 08/21/2020] [Indexed: 12/20/2022] Open
Abstract
Achieving neuroprotection in ischemic stroke patients has been a multidecade medical challenge. Numerous clinical trials were discontinued in futility and many were terminated in response to deleterious treatment effects. Recently, however, several positive reports have generated the much-needed excitement surrounding stroke therapy. In this review, we describe the clinical studies that significantly expanded the time window of eligibility for patients to receive mechanical endovascular thrombectomy. We further summarize the results available thus far for nerinetide, a promising neuroprotective agent for stroke treatment. Lastly, we reflect upon aspects of these impactful trials in our own studies targeting the Kv2.1-mediated cell death pathway in neurons for neuroprotection. We argue that recent changes in the clinical landscape should be adapted by preclinical research in order to continue progressing toward the development of efficacious neuroprotective therapies for ischemic stroke.
Collapse
Affiliation(s)
- Chung-Yang Yeh
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; (C.-Y.Y.); (A.J.S.)
- Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA;
| | - Anthony J. Schulien
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; (C.-Y.Y.); (A.J.S.)
- Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA;
| | - Bradley J. Molyneaux
- Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA;
- UPMC Stroke Institute, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
- Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Elias Aizenman
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; (C.-Y.Y.); (A.J.S.)
- Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA;
- Correspondence:
| |
Collapse
|
40
|
Song J, Kim YS, Lee D, Kim H. Safety evaluation of root extract of Pueraria lobata and Scutellaria baicalensis in rats. BMC Complement Med Ther 2020; 20:226. [PMID: 32680504 PMCID: PMC7368675 DOI: 10.1186/s12906-020-02998-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 06/22/2020] [Indexed: 12/11/2022] Open
Abstract
Background The roots of Pueraria lobata and Scutellaria baicalensis, herbal medicines with a long history of widespread use, have been traditionally prescribed in combination to treat stroke, diabetes, and acute infectious diarrhea in East Asia. Nevertheless, toxicological data on these herbs and their combination are limited. This study investigated the acute and 13-week subchronic toxicity of root extract of P. lobata and S. baicalensis (HT047) for stroke treatment in male and female Sprague-Dawley rats. Methods In the acute toxicity study, HT047 was administered orally at a single dose of 5000 mg/kg. In the subchronic toxicity study, HT047 was administered orally at repeated daily doses of 800, 2000, and 5000 mg/kg/day for 13 weeks, followed by a 4-week recovery period. Results In the acute toxicity study, there were no deaths or toxicologically significant changes in clinical signs, body weight, and necropsy findings. In the subchronic toxicity study, HT047 at all doses caused no death and no treatment-related adverse effects on food consumption; organ weight; ophthalmologic, urinalysis, and hematological parameters; and necropsy findings of both rat sexes. There were some treatment-related alterations in clinical signs, body weight, and serum biochemistry and histopathological parameters; however, these changes were not considered toxicologically significant because they were resolved during the recovery period or resulted from the pharmacological effects of P. lobata and S. baicalensis. Conclusions The oral approximate lethal dose (the lowest dose that causes mortality) of HT047 was greater than 5000 mg/kg in male and female rats. The oral no-observed-adverse-effect level of HT047 was greater than 5000 mg/kg/day in rats of both sexes, and no target organs were identified. The present findings support the safety of an herbal extract of P. lobata and S. baicalensis as a therapeutic agent for stroke and further confirm the safety of the combined use of P. lobata and S. baicalensis in clinical practice.
Collapse
Affiliation(s)
- Jungbin Song
- Department of Herbal Pharmacology, College of Korean Medicine, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, Republic of Korea
| | - Young-Sik Kim
- Department of Herbal Pharmacology, College of Korean Medicine, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, Republic of Korea
| | - Donghun Lee
- Department of Herbal Pharmacology, College of Korean Medicine, Gachon University, 1342 Seongnamdae-ro, Sujeong-gu, Seongnam-si, Gyeonggi-do, 13120, Republic of Korea.
| | - Hocheol Kim
- Department of Herbal Pharmacology, College of Korean Medicine, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, Republic of Korea.
| |
Collapse
|
41
|
Gao BY, Xu DS, Liu PL, Li C, Du L, Hua Y, Hu J, Hou JY, Bai YL. Modified constraint-induced movement therapy alters synaptic plasticity of rat contralateral hippocampus following middle cerebral artery occlusion. Neural Regen Res 2020; 15:1045-1057. [PMID: 31823884 PMCID: PMC7034265 DOI: 10.4103/1673-5374.270312] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Modified constraint-induced movement therapy is an effective treatment for neurological and motor impairments in patients with stroke by increasing the use of their affected limb and limiting the contralateral limb. However, the molecular mechanism underlying its efficacy remains unclear. In this study, a middle cerebral artery occlusion (MCAO) rat model was produced by the suture method. Rats received modified constraint-induced movement therapy 1 hour a day for 14 consecutive days, starting from the 7th day after middle cerebral artery occlusion. Day 1 of treatment lasted for 10 minutes at 2 r/min, day 2 for 20 minutes at 2 r/min, and from day 3 onward for 20 minutes at 4 r/min. CatWalk gait analysis, adhesive removal test, and Y-maze test were used to investigate motor function, sensory function as well as cognitive function in rodent animals from the 1st day before MCAO to the 21st day after MCAO. On the 21st day after MCAO, the neurotransmitter receptor-related genes from both contralateral and ipsilateral hippocampi were tested by micro-array and then verified by western blot assay. The glutamate related receptor was shown by transmission electron microscopy and the glutamate content was determined by high-performance liquid chromatography. The results of behavior tests showed that modified constraint-induced movement therapy promoted motor and sensory functional recovery in the middle cerebral artery-occluded rats, but had no effect on cognitive function. The modified constraint-induced movement therapy upregulated the expression of glutamate ionotropic receptor AMPA type subunit 3 (Gria3) in the hippocampus and downregulated the expression of the beta3-adrenergic receptor gene Adrb3 and arginine vasopressin receptor 1A, Avpr1a in the middle cerebral artery-occluded rats. In the ipsilateral hippocampus, only Adra2a was downregulated, and there was no significant change in Gria3. Transmission electron microscopy revealed a denser distribution the more distribution of postsynaptic glutamate receptor 2/3, which is an α-amino-3-hydroxy-5-methyl-4-isoxazole-propionic acid receptor, within 240 nm of the postsynaptic density in the contralateral cornu ammonis 3 region. The size and distribution of the synaptic vesicles within 100 nm of the presynaptic active zone were unchanged. Western blot analysis showed that modified constraint-induced movement therapy also increased the expression of glutamate receptor 2/3 and brain-derived neurotrophic factor in the hippocampus of rats with middle cerebral artery occlusion, but had no effect on Synapsin I levels. Besides, we also found modified constraint-induced movement therapy effectively reduced glutamate content in the contralateral hippocampus. This study demonstrated that modified constraint-induced movement therapy is an effective rehabilitation therapy in middle cerebral artery-occluded rats, and suggests that these positive effects occur via the upregulation of the postsynaptic membrane α-amino-3-hydroxy-5-methyl-4-isoxazole-propionic acid receptor expression. This study was approved by the Institutional Animal Care and Use Committee of Fudan University, China (approval No. 201802173S) on March 3, 2018.
Collapse
Affiliation(s)
- Bei-Yao Gao
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Dong-Sheng Xu
- Rehabilitation Section, Department of Spine Surgery, Tongji Hospital of Tongji University; Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration (Tongji University) Ministry of Education, Shanghai, China
| | - Pei-Le Liu
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Ce Li
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Liang Du
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Yan Hua
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Jian Hu
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Jia-Yun Hou
- Zhongshan Hospital Institute of Clinical Science, Fudan University, Shanghai, China
| | - Yu-Long Bai
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
42
|
Spellicy SE, Kaiser EE, Bowler MM, Jurgielewicz BJ, Webb RL, West FD, Stice SL. Neural Stem Cell Extracellular Vesicles Disrupt Midline Shift Predictive Outcomes in Porcine Ischemic Stroke Model. Transl Stroke Res 2019; 11:776-788. [PMID: 31811639 PMCID: PMC7340639 DOI: 10.1007/s12975-019-00753-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 10/30/2019] [Accepted: 10/31/2019] [Indexed: 12/11/2022]
Abstract
Magnetic resonance imaging (MRI) is a clinically relevant non-invasive imaging tool commonly utilized to assess stroke progression in real time. This study investigated the utility of MRI as a predictive measure of clinical and functional outcomes when a stroke intervention is withheld or provided, in order to identify biomarkers for stroke functional outcome under these conditions. Fifteen MRI and ninety functional parameters were measured in a middle cerebral artery occlusion (MCAO) porcine ischemic stroke model. Multiparametric analysis of correlations between MRI measurements and functional outcome was conducted. Acute axial and coronal midline shift (MLS) at 24 h post-stroke were associated with decreased survival and recovery measured by modified Rankin scale (mRS) and were significantly correlated with 52 measured acute (day 1 post) and chronic (day 84 post) gait and behavior impairments in non-treated stroked animals. These results suggest that MLS may be an important non-invasive biomarker that can be used to predict patient outcomes and prognosis as well as guide therapeutic intervention and rehabilitation in non-treated animals and potentially human patients that do not receive interventional treatments. Neural stem cell–derived extracellular vesicle (NSC EV) was a disruptive therapy because NSC EV administration post-stroke disrupted MLS correlations observed in non-treated stroked animals. MLS was not associated with survival and functional outcomes in NSC EV–treated animals. In contrast to untreated animals, NSC EVs improved stroked animal outcomes regardless of MLS severity.
Collapse
Affiliation(s)
- Samantha E Spellicy
- Regenerative Bioscience Center, University of Georgia, Athens, GA, 30602, USA
- Department of Animal and Dairy Science, University of Georgia, Athens, GA, 30602, USA
| | - Erin E Kaiser
- Regenerative Bioscience Center, University of Georgia, Athens, GA, 30602, USA
- Department of Animal and Dairy Science, University of Georgia, Athens, GA, 30602, USA
| | - Michael M Bowler
- Regenerative Bioscience Center, University of Georgia, Athens, GA, 30602, USA
| | - Brian J Jurgielewicz
- Regenerative Bioscience Center, University of Georgia, Athens, GA, 30602, USA
- Department of Animal and Dairy Science, University of Georgia, Athens, GA, 30602, USA
| | | | - Franklin D West
- Regenerative Bioscience Center, University of Georgia, Athens, GA, 30602, USA
- Department of Animal and Dairy Science, University of Georgia, Athens, GA, 30602, USA
| | - Steven L Stice
- Regenerative Bioscience Center, University of Georgia, Athens, GA, 30602, USA.
- Department of Animal and Dairy Science, University of Georgia, Athens, GA, 30602, USA.
- ArunA Biomedical, Athens, GA, 30602, USA.
| |
Collapse
|
43
|
Abstract
Novel therapeutic intervention that aims to enhance the endogenous recovery potential of the brain during the subacute phase of stroke has produced promising results. The paradigm shift in treatment approaches presents new challenges to preclinical and clinical researchers alike, especially in the functional endpoints domain. Shortcomings of the "neuroprotection" era of stroke research are yet to be fully addressed. Proportional recovery observed in clinics, and potentially in animal models, requires a thorough reevaluation of the methods used to assess recovery. To this end, this review aims to give a detailed evaluation of functional outcome measures used in clinics and preclinical studies. Impairments observed in clinics and animal models will be discussed from a functional testing perspective. Approaches needed to bridge the gap between clinical and preclinical research, along with potential means to measure the moving target recovery, will be discussed. Concepts such as true recovery of function and compensation and methods that are suitable for distinguishing the two are examined. Often-neglected outcomes of stroke, such as emotional disturbances, are discussed to draw attention to the need for further research in this area.
Collapse
Affiliation(s)
- Mustafa Balkaya
- Burke Neurological Research Institute, White Plains, NY, USA
| | - Sunghee Cho
- Burke Neurological Research Institute, White Plains, NY, USA.,Feil Family Brain and Mind Research Institute, Weill Cornell Medicine at Burke Neurological Research Institute, White Plains, NY, USA
| |
Collapse
|
44
|
Zhang XL, Dong YT, Liu Y, Zhang Y, Li TT, Hu FY. Effects of dl-3-n-butylphthalide on serum lipoprotein-associated phospholipase A2 and hypersensitive C-reactive protein levels in acute cerebral infarction. Brain Behav 2019; 9:e01469. [PMID: 31724337 PMCID: PMC6908883 DOI: 10.1002/brb3.1469] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 10/14/2019] [Accepted: 10/15/2019] [Indexed: 12/11/2022] Open
Abstract
OBJECTIVE This study aims to explore the curative effect of dl-3-n-butylphthalide (NBP) on patients with acute cerebral infarction (ACI) and its effects on serum lipoprotein-associated phospholipase A2 (Lp-PLA2) and hypersensitive C-reactive protein (hs-CRP) levels. METHODS A total of 136 ACI patients treated in our hospital, who met the criteria, were selected and randomly divided into two groups: control group (n = 60, including 28 males and 32 females) and treatment group (n = 76, including 32 males and 44 females). Patients in the control group were treated with routine drug therapy, while patients in the treatment group were treated with NBP on this basis. A dose of 100 ml was administered by intravenous injection for 2 times/day, for 14 days. The curative effect was evaluated using the National Institute of Health Stroke Scale (NIHSS) and Barthel index (BI) self-care ability. The levels of the two factors in serum were measured using enzyme-linked immunosorbent assay, and the changes in levels of these two factors in serum at different time points before and after treatment were compared between the two groups. RESULTS (a) Lp-PLA2 and hs-CRP levels in the treatment group after treatment were significantly lower than those before treatment and those in the control group after treatment (p < .05). (b) The NIHSS and BI scores in the treatment group were significantly lower after treatment than before treatment and those in the control group after treatment (p < .05). CONCLUSION Dl-3-n-butylphthalide can improve the expression of Lp-PLA2 and hs-CRP in serum in ACI patients. Furthermore, NBP has significant efficacy in inhibiting inflammation and improving neurological symptoms.
Collapse
Affiliation(s)
- Xiao-Lei Zhang
- Department of Neurology, Shanxi People's Hospital, Taiyuan, China
| | - Yin-Tao Dong
- Department of Neurology, Shanxi People's Hospital, Taiyuan, China
| | - Yi Liu
- Department of Neurology, Shanxi People's Hospital, Taiyuan, China
| | - Yi Zhang
- Department of Neurology, Shanxi People's Hospital, Taiyuan, China
| | - Ting-Ting Li
- Department of Neurology, Shanxi People's Hospital, Taiyuan, China
| | - Feng-Yun Hu
- Department of Neurology, Shanxi People's Hospital, Taiyuan, China
| |
Collapse
|
45
|
Andjelkovic AV, Xiang J, Stamatovic SM, Hua Y, Xi G, Wang MM, Keep RF. Endothelial Targets in Stroke: Translating Animal Models to Human. Arterioscler Thromb Vasc Biol 2019; 39:2240-2247. [PMID: 31510792 DOI: 10.1161/atvbaha.119.312816] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Cerebral ischemia (stroke) induces injury to the cerebral endothelium that may contribute to parenchymal injury and worsen outcome. This review focuses on current preclinical studies examining how to prevent ischemia-induced endothelial dysfunction. It particularly focuses on targets at the endothelium itself. Those include endothelial tight junctions, transcytosis, endothelial cell death, and adhesion molecule expression. It also examines how such studies are being translated to the clinic, especially as adjunct therapies for preventing intracerebral hemorrhage during reperfusion of the ischemic brain. Identification of endothelial targets may prove valuable in a search for combination therapies that would specifically protect different cell types in ischemia.
Collapse
Affiliation(s)
- Anuska V Andjelkovic
- From the Departments of Neurosurgery (A.V.A., J.X., Y.H., G.X., R.F.K.), University of Michigan, Ann Arbor and Department of Veterans Affairs, Neurology Service, VA Ann Arbor Healthcare System, MI.,Pathology (A.V.A., S.M.S.), University of Michigan, Ann Arbor and Department of Veterans Affairs, Neurology Service, VA Ann Arbor Healthcare System, MI
| | - Jianming Xiang
- From the Departments of Neurosurgery (A.V.A., J.X., Y.H., G.X., R.F.K.), University of Michigan, Ann Arbor and Department of Veterans Affairs, Neurology Service, VA Ann Arbor Healthcare System, MI
| | - Svetlana M Stamatovic
- Pathology (A.V.A., S.M.S.), University of Michigan, Ann Arbor and Department of Veterans Affairs, Neurology Service, VA Ann Arbor Healthcare System, MI
| | - Ya Hua
- From the Departments of Neurosurgery (A.V.A., J.X., Y.H., G.X., R.F.K.), University of Michigan, Ann Arbor and Department of Veterans Affairs, Neurology Service, VA Ann Arbor Healthcare System, MI
| | - Guohua Xi
- From the Departments of Neurosurgery (A.V.A., J.X., Y.H., G.X., R.F.K.), University of Michigan, Ann Arbor and Department of Veterans Affairs, Neurology Service, VA Ann Arbor Healthcare System, MI
| | - Michael M Wang
- Neurology (M.M.W.), University of Michigan, Ann Arbor and Department of Veterans Affairs, Neurology Service, VA Ann Arbor Healthcare System, MI.,Molecular and Integrative Physiology (M.M.W., R.F.K.), University of Michigan, Ann Arbor and Department of Veterans Affairs, Neurology Service, VA Ann Arbor Healthcare System, MI
| | - Richard F Keep
- From the Departments of Neurosurgery (A.V.A., J.X., Y.H., G.X., R.F.K.), University of Michigan, Ann Arbor and Department of Veterans Affairs, Neurology Service, VA Ann Arbor Healthcare System, MI.,Molecular and Integrative Physiology (M.M.W., R.F.K.), University of Michigan, Ann Arbor and Department of Veterans Affairs, Neurology Service, VA Ann Arbor Healthcare System, MI
| |
Collapse
|
46
|
A balanced evaluation of the evidence for adult neurogenesis in humans: implication for neuropsychiatric disorders. Brain Struct Funct 2019; 224:2281-2295. [PMID: 31278571 DOI: 10.1007/s00429-019-01917-6] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Accepted: 06/25/2019] [Indexed: 12/17/2022]
Abstract
There is a widespread belief that neurogenesis exists in adult human brain, especially in the dentate gyrus, and it is to be maintained and, if possible, augmented with different stimuli including exercise and certain drugs. Here, we examine the evidence for adult human neurogenesis and note important limitations of the methodologies used to study it. A balanced review of the literature and evaluation of the data indicate that adult neurogenesis in human brain is improbable. In fact, in several high-quality recent studies in adult human brain, unlike in adult brains of other species, neurogenesis was not detectable. These findings suggest that the human brain requires a permanent set of neurons to maintain acquired knowledge for decades, which is essential for complex high cognitive functions unique to humans. Thus, stimulation and/or injection of neural stem cells into human brains may not only disrupt brain homeostatic systems, but also disturb normal neuronal circuits. We propose that the focus of research should be the preservation of brain neurons by prevention of damage, not replacement.
Collapse
|
47
|
Chen XQ, Qiu K, Liu H, He Q, Bai JH, Lu W. Application and prospects of butylphthalide for the treatment of neurologic diseases. Chin Med J (Engl) 2019; 132:1467-1477. [PMID: 31205106 PMCID: PMC6629339 DOI: 10.1097/cm9.0000000000000289] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Indexed: 01/30/2023] Open
Abstract
OBJECTIVE The 3-N-butylphthalide (NBP) comprises one of the chemical constituents of celery oil. It has a series of pharmacologic mechanisms including reconstructing microcirculation, protecting mitochondrial function, inhibiting oxidative stress, inhibiting neuronal apoptosis, etc. Based on the complex multi-targets of pharmacologic mechanisms of NBP, the clinical application of NBP is increasing and more clinical researches and animal experiments are also focused on NBP. The aim of this review was to comprehensively and systematically summarize the application of NBP on neurologic diseases and briefly summarize its application to non-neurologic diseases. Moreover, recent progress in experimental models of NBP on animals was summarized. DATA SOURCES Literature was collected from PubMed and Wangfang database until November 2018, using the search terms including "3-N-butylphthalide," "microcirculation," "mitochondria," "ischemic stroke," "Alzheimer disease," "vascular dementia," "Parkinson disease," "brain edema," "CO poisoning," "traumatic central nervous system injury," "autoimmune disease," "amyotrophic lateral sclerosis," "seizures," "diabetes," "diabetic cataract," and "atherosclerosis." STUDY SELECTION Literature was mainly derived from English articles or articles that could be obtained with English abstracts and partly derived from Chinese articles. Article type was not limited. References were also identified from the bibliographies of identified articles and the authors' files. RESULTS NBP has become an important adjunct for ischemic stroke. In vascular dementia, the clinical application of NBP to treat severe cognitive dysfunction syndrome caused by the hypoperfusion of brain tissue during cerebrovascular disease is also increasing. Evidence also suggests that NBP has a therapeutic effect for neurodegenerative diseases. Many animal experiments have found that it can also improve symptoms in other neurologic diseases such as epilepsy, cerebral edema, and decreased cognitive function caused by severe acute carbon monoxide poisoning. Moreover, NBP has therapeutic effects for diabetes, diabetes-induced cataracts, and non-neurologic diseases such as atherosclerosis. Mechanistically, NBP mainly improves microcirculation and protects mitochondria. Its broad pharmacologic effects also include inhibiting oxidative stress, nerve cell apoptosis, inflammatory responses, and anti-platelet and anti-thrombotic effects. CONCLUSIONS The varied pharmacologic mechanisms of NBP involve many complex molecular mechanisms; however, there many unknown pharmacologic effects await further study.
Collapse
Affiliation(s)
- Xi-Qian Chen
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | | | | | | | | | | |
Collapse
|
48
|
Hwang S, Choi J, Kim M. Combining Human Umbilical Cord Blood Cells With Erythropoietin Enhances Angiogenesis/Neurogenesis and Behavioral Recovery After Stroke. Front Neurol 2019; 10:357. [PMID: 31024439 PMCID: PMC6467968 DOI: 10.3389/fneur.2019.00357] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 03/22/2019] [Indexed: 12/21/2022] Open
Abstract
Disruption of blood flow in the brain induces stroke, the leading cause of death and disability worldwide. However, so far the therapeutic options are limited. Thus, the therapeutic efficacy of cell-based approaches has been investigated to develop a potential strategy to overcome stroke-induced disability. Human umbilical cord blood cells (hUCBCs) and erythropoietin (EPO) both have angiogenic and neurogenic properties in the injured brain, and their combined administration may exert synergistic effects during neurological recovery following stroke. We investigated the therapeutic potential of hUCBC and EPO combination treatment by comparing its efficacy to those of hUCBC and EPO alone. Adult male Sprague-Dawley rats underwent transient middle cerebral artery occlusion (MCAO). Experimental groups were as follows: saline (injected once with saline 7 d after MCAO); hUCBC (1.2 × 107 total nucleated cells, injected once via the tail vein 7 d after MCAO); EPO (500 IU/kg, injected intraperitoneally for five consecutive days from 7 d after MCAO); and combination of hUCBC and EPO (hUCBC+EPO). Behavioral measures (Modified Neurological Severity Score [mNSS] and cylinder test) were recorded to assess neurological outcomes. Four weeks after MCAO, brains were harvested to analyze the status of neurogenesis and angiogenesis. In vitro assays were also conducted using neural stem and endothelial cells in the oxygen-glucose deprivation condition. Performance on the mNSS and cylinder test showed the most improvement in the hUCBC+EPO group, while hUCBC- and EPO-alone treatments showed superior outcomes relative to the saline group. Neurogenesis and angiogenesis in the cortical region was the most enhanced in the hUCBC+EPO group, while the findings in the hUCBC and EPO treatment alone groups were better than those in the saline group. Astrogliosis in the brain tissue was reduced by hUCBC and EPO treatment. The reduction was largest in the hUCBC+EPO group. These results were consistent with in vitro assessments that showed the strongest neurogenic and angiogenic effect with hUCBC+EPO treatment. This study demonstrates that combination therapy is more effective than single therapy with either hUCBC or EPO for neurological recovery from subacute stroke. The common pathway underlying hUCBC and EPO treatment requires further study.
Collapse
Affiliation(s)
- Sunyoung Hwang
- Rehabilitation and Regeneration Research Center, CHA University, Seongnam, South Korea
| | - JeeIn Choi
- Department of Rehabilitation Medicine, CHA Bundang Medical Center, College of Medicine, CHA University, Seongnam, South Korea
| | - MinYoung Kim
- Rehabilitation and Regeneration Research Center, CHA University, Seongnam, South Korea.,Department of Rehabilitation Medicine, CHA Bundang Medical Center, College of Medicine, CHA University, Seongnam, South Korea
| |
Collapse
|
49
|
Zhao C, Zhang C, Xing Z, Ahmad Z, Li JS, Chang MW. Pharmacological effects of natural Ganoderma and its extracts on neurological diseases: A comprehensive review. Int J Biol Macromol 2019; 121:1160-1178. [DOI: 10.1016/j.ijbiomac.2018.10.076] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Revised: 10/06/2018] [Accepted: 10/14/2018] [Indexed: 01/13/2023]
|
50
|
Du F, Zhou Q, Fu X, Shi Y, Chen Y, Fang W, Yang J, Chen G. Synthesis and biological evaluation of 2,2-dimethylbenzopyran derivatives as potent neuroprotection agents. RSC Adv 2019; 9:2498-2508. [PMID: 35520520 PMCID: PMC9059924 DOI: 10.1039/c8ra10424g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 01/14/2019] [Indexed: 11/21/2022] Open
Abstract
The development of novel neuroprotection agents is of great significance for the treatment of ischemic stroke. In this study, a series of compounds comprising 2,2-dimethylbenzopyran groups and cinnamic acid groups have been synthesized. Preferential combination principles and bioisostere that improved the neuroprotective effect of the compounds were identified for this series via biological activity assay in vitro. Meanwhile, a functional reversal group of the acrylamide amide resulted in the most active compounds. Among them, BN-07 significantly improved the morphology of neurons and obviously increased cell survival rate of primary neurons induced by oxygen glucose deprivation (OGD), superior to clinically used anti-ischemic stroke drug edaravone (Eda). Overall, our findings may provide an alternative strategy for the design of novel anti-ischemic stroke agents with more potency than Eda. Novel compounds comprising 2,2-dimethylbenzopyran and cinnamic acid were synthesized. BN-07 significantly increased survival rate of primary neurons, superior to edaravone.![]()
Collapse
Affiliation(s)
- Fangyu Du
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education
- Shenyang Pharmaceutical University
- Shenyang 110016
- P. R. China
| | - Qifan Zhou
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education
- Shenyang Pharmaceutical University
- Shenyang 110016
- P. R. China
| | - Xiaoxiao Fu
- Department of Pharmacology
- Shenyang Pharmaceutical University
- Shenyang 110016
- P. R. China
| | - Yajie Shi
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education
- Shenyang Pharmaceutical University
- Shenyang 110016
- P. R. China
| | - Yuanguang Chen
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education
- Shenyang Pharmaceutical University
- Shenyang 110016
- P. R. China
| | - Wuhong Fang
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education
- Shenyang Pharmaceutical University
- Shenyang 110016
- P. R. China
| | - Jingyu Yang
- Department of Pharmacology
- Shenyang Pharmaceutical University
- Shenyang 110016
- P. R. China
| | - Guoliang Chen
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education
- Shenyang Pharmaceutical University
- Shenyang 110016
- P. R. China
| |
Collapse
|