1
|
Roman JA, Girgis MY, Prisby RS, Araujo RP, Russo P, Oktay E, Luchini A, Liotta LA, Veneziano R, Haymond A. A Multivalent DNA Nanoparticle/Peptide Hybrid Molecular Modality for the Modulation of Protein-Protein Interactions in the Tumor Microenvironment. ADVANCED NANOBIOMED RESEARCH 2024; 4:2300159. [PMID: 39328775 PMCID: PMC11423619 DOI: 10.1002/anbr.202300159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2024] Open
Abstract
Despite success in the treatment of some blood cancers and melanoma, positive response to immunotherapies remains disappointingly low in the treatment of solid tumors. The context of the molecular crosstalk within the tumor microenvironment can result in dysfunctional immune cell activation, leading to tumor tolerance and progression. Although modulating these protein-protein interactions (PPIs) is vital for appropriate immune cell activation and recognition, targeting nonenzymatic PPIs has proven to be fraught with challenges. To address this, we introduce a synthetic, multivalent molecular modality comprised of small interfering peptides precisely hybridized to a semi-rigid DNA scaffold. Herein, we describe a prototype of this modality that targets the IL-33/ST2 signaling axis, which is associated with tumor tolerance and immunotherapy treatment failure. Using peptides that mimic the specific high energy "hotspot" residues with which the IL-33/ST2 co-receptor, IL-1RAcP, interacts with the initial binary complex, we show this platform to effectively bind IL-33/ST2 with aK D of 110 nM. Additionally, this molecule effectively abrogates signal transduction in cell models at high nanomolar concentrations and is exquisitely selective for this complex over structurally similar PPIs within the same cytokine superfamily.
Collapse
Affiliation(s)
- Jessica A Roman
- Center for Applied Proteomics and Molecular Medicine, 19020 George Mason Circle, Manassas, VA, 20110, USA
| | - Michael Y Girgis
- Department of Bioengineering, 19020 George Mason Circle, Manassas, VA, 20110, USA
| | - Rocìo S Prisby
- Center for Applied Proteomics and Molecular Medicine, 19020 George Mason Circle, Manassas, VA, 20110, USA
| | - Robyn P Araujo
- School of Mathematical Sciences, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Paul Russo
- Center for Applied Proteomics and Molecular Medicine, 19020 George Mason Circle, Manassas, VA, 20110, USA
| | - Esra Oktay
- Department of Bioengineering, 19020 George Mason Circle, Manassas, VA, 20110, USA
| | - Alessandra Luchini
- Center for Applied Proteomics and Molecular Medicine, 19020 George Mason Circle, Manassas, VA, 20110, USA
| | - Lance A Liotta
- Center for Applied Proteomics and Molecular Medicine, 19020 George Mason Circle, Manassas, VA, 20110, USA
| | - Remi Veneziano
- Department of Bioengineering, 19020 George Mason Circle, Manassas, VA, 20110, USA
| | - Amanda Haymond
- Center for Applied Proteomics and Molecular Medicine, 19020 George Mason Circle, Manassas, VA, 20110, USA
| |
Collapse
|
2
|
Li Q, Xu J, Sun Q, Zhang Z, Hu Y, Yao H. The global patent landscape of HER2-targeted biologics. Nat Biotechnol 2023; 41:756-764. [PMID: 37316732 DOI: 10.1038/s41587-023-01814-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Affiliation(s)
- Qingjian Li
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Department of Medical Oncology, Breast Tumor Centre, Phase I Clinical Trial Centre, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jiaqi Xu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau, China
| | - Qianshu Sun
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau, China
| | - Zebang Zhang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Department of Medical Oncology, Breast Tumor Centre, Phase I Clinical Trial Centre, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yuanjia Hu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau, China.
- Department of Public Health and Medicinal Administration, Faculty of Health Sciences, University of Macau, Taipa, Macau, China.
| | - Herui Yao
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Department of Medical Oncology, Breast Tumor Centre, Phase I Clinical Trial Centre, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
3
|
Xue S, Xu W, Wang L, Wang X, Duan Q, Calcul L, Wang S, Liu W, Sun X, Lu L, Jiang S, Cai J. An HR2-Mimicking Sulfonyl-γ-AApeptide Is a Potent Pan-coronavirus Fusion Inhibitor with Strong Blood-Brain Barrier Permeability, Long Half-Life, and Promising Oral Bioavailability. ACS CENTRAL SCIENCE 2023; 9:1046-1058. [PMID: 37252367 PMCID: PMC10184535 DOI: 10.1021/acscentsci.3c00313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Indexed: 05/31/2023]
Abstract
Neutralizing antibodies and fusion inhibitory peptides have the potential required to combat the global pandemic caused by SARS-CoV-2 and its variants. However, the lack of oral bioavailability and enzymatic susceptibility limited their application, necessitating the development of novel pan-CoV fusion inhibitors. Herein we report a series of helical peptidomimetics, d-sulfonyl-γ-AApeptides, which effectively mimic the key residues of heptad repeat 2 and interact with heptad repeat 1 in the SARS-CoV-2 S2 subunit, resulting in inhibiting SARS-CoV-2 spike protein-mediated fusion between virus and cell membranes. The leads also displayed broad-spectrum inhibitory activity against a panel of other human CoVs and showed strong potency in vitro and in vivo. Meanwhile, they also demonstrated complete resistance to proteolytic enzymes or human sera and exhibited extremely long half-life in vivo and highly promising oral bioavailability, delineating their potential as pan-CoV fusion inhibitors with the potential to combat SARS-CoV-2 and its variants.
Collapse
Affiliation(s)
- Songyi Xue
- Department
of Chemistry, University of South Florida, 4202 East Fowler Avenue, Tampa, Florida 33620, United States
| | - Wei Xu
- Key
Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of
Basic Medical Sciences, Shanghai Frontiers Science Center of Pathogenic
Microbes and Infection, Shanghai Institute of Infectious Disease and
Biosecurity, Fudan University, Shanghai 200433, China
| | - Lei Wang
- Department
of Chemistry, University of South Florida, 4202 East Fowler Avenue, Tampa, Florida 33620, United States
| | - Xinling Wang
- Key
Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of
Basic Medical Sciences, Shanghai Frontiers Science Center of Pathogenic
Microbes and Infection, Shanghai Institute of Infectious Disease and
Biosecurity, Fudan University, Shanghai 200433, China
| | - Qianyu Duan
- Key
Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of
Basic Medical Sciences, Shanghai Frontiers Science Center of Pathogenic
Microbes and Infection, Shanghai Institute of Infectious Disease and
Biosecurity, Fudan University, Shanghai 200433, China
| | - Laurent Calcul
- Department
of Chemistry, University of South Florida, 4202 East Fowler Avenue, Tampa, Florida 33620, United States
| | - Shaohui Wang
- Department
of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida 33620, United States
| | - Wenqi Liu
- Department
of Chemistry, University of South Florida, 4202 East Fowler Avenue, Tampa, Florida 33620, United States
| | - Xingmin Sun
- Department
of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida 33620, United States
| | - Lu Lu
- Key
Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of
Basic Medical Sciences, Shanghai Frontiers Science Center of Pathogenic
Microbes and Infection, Shanghai Institute of Infectious Disease and
Biosecurity, Fudan University, Shanghai 200433, China
| | - Shibo Jiang
- Key
Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of
Basic Medical Sciences, Shanghai Frontiers Science Center of Pathogenic
Microbes and Infection, Shanghai Institute of Infectious Disease and
Biosecurity, Fudan University, Shanghai 200433, China
| | - Jianfeng Cai
- Department
of Chemistry, University of South Florida, 4202 East Fowler Avenue, Tampa, Florida 33620, United States
| |
Collapse
|
4
|
Hanson EK, Whelan RJ. Application of the Nicoya OpenSPR to Studies of Biomolecular Binding: A Review of the Literature from 2016 to 2022. SENSORS (BASEL, SWITZERLAND) 2023; 23:4831. [PMID: 37430747 DOI: 10.3390/s23104831] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 05/13/2023] [Accepted: 05/16/2023] [Indexed: 07/12/2023]
Abstract
The Nicoya OpenSPR is a benchtop surface plasmon resonance (SPR) instrument. As with other optical biosensor instruments, it is suitable for the label-free interaction analysis of a diverse set of biomolecules, including proteins, peptides, antibodies, nucleic acids, lipids, viruses, and hormones/cytokines. Supported assays include affinity/kinetics characterization, concentration analysis, yes/no assessment of binding, competition studies, and epitope mapping. OpenSPR exploits localized SPR detection in a benchtop platform and can be connected with an autosampler (XT) to perform automated analysis over an extended time period. In this review article, we provide a comprehensive survey of the 200 peer-reviewed papers published between 2016 and 2022 that use the OpenSPR platform. We highlight the range of biomolecular analytes and interactions that have been investigated using the platform, provide an overview on the most common applications for the instrument, and point out some representative research that highlights the flexibility and utility of the instrument.
Collapse
Affiliation(s)
- Eliza K Hanson
- Department of Chemistry, University of Kansas, Lawrence, KS 66045, USA
| | - Rebecca J Whelan
- Department of Chemistry, University of Kansas, Lawrence, KS 66045, USA
| |
Collapse
|
5
|
Gu M, Yu Y, Xue M, Jiang J, Cai J. The discovery of cyclic γ-AApeptides as the promising ligands targeting EP2. Bioorg Med Chem Lett 2023; 87:129255. [PMID: 36965536 PMCID: PMC10141659 DOI: 10.1016/j.bmcl.2023.129255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 03/15/2023] [Accepted: 03/20/2023] [Indexed: 03/27/2023]
Abstract
EP2 is a G protein-coupled receptor for prostaglandin E2 (PGE2) derived from cell membrane-released arachidonic acid upon various harmful and injurious stimuli. It is commomly upregulated in tumors and injured brain tissues, as its activation by PGE2 is widely believed to be involved in the pathophysiological mechanisms underlying these conditions via promoting pro-inflammatory reactions. Herein, we report the discovery of two novel macrocyclic peptidomimetics based on the screening of a cyclic γ-AApeptides combinatorial library. These two cyclic γ-AApeptides showed excellent binding affinity with the EP2 protein, and they may lead to the development of novel therapeutic agents and/or molecular probes to modulate the PGE2/EP2 signaling.
Collapse
Affiliation(s)
- Meng Gu
- Department of Chemistry, University of South Florida, 4202 E. Fowler Ave, Tampa, FL 33620, USA
| | - Ying Yu
- Department of Pharmaceutical Sciences, Drug Discovery Center, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Menglin Xue
- Department of Chemistry, University of South Florida, 4202 E. Fowler Ave, Tampa, FL 33620, USA
| | - Jianxiong Jiang
- Department of Pharmaceutical Sciences, Drug Discovery Center, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN 38163, USA.
| | - Jianfeng Cai
- Department of Chemistry, University of South Florida, 4202 E. Fowler Ave, Tampa, FL 33620, USA.
| |
Collapse
|
6
|
α/Sulfono-γ-AA peptide hybrids agonist of GLP-1R with prolonged action both in vitro and in vivo. Acta Pharm Sin B 2022; 13:1648-1659. [PMID: 37139407 PMCID: PMC10149899 DOI: 10.1016/j.apsb.2022.10.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 09/22/2022] [Accepted: 10/14/2022] [Indexed: 11/01/2022] Open
Abstract
Peptides are increasingly important resources for biological and therapeutic development, however, their intrinsic susceptibility to proteolytic degradation represents a big hurdle. As a natural agonist for GLP-1R, glucagon-like peptide 1 (GLP-1) is of significant clinical interest for the treatment of type-2 diabetes mellitus, but its in vivo instability and short half-life have largely prevented its therapeutic application. Here, we describe the rational design of a series of α/sulfono-γ-AA peptide hybrid analogues of GLP-1 as the GLP-1R agonists. Certain GLP-1 hybrid analogues exhibited enhanced stability (t 1/2 > 14 days) compared to t 1/2 (<1 day) of GLP-1 in the blood plasma and in vivo. These newly developed peptide hybrids may be viable alternative of semaglutide for type-2 diabetes treatment. Additionally, our findings suggest that sulfono-γ-AA residues could be adopted to substitute canonical amino acids residues to improve the pharmacological activity of peptide-based drugs.
Collapse
|
7
|
A novel cyclic γ-AApeptide-based long-acting pan-coronavirus fusion inhibitor with potential oral bioavailability by targeting two sites in spike protein. Cell Discov 2022; 8:88. [PMID: 36075899 PMCID: PMC9453727 DOI: 10.1038/s41421-022-00455-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 07/31/2022] [Indexed: 12/13/2022] Open
Abstract
The receptor-binding domain (RBD) in S1 subunit and heptad repeat 1 (HR1) domain in S2 subunit of SARS-CoV-2 spike (S) protein are the targets of neutralizing antibodies (nAbs) and pan-coronavirus (CoV) fusion inhibitory peptides, respectively. However, neither nAb- nor peptide-based drugs can be used orally. In this study, we screened a one-bead-two-compound (OBTC) cyclic γ-AApeptide library against SARS-CoV-2 S protein and identified a hit: S-20 with potent membrane fusion inhibitory activity, but moderate selectivity index (SI). After modification, one derivative, S-20-1, exhibited improved fusion inhibitory activity and SI (>1000). S-20-1 could effectively inhibit infection by pseudotyped and authentic SARS-CoV-2 and pseudotyped variants of concern (VOCs), including B.1.617.2 (Delta) and B.1.1.529 (Omicron), as well as MERS-CoV, SARS-CoV, HCoV-OC43, HCoV-229E, and HCoV-NL63. It could also inhibit infection of a pseudotyped SARS-related coronavirus WIV1 (SARSr-CoV-WIV1) from bats. Intranasal application of S-20-1 to mice before or after challenge with HCoV-OC43 or SARS-CoV-2 provided significant protection from infection. Importantly, S-20-1 was highly resistant to proteolytic degradation, had long half-life, and possessed favorable oral bioavailability. Mechanistic studies suggest that S-20-1 binds with high affinity to RBD in S1 and HR1 domain in S2 of SARS-CoV-2 S protein. Thus, with its pan-CoV fusion and entry inhibitory activity by targeting two sites in S protein, desirable half-life, and promising oral bioavailability, S-20-1 is a potential candidate for further development as a novel therapeutic and prophylactic drug against infection by SARS-CoV-2 and its variants, as well as future emerging and reemerging CoVs.
Collapse
|
8
|
Dai C, Lian C, Fang H, Luo Q, Huang J, Yang M, Yang H, Zhu L, Zhang J, Yin F, Li Z. Diversity-Oriented Synthesis of ERα Modulators via Mitsunobu Macrocyclization. Org Lett 2022; 24:3532-3537. [PMID: 35546524 DOI: 10.1021/acs.orglett.2c01239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The diversity of cyclic peptides was expanded by elaborating Mitsunobu macrocyclization, tethering various hydroxy acid building blocks with different Nε-amine substituents. This new strategy was then applied in synthesizing peptidomimetic estrogen receptor modulator (PERM) analogs on the solid support. The PERM analogs exhibited increased serum peptidase stability, cell penetration, and estrogen receptor α binding affinity. Studying diversity-oriented methods for preparing azacyclopeptides provides a new tool for macrocycle construction and further structural information for optimizing ERα modulators for ER positive breast cancers.
Collapse
Affiliation(s)
- Chuan Dai
- Department of Pharmacy, the First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital (Shenzhen Institute of Translational Medicine), Shenzhen 518035, China.,Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen 518060, China.,Department of Pathogenic Biology and Immunology, Xiangnan University, Chenzhou 423043, China.,Innovative Drug Research Centre (IDRC), Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, P. R. China
| | - Chenshan Lian
- Pingshan translational medicine centre, Shenzhen Bay Laboratory, Shenzhen 518118, P. R. China.,State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Shenzhen Graduate School of Peking University, Shenzhen 518055, China
| | - Huilong Fang
- Department of Pathogenic Biology and Immunology, Xiangnan University, Chenzhou 423043, China
| | - Qinhong Luo
- Department of Pharmacy, the First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital (Shenzhen Institute of Translational Medicine), Shenzhen 518035, China.,Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen 518060, China.,Department of Pathogenic Biology and Immunology, Xiangnan University, Chenzhou 423043, China
| | - Junrong Huang
- Department of Pharmacy, the First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital (Shenzhen Institute of Translational Medicine), Shenzhen 518035, China
| | - Min Yang
- Department of Pharmacy, the First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital (Shenzhen Institute of Translational Medicine), Shenzhen 518035, China
| | - Heng Yang
- Department of Pharmacy, the First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital (Shenzhen Institute of Translational Medicine), Shenzhen 518035, China.,Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen 518060, China.,Department of Pathogenic Biology and Immunology, Xiangnan University, Chenzhou 423043, China
| | - Lizhi Zhu
- Department of Pharmacy, the First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital (Shenzhen Institute of Translational Medicine), Shenzhen 518035, China.,Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen 518060, China.,Department of Pathogenic Biology and Immunology, Xiangnan University, Chenzhou 423043, China
| | - Jinqiang Zhang
- Innovative Drug Research Centre (IDRC), Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, P. R. China
| | - Feng Yin
- Pingshan translational medicine centre, Shenzhen Bay Laboratory, Shenzhen 518118, P. R. China.,State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Shenzhen Graduate School of Peking University, Shenzhen 518055, China
| | - Zigang Li
- Pingshan translational medicine centre, Shenzhen Bay Laboratory, Shenzhen 518118, P. R. China.,State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Shenzhen Graduate School of Peking University, Shenzhen 518055, China
| |
Collapse
|
9
|
Cai J. Editorial of Special Column "Novel Peptides and Peptidomimetics in Drug Discovery". Acta Pharm Sin B 2021; 11:2606-2608. [PMID: 34589384 PMCID: PMC8463287 DOI: 10.1016/j.apsb.2021.08.023] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Affiliation(s)
- Jianfeng Cai
- Department of Chemistry, University of South Florida, Tampa, FL 33620, USA
| |
Collapse
|