1
|
Wu W, Huo F, Yin C. Classification of self-assembled fluorescent probes and their application in cancer diagnosis. Chem Commun (Camb) 2025; 61:1014-1031. [PMID: 39659280 DOI: 10.1039/d4cc05494f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2024]
Abstract
The high sensitivity, high selectivity, real-time monitoring capability, non-destructiveness, and versatility of small molecule fluorescent probes make them indispensable and powerful tools in bioscience research. Self-assembling fluorescent probes are a novel type of material that spontaneously assemble fluorescent dyes with specific molecules into nanoscale structures. Compared with ordinary small molecule fluorescent probes, self-assembled fluorescent probes have higher stability, selectivity, sensitivity, and temporal stability in detection. In recent years, the incidence and mortality of cancer have increased year by year, which has brought great challenges to the safety of human life, and traditional diagnostic methods such as nuclear magnetic resonance, ultrasound diagnosis, and X-ray tomography are time-consuming and have low resolution. The boundary between normal tissue and cancer tissue cannot be accurately distinguished during surgical resection, resulting in the possibility of recurrence after surgery. Fluorescent probes can quickly and efficiently diagnose and label cancerous tumor cells, which is of great significance for cancer discovery and treatment. In this paper, we review the classification of self-assembled fluorescent probes (molecular self-assembled fluorescent probes, nanomaterial self-assembled fluorescent probes and biological macromolecule self-assembled fluorescent probes) that are used in identifying and imaging cancerous tumor tissues. Furthermore, we discuss the current problems faced by self-assembled fluorescent probes through the specific identification and monitoring of enzymes with abnormal contents, active substances and low pH in the tumor microenvironment, hoping to give readers more inspiration.
Collapse
Affiliation(s)
- Wenjiao Wu
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Molecular Science, Shanxi University, Taiyuan 030006, P. R. China.
| | - Fangjun Huo
- Research Institute of Applied Chemistry, Shanxi University, Taiyuan, 030006, China.
| | - Caixia Yin
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Molecular Science, Shanxi University, Taiyuan 030006, P. R. China.
| |
Collapse
|
2
|
Yang Q, Hu Z, Jiang H, Wang J, Han H, Shi W, Qian H. Recent advances, strategies, and future perspectives of peptide-based drugs in clinical applications. Chin J Nat Med 2025; 23:31-42. [PMID: 39855829 DOI: 10.1016/s1875-5364(25)60800-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 08/15/2024] [Accepted: 09/01/2024] [Indexed: 01/27/2025]
Abstract
Peptide-based therapies have attracted considerable interest in the treatment of cancer, diabetes, bacterial infections, and neurodegenerative diseases due to their promising therapeutic properties and enhanced safety profiles. This review provides a comprehensive overview of the major trends in peptide drug discovery and development, emphasizing preclinical strategies aimed at improving peptide stability, specificity, and pharmacokinetic properties. It assesses the current applications and challenges of peptide-based drugs in these diseases, illustrating the pharmaceutical areas where peptide-based drugs demonstrate significant potential. Furthermore, this review analyzes the obstacles that must be overcome in the future, aiming to provide valuable insights and references for the continued advancement of peptide-based drugs.
Collapse
Affiliation(s)
- Qimeng Yang
- Centre of Drug Discovery, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Zhipeng Hu
- Centre of Drug Discovery, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Hongyu Jiang
- Centre of Drug Discovery, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Jialing Wang
- Centre of Drug Discovery, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Han Han
- Centre of Drug Discovery, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China.
| | - Wei Shi
- Centre of Drug Discovery, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China.
| | - Hai Qian
- Centre of Drug Discovery, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China; Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
3
|
Yang X, Ma L, Lu K, Zhao D. Mechanism of Peptide Self-assembly and Its Study in Biomedicine. Protein J 2024; 43:464-476. [PMID: 38676873 DOI: 10.1007/s10930-024-10200-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/19/2024] [Indexed: 04/29/2024]
Abstract
The development of peptide-based materials is one of the most challenging aspects of biomaterials research in recent years. The assembly of peptides is mainly controlled by forces such as hydrogen bonding, hydrophobic interaction, electrostatic interaction, and π-π accumulation. Peptides have unique advantages such as simple structure, easy synthesis, good biocompatibility, non-toxicity, easy modification, etc. These factors make peptides turn into ideal biomedical materials, and they have a broad application prospect in biomedical materials, and thus have received wide attention. In this review, the mechanism and classification of peptide self-assembly and its applications in biomedicine and hydrogels were introduced.
Collapse
Affiliation(s)
- Xinyue Yang
- School of Chemistry and Chemical Engineering, Henan University of Technology, Locus Street, High-Tech Industry Development Zone, Zhengzhou, 450001, Henan, China
| | - Li Ma
- School of Chemistry and Chemical Engineering, Henan University of Technology, Locus Street, High-Tech Industry Development Zone, Zhengzhou, 450001, Henan, China
| | - Kui Lu
- School of Chemistry and Chemical Engineering, Henan University of Technology, Locus Street, High-Tech Industry Development Zone, Zhengzhou, 450001, Henan, China
| | - Dongxin Zhao
- School of Chemistry and Chemical Engineering, Henan University of Technology, Locus Street, High-Tech Industry Development Zone, Zhengzhou, 450001, Henan, China.
| |
Collapse
|
4
|
Gan M, Yao R, Wang B, Li J, Wang N, Choi MMF, Bian W. 3-aminophenylboronic acid modified carbon nitride quantum dots as fluorescent probe for selective detection of dopamine and cell imaging. Methods Appl Fluoresc 2024; 12:025001. [PMID: 38118181 DOI: 10.1088/2050-6120/ad17a1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 12/20/2023] [Indexed: 12/22/2023]
Abstract
Dopamine (DA) is the most abundant catecholamine neurotransmitter in the brain and plays an extremely essential role in the physiological activities of the living organism. There is a critical need for accurately and efficiently detecting DA levels in organisms in order to reflect physiological states. Carbon nitride quantum dots (C3N4) were, in recent years, used enormously as electrochemical and fluorescence probes for the detection of metal ions, biomarkers and other environmental or food impurities due to their unique advantageous optical and electronic properties. 3-Aminophenylboronic acid (3-APBA) can specifically combine with DA through an aggregation effect, providing an effective DA detection method. In this work, 3-APBA modified carbon nitride quantum dots (3-APBA-CNQDs) were synthesized from urea and sodium citrate. The structure, chemical composition and optical properties of 3-APBA-CNQDs were investigated by XRD, TEM, UV-visible, and FT-IR spectroscopy. The addition of DA could induce fluorescence quenching of 3-APBA-CNQDs possibly through the inner filter effect (IFE). 3-APBA-CNQDs shows better selectivity and sensitivity to DA than other interfering substances. By optimizing the experiment conditions, good linearity was obtained at 0.10-51μM DA with a low detection limit of 22.08 nM. More importantly, 3-APBA-CNQDs have been successfully applied for the detection of DA in human urine and blood samples as well as for bioimaging of intracellular DA. This study provides a promising novel method for the rapid detection of DA in real biological samples.
Collapse
Affiliation(s)
- Mingyu Gan
- Department of Basic Medicine, Shanxi Medical University, Jinzhong, People's Republic of China
| | - Rui Yao
- Department of Basic Medicine, Shanxi Medical University, Jinzhong, People's Republic of China
| | - Baoping Wang
- Lvliang People's Hospital, Lvliang, People's Republic of China
| | - Jiarong Li
- Lvliang People's Hospital, Lvliang, People's Republic of China
| | - Ning Wang
- Department of Basic Medicine, Shanxi Medical University, Jinzhong, People's Republic of China
| | - Martin M F Choi
- Bristol Chinese Christian Church, c/o Tyndale Baptist Church, 137-139 Whiteladies Road, Bristol BS8 2QG, United Kingdom
| | - Wei Bian
- Department of Basic Medicine, Shanxi Medical University, Jinzhong, People's Republic of China
- Lvliang People's Hospital, Lvliang, People's Republic of China
- Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, Taiyuan, People's Republic of China
| |
Collapse
|
5
|
Yu X, Jia S, Yu S, Chen Y, Zhang C, Chen H, Dai Y. Recent advances in melittin-based nanoparticles for antitumor treatment: from mechanisms to targeted delivery strategies. J Nanobiotechnology 2023; 21:454. [PMID: 38017537 PMCID: PMC10685715 DOI: 10.1186/s12951-023-02223-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 11/19/2023] [Indexed: 11/30/2023] Open
Abstract
As a naturally occurring cytolytic peptide, melittin (MLT) not only exhibits a potent direct tumor cell-killing effect but also possesses various immunomodulatory functions. MLT shows minimal chances for developing resistance and has been recognized as a promising broad-spectrum antitumor drug because of this unique dual mechanism of action. However, MLT still displays obvious toxic side effects during treatment, such as nonspecific cytolytic activity, hemolytic toxicity, coagulation disorders, and allergic reactions, seriously hampering its broad clinical applications. With thorough research on antitumor mechanisms and the rapid development of nanotechnology, significant effort has been devoted to shielding against toxicity and achieving tumor-directed drug delivery to improve the therapeutic efficacy of MLT. Herein, we mainly summarize the potential antitumor mechanisms of MLT and recent progress in the targeted delivery strategies for tumor therapy, such as passive targeting, active targeting and stimulus-responsive targeting. Additionally, we also highlight the prospects and challenges of realizing the full potential of MLT in the field of tumor therapy. By exploring the antitumor molecular mechanisms and delivery strategies of MLT, this comprehensive review may inspire new ideas for tumor multimechanism synergistic therapy.
Collapse
Affiliation(s)
- Xiang Yu
- State Key Laboratory of Digital Medical Engineering, School of Biomedical Engineering, Hainan University, Haikou, China.
- Key Laboratory of Biomedical Engineering of Hainan Province, One Health Institute, Hainan University, Haikou, China.
| | - Siyu Jia
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang, China
- The First College of Clinical Medical Science, China Three Gorges University, Yichang, China
| | - Shi Yu
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang, China
| | - Yaohui Chen
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang, China
| | - Chengwei Zhang
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang, China
| | - Haidan Chen
- The First College of Clinical Medical Science, China Three Gorges University, Yichang, China.
| | - Yanfeng Dai
- State Key Laboratory of Digital Medical Engineering, School of Biomedical Engineering, Hainan University, Haikou, China.
- Key Laboratory of Biomedical Engineering of Hainan Province, One Health Institute, Hainan University, Haikou, China.
| |
Collapse
|
6
|
Huang H, Chen H, Shou D, Quan Y, Cheng J, Chen H, Ning G, Li Y, Xia Y, Zhou Y. Engineering siRNA-loaded and RGDfC-targeted selenium nanoparticles for highly efficient silencing of DCBLD2 gene for colorectal cancer treatment. DISCOVER NANO 2023; 18:94. [PMID: 37477789 PMCID: PMC10361954 DOI: 10.1186/s11671-023-03870-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 07/07/2023] [Indexed: 07/22/2023]
Abstract
Effective and safe delivery of small interfering RNA (siRNA) by nanomaterials to cancer cells is one of the main challenges in cancer treatment. In this study, we constructed the selenium nanoparticles conjugated with RGDfC (one tumor-targeted polypeptide) to prepare a biocompatible gene vector (RGDfC-SeNPs) and then loaded with siDCBLD2 to synthesize the RGDfC-Se@siDCBLD2 for colorectal cancer (CRC) therapy. As expected, RGDfC-SeNPs could enhance the cellular uptake of siDCBLD2 in human HCT-116 colon cancer cells by targeting polypeptide RGDfC on the surface of colon cancer cells. RGDfC-Se@siDCBLD2 could be effectively internalized by HCT-116 cells mainly through a clathrin-related endocytosis pathway. In addition, RGDfC-Se@siDCBLD2 exhibited high siRNA release efficiency in an acidic tumor environment. Moreover, RGDfC-Se@siDCBLD2 could inhibit the proliferation and induce apoptosis in HCT-116 cells by special silencing gene DCBLD2 expression. RGDfC-Se@siDCBLD2 could be specifically accumulated to the tumor sites and exhibited significantly anti-CRC efficacy on HCT-116 tumor-bearing mice without obvious side effects. Taken together, these results suggest that selenium nanoparticles can be used as an effective gene vector with good biocompatibility, and RGDfC-Se@siDCBLD2 provides a promising strategy for combining tumor-target and siRNA delivery in treating CRC.
Collapse
Affiliation(s)
- Hongli Huang
- Department of Gastroenterology and Hepatology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180, China
- Guangzhou Key Laboratory of Digestive Diseases, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, Guangzhou, 510180, China
| | - Hanqing Chen
- Department of Gastroenterology and Hepatology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180, China
- Guangzhou Key Laboratory of Digestive Diseases, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, Guangzhou, 510180, China
| | - Diwen Shou
- Department of Gastroenterology and Hepatology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180, China
- Guangzhou Key Laboratory of Digestive Diseases, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, Guangzhou, 510180, China
| | - Ying Quan
- Department of Gastroenterology and Hepatology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180, China
- Guangzhou Key Laboratory of Digestive Diseases, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, Guangzhou, 510180, China
| | - Jiemin Cheng
- Department of Gastroenterology and Hepatology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180, China
- Guangzhou Key Laboratory of Digestive Diseases, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, Guangzhou, 510180, China
| | - Huiting Chen
- Department of Gastroenterology and Hepatology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180, China
- Guangzhou Key Laboratory of Digestive Diseases, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, Guangzhou, 510180, China
| | - Gang Ning
- Department of Gastroenterology and Hepatology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180, China
- Guangzhou Key Laboratory of Digestive Diseases, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, Guangzhou, 510180, China
| | - Yongqiang Li
- Department of Gastroenterology and Hepatology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180, China
- Guangzhou Key Laboratory of Digestive Diseases, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, Guangzhou, 510180, China
| | - Yu Xia
- Department of Gastroenterology and Hepatology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180, China.
- Guangzhou Key Laboratory of Digestive Diseases, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, Guangzhou, 510180, China.
| | - Yongjian Zhou
- Department of Gastroenterology and Hepatology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180, China.
- Guangzhou Key Laboratory of Digestive Diseases, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, Guangzhou, 510180, China.
| |
Collapse
|
7
|
Wei G, Zhang S, Yu S, Lu W. Intravital Microscopy Reveals Endothelial Transcytosis Contributing to Significant Tumor Accumulation of Albumin Nanoparticles. Pharmaceutics 2023; 15:519. [PMID: 36839841 PMCID: PMC9960641 DOI: 10.3390/pharmaceutics15020519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/30/2023] [Accepted: 01/30/2023] [Indexed: 02/09/2023] Open
Abstract
The principle of enhanced permeability and retention (EPR) effect has been used to design anti-cancer nanomedicines over decades. However, it is being challenged due to the poor clinical outcome of nanoparticles and controversial physiological foundation. Herein, we use a near-infrared-II (1000-1700 nm, NIR-II) fluorescence probe BPBBT to investigate the pathway for the entry of human serum albumin-bound nanoparticles (BPBBT-HSA NPs) into tumor compared with BPBBT micelles with phospholipid-poly (ethylene glycol) of the similar particle size about 110 nm. The plasma elimination half-life of BPBBT micelles was 2.8-fold of that of BPBBT-HSA NPs. However, the area under the BPBBT concentration in tumor-time curve to 48 h post-injection (AUCtumor0→48h) of BPBBT-HSA NPs was 7.2-fold of that of BPBBT micelles. The intravital NIR-II fluorescence microscopy revealed that BPBBT-HSA NPs but not BPBBT micelles were transported from the tumor vasculature into tumor parenchyma with high efficiency, and endocytosed by the tumor cells within 3 h post-injection in vivo. This effect was blocked by cross-linking BPBBT-HSA NPs to denature HSA, resulting in the AUCtumor0→48h decreased to 22% of that of BPBBT-HSA NPs. Our results demonstrated that the active process of endothelial transcytosis is the dominant pathway for albumin-bound nanoparticles' entry into tumor.
Collapse
Affiliation(s)
| | | | | | - Wei Lu
- Key Laboratory of Smart Drug Delivery, Ministry of Education & State Key Laboratory of Molecular Engineering of Polymers, School of Pharmacy & Minhang Hospital, Fudan University, 826 Zhangheng Road, Shanghai 201203, China
| |
Collapse
|