1
|
Ma M, Zhong J, Tai Y, Xu S, Pei Z, Wang X. Combining RNA-seq, molecular docking and experimental verification to explore the mechanism of BAM15 as a potential drug for atherosclerosis. Sci Rep 2025; 15:13347. [PMID: 40247008 PMCID: PMC12006321 DOI: 10.1038/s41598-025-98209-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 04/10/2025] [Indexed: 04/19/2025] Open
Abstract
BAM15 is a novel mitochondrial uncoupling agent derived from a synthetic source, that has been wildly explored for its ability to enhance mitochondrial respiration and metabolic flexibility. In this study, we investigated the underlying mechanisms of BAM15 on atherosclerosis (AS) through experimental validation, RNA-seq and molecular docking. The results showed that oral administration of BAM15 suppressed atherosclerosis in western diet (WD)-fed ApoE(-/-) mice and significantly improved the hyperlipidemia. And the increased serum ALT, AST and liver TC, TG, ALT, AST in ApoE(-/-) mice were reduced by BAM15 treatment. In in vitro experiments BAM15 inhibited RAW264.7 macrophages invasive ability and reduced palmitic acid-induced lipid accumulation. RNA-seq results confirmed the differential genes after BAM15 treatment and 140 common targets were identified by intersecting with AS-related targets. A protein-protein interaction (PPI) network analysis high-lighted IL1A, SRC and CSF3 as key targets of BAM15 against AS, which is further verified by molecular docking and western blot. Molecular dynamics analysis results confirmed that BAM15 exhibits strong affinity with the IL-1α, SRC and CSF3 proteins. This study indicates that BAM15 inhibits atherosclerosis through a multi-molecular mechanism, and we propose it as a novel anti-atherosclerotic drug.
Collapse
Affiliation(s)
- Minghui Ma
- Jiangnan University Medical Center, Wuxi, 214002, Jiangsu, People's Republic of China
- Wuxi No. 2 People's Hospital, Wuxi, 214002, Jiangsu, People's Republic of China
| | - Jiao Zhong
- Jiangnan University Medical Center, Wuxi, 214002, Jiangsu, People's Republic of China
- Wuxi No. 2 People's Hospital, Wuxi, 214002, Jiangsu, People's Republic of China
| | - Yu Tai
- Harbin Medical University Cancer Hospital, Harbin, 150081, Heilongjiang, People's Republic of China
| | - Shuo Xu
- Jiangnan University Medical Center, Wuxi, 214002, Jiangsu, People's Republic of China
- Wuxi No. 2 People's Hospital, Wuxi, 214002, Jiangsu, People's Republic of China
| | - Zejun Pei
- Jiangnan University Medical Center, Wuxi, 214002, Jiangsu, People's Republic of China.
- Wuxi No. 2 People's Hospital, Wuxi, 214002, Jiangsu, People's Republic of China.
| | - Xin Wang
- Jiangnan University Medical Center, Wuxi, 214002, Jiangsu, People's Republic of China.
- Wuxi No. 2 People's Hospital, Wuxi, 214002, Jiangsu, People's Republic of China.
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu, People's Republic of China.
| |
Collapse
|
2
|
Zhou H, Mao Y, Ye M, Zuo Z. Exploring the nonlinear association between cardiometabolic index and hypertension in U.S. Adults: an NHANES-based study. BMC Public Health 2025; 25:1092. [PMID: 40119367 PMCID: PMC11929247 DOI: 10.1186/s12889-025-22231-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Accepted: 03/07/2025] [Indexed: 03/24/2025] Open
Abstract
BACKGROUND Hypertension is a prevalent chronic disease affecting over 1.2 billion people worldwide, representing a major modifiable risk factor for cardiovascular diseases. The Waist-to-Height Ratio (WHtR) and Triglyceride to High-Density Lipoprotein Cholesterol (TG/HDL-C) ratio are established metabolic indicators linked to the risk of cardiovascular and metabolic diseases. Recently, a Cardiometabolic Index (CMI), combining WHtR and TG/HDL-C ratios, has been proposed to provide a comprehensive assessment of metabolic health. This study investigates the association between CMI and hypertension using data from the National Health and Nutrition Examination Survey (NHANES). METHODS The study utilized NHANES data from nine cycles spanning 2001 to 2018, encompassing 20,049 participants aged over 20. Exclusions were made for individuals with incomplete CMI or hypertension data, and pregnant women. CMI was calculated by multiplying the WHtR by the TG/HDL-C ratio. Hypertension was defined according to American Heart Association guidelines. The relationship between CMI and hypertension was evaluated using multivariate logistic regression analyses, with additional subgroup analyses conducted based on demographic factors. Nonlinear relationships were analyzed using smoothing curve fitting techniques. RESULTS The study identified a significant positive correlation between CMI and hypertension risk, with an increase of one unit in CMI associated with a 9% heightened risk of hypertension (OR: 1.09, 95% CI: 1.05, 1.13). The association remained significant across various demographic subgroups. A nonlinear relationship was observed, with a critical CMI threshold of 2.64. Below this threshold, higher CMI values were associated with a progressively higher prevalence of hypertension, whereas beyond this threshold, further increases in CMI did not significantly correlate with an elevated risk of hypertension. CONCLUSION The study demonstrates that CMI is significantly associated with hypertension risk and may serve as a valuable tool for early screening and risk assessment, particularly in identifying individuals at higher risk before reaching the critical CMI threshold. These results underscore the importance of addressing metabolic health in the prevention and management of hypertension. Future research should focus on longitudinal studies to establish causality, explore the clinical utility of CMI in hypertension screening, and examine its applicability in diverse populations.
Collapse
Affiliation(s)
- Huatao Zhou
- Department of Cardiovascular Surgery, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Yu Mao
- Department of Thyroid Surgery, The Second Xiangya Hospital, Central South University, Hunan Province, No. 139Renmin East Road, Changsha, 410011, People's Republic of China
| | - Muyao Ye
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Zhongkun Zuo
- Department of Thyroid Surgery, The Second Xiangya Hospital, Central South University, Hunan Province, No. 139Renmin East Road, Changsha, 410011, People's Republic of China.
| |
Collapse
|
3
|
Du L, Gao R, Chen Z. 5-Methylcytosine Methylation-Linked Hippo Pathway Molecular Interactions Regulate Lipid Metabolism. Int J Mol Sci 2025; 26:2560. [PMID: 40141201 PMCID: PMC11942534 DOI: 10.3390/ijms26062560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Revised: 03/09/2025] [Accepted: 03/11/2025] [Indexed: 03/28/2025] Open
Abstract
5-methylcytosine (5mC) is a common form of DNA methylation, essentially acting as an epigenetic modification that regulates gene expression by affecting the binding of transcription factors to DNA or by recruiting proteins that make it difficult to recognize and transcribe genes. 5mC methylation is present in eukaryotes in a variety of places, such as in CpG islands, within gene bodies, and in regions of repetitive sequences, whereas in prokaryotic organisms, it is mainly present in genomic DNA. The Hippo pathway is a highly conserved signal transduction pathway, which is extremely important in cell proliferation and death, controlling the size of tissues and organs and regulating cell differentiation, in addition to its important regulatory roles in lipid synthesis, transport, and catabolism. Lipid metabolism is an important part of various metabolic pathways in the human body, and problems in lipid metabolism are related to abnormalities in key enzymes, related proteins, epigenetic inheritance, and certain specific amino acids, which are the key factors affecting its proper regulation. In this article, we will introduce the molecular mechanisms of 5mC methylation and the Hippo signaling pathway, and the possibility of their co-regulation of lipid metabolism, with the aim of providing new ideas for further research and novel therapeutic modalities for lipid metabolism and a reference for the development and exploration of related research.
Collapse
Affiliation(s)
- Lichen Du
- Agricultural College, Yangzhou University, Yangzhou 225009, China;
| | - Rui Gao
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Zhi Chen
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
4
|
Chen J, Zhang L, Xie T, Zhang X, Pan C, Sun F, Li W, Sun Z, Dong D. Nitazoxanide protects against heart failure with preserved ejection and metabolic syndrome induced by high-fat diet (HFD) plus L-NAME "two-hit" in mice. Acta Pharm Sin B 2025; 15:1397-1414. [PMID: 40370562 PMCID: PMC12069241 DOI: 10.1016/j.apsb.2024.12.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 12/10/2024] [Accepted: 12/17/2024] [Indexed: 05/16/2025] Open
Abstract
The clinical antiprotozoal drug nitazoxanide has been demonstrated to improve the experimental diabetes mellitus, lipid metabolism disorders, atherosclerosis and inhibit inflammation. Since the pathogenesis of heart failure with preserved ejection (HFpEF) is multifactorial and closely associated with the aforementioned diseases, we aim to study the effect of nitazoxanide on high-fat diet (HFD) plus L-NAME (N ω-nitro-l-arginine methyl ester)-induced HFpEF and metabolic syndrome in mice. We found that oral nitazoxanide improved cardiac hypertrophy, cardiac fibrosis, cardiac diastolic dysfunction, increased blood pressure, impaired exercise tolerance, impaired glucose handling, serum lipid disorders, hepatic steatosis, increased weight of white adipose tissues and kidney fibrosis in HFD + L-NAME-treated mice. In the established HFD + L-NAME-induced HFpEF and metabolic syndrome mouse model, therapeutic treatment with nitazoxanide rescued HFD + L-NAME-induced pathological phenotypes as mentioned above. The in vitro experiments revealed that tizoxanide, the active metabolite of nitazoxanide, increased the basal mitochondria metabolism of cardiomyocytes, inhibited cardiomyocyte hypertrophy and collagen secretion from cardiac fibroblasts, and relaxed phenylephrine- and U46619-induced constriction of rat mesenteric arteries, indicating that the direct effect of tizoxanide might partly contribute to the protective effect of nitazoxanide against HFpEF in vivo. The present study suggests that nitazoxanide might be a potential drug for HFpEF and metabolic syndrome therapy.
Collapse
Affiliation(s)
- Jiahui Chen
- Department of Pharmacology, China Pharmaceutical University, Nanjing 211198, China
| | - Liping Zhang
- Department of Pharmacology, China Pharmaceutical University, Nanjing 211198, China
| | - Ting Xie
- Department of Pharmacology, China Pharmaceutical University, Nanjing 211198, China
| | - Xiao Zhang
- Department of Pharmacology, China Pharmaceutical University, Nanjing 211198, China
| | - Congcong Pan
- Department of Pharmacology, China Pharmaceutical University, Nanjing 211198, China
| | - Fangli Sun
- Department of Pharmacology, China Pharmaceutical University, Nanjing 211198, China
| | - Wenfeng Li
- Department of Pharmacology, China Pharmaceutical University, Nanjing 211198, China
| | - Zhijie Sun
- Department of Pharmacology, China Pharmaceutical University, Nanjing 211198, China
| | - Deli Dong
- Department of Pharmacology, China Pharmaceutical University, Nanjing 211198, China
| |
Collapse
|
5
|
Tao M, Zhang LL, Zhou GH, Wang C, Luo X. Inhibition of metabotropic glutamate receptor-5 alleviates hepatic steatosis by enhancing autophagy via activation of the AMPK signaling pathway. World J Gastroenterol 2025; 31:98852. [PMID: 39991675 PMCID: PMC11755260 DOI: 10.3748/wjg.v31.i7.98852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 12/08/2024] [Accepted: 12/26/2024] [Indexed: 01/20/2025] Open
Abstract
BACKGROUND The global prevalence of metabolic dysfunction-associated steatotic liver disease (MASLD) has continued to increase annually. Recent studies have indicated that inhibition of metabotropic glutamate receptor 5 (mGluR5) may alleviate hepatic steatosis. However, the precise mechanism warrants further exploration. AIM To investigate the potential mechanism by which mGluR5 attenuates hepatocyte steatosis in vitro and in vivo. METHODS Free fatty acids (FFAs)-stimulated HepG2 cells were treated with the mGluR5 antagonist MPEP and the mGluR5 agonist CHPG. Oil Red O staining and a triglyceride assay kit were used to evaluate lipid content. Western blot analysis was conducted to detect the expression of the autophagy-associated proteins p62 and LC3-II, as well as the expression of the key signaling molecules AMPK and ULK1, in the treated cells. To further elucidate the contributions of autophagy and AMPK, we used chloroquine (CQ) to inhibit autophagy and compound C (CC) to inhibit AMPK activity. In parallel, wild-type mice and mGluR5 knockout (KO) mice fed a normal chow diet or a high-fat diet (HFD) were used to evaluate the effect of mGluR5 inhibition in vivo. RESULTS mGluR5 inhibition by MPEP attenuated hepatocellular steatosis and increased LC3-II and p62 protein expression. The autophagy inhibitor CQ reversed the effects of MPEP. In addition, MPEP promoted AMPK and ULK1 expression in HepG2 cells exposed to FFAs. MPEP treatment led to the nuclear translocation of transcription factor EB, which is known to promote p62 expression. This effect was negated by the AMPK inhibitor CC. mGluR5 KO mice presented reduced body weight, improved glucose tolerance and reduced hyperlipidemia when fed a HFD. Additionally, the livers of HFD-fed mGluR5 KO mice presented increases in LC3-II and p62. CONCLUSION Our results suggest that mGluR5 inhibition promoted autophagy and reduced hepatocyte steatosis through activation of the AMPK signaling pathway. These findings reveal a new functional mechanism of mGluR5 as a target in the treatment of MASLD.
Collapse
Affiliation(s)
- Min Tao
- Department of Endocrinology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing 400010, China
| | - Li-Li Zhang
- Department of Endocrinology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing 400010, China
| | - Guang-Hong Zhou
- Department of Endocrinology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing 400010, China
| | - Cong Wang
- Department of Endocrinology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing 400010, China
| | - Xie Luo
- Department of Endocrinology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing 400010, China
| |
Collapse
|
6
|
An H, Jang Y, Choi J, Hur J, Kim S, Kwon Y. New Insights into AMPK, as a Potential Therapeutic Target in Metabolic Dysfunction-Associated Steatotic Liver Disease and Hepatic Fibrosis. Biomol Ther (Seoul) 2025; 33:18-38. [PMID: 39702310 PMCID: PMC11704404 DOI: 10.4062/biomolther.2024.188] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 12/08/2024] [Accepted: 12/10/2024] [Indexed: 12/21/2024] Open
Abstract
AMP-activated protein kinase (AMPK) activators have garnered significant attention for their potential to prevent the progression of metabolic dysfunction-associated steatotic liver disease (MASLD) into liver fibrosis and to fundamentally improve liver function. The broad spectrum of pathways regulated by AMPK activators makes them promising alternatives to conventional liver replacement therapies and the limited pharmacological treatments currently available. In this study, we aim to illustrate the newly detailed multiple mechanisms of MASLD progression based on the multiple-hit hypothesis. This model posits that impaired lipid metabolism, combined with insulin resistance and metabolic imbalance, initiates inflammatory cascades, gut dysbiosis, and the accumulation of toxic metabolites, ultimately promoting fibrosis and accelerating MASLD progression to irreversible hepatocellular carcinoma (HCC). AMPK plays a multifaceted protective role against these pathological conditions by regulating several key downstream signaling pathways. It regulates biological effectors critical to metabolic and inflammatory responses, such as SIRT1, Nrf2, mTOR, and TGF-β, through complex and interrelated mechanisms. Due to these intricate connections, AMPK's role is pivotal in managing metabolic and inflammatory disorders. In this review, we demonstrate the specific roles of AMPK and its related pathways. Several agents directly activate AMPK by binding as agonists, while some others indirectly activate AMPK by modulating upstream molecules, including adiponectin, LKB1, and the AMP: ATP ratio. As AMPK activators can target each stage of MASLD progression, the development of AMPK activators offers immense potential to expand therapeutic strategies for liver diseases such as MASH, MASLD, and liver fibrosis.
Collapse
Affiliation(s)
- Haeun An
- College of Pharmacy, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Yerin Jang
- College of Pharmacy, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Jungin Choi
- College of Pharmacy, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Juhee Hur
- College of Pharmacy, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Seojeong Kim
- Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Youngjoo Kwon
- College of Pharmacy, Ewha Womans University, Seoul 03760, Republic of Korea
- Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Republic of Korea
| |
Collapse
|
7
|
Dos Santos BG, Brisnovali NF, Goedeke L. Biochemical basis and therapeutic potential of mitochondrial uncoupling in cardiometabolic syndrome. Biochem J 2024; 481:1831-1854. [PMID: 39630236 DOI: 10.1042/bcj20240005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 11/15/2024] [Accepted: 11/19/2024] [Indexed: 01/03/2025]
Abstract
Mild uncoupling of oxidative phosphorylation is an intrinsic property of all mitochondria, allowing for adjustments in cellular energy metabolism to maintain metabolic homeostasis. Small molecule uncouplers have been extensively studied for their potential to increase metabolic rate, and recent research has focused on developing safe and effective mitochondrial uncoupling agents for the treatment of obesity and cardiometabolic syndrome (CMS). Here, we provide a brief overview of CMS and cover the recent mechanisms by which chemical uncouplers regulate CMS-associated risk-factors and comorbidities, including dyslipidemia, insulin resistance, steatotic liver disease, type 2 diabetes, and atherosclerosis. Additionally, we review the current landscape of uncoupling agents, focusing on repurposed FDA-approved drugs and compounds in advanced preclinical or early-stage clinical development. Lastly, we discuss recent molecular insights by which chemical uncouplers enhance cellular energy expenditure, highlighting their potential as a new addition to the current CMS drug landscape, and outline several limitations that need to be addressed before these agents can successfully be introduced into clinical practice.
Collapse
Affiliation(s)
- Bernardo Gindri Dos Santos
- Department of Medicine (Cardiology), The Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, U.S.A
| | - Niki F Brisnovali
- Department of Medicine (Cardiology), The Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, U.S.A
| | - Leigh Goedeke
- Department of Medicine (Cardiology), The Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, U.S.A
- Department of Medicine (Endocrinology), The Diabetes, Obesity and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY, U.S.A
| |
Collapse
|
8
|
Mahmoud NM, Elshazly SM, El-shaarawy F, Zaitone SA, Aldahish AA, Ahmed GA, Fawzy MS, Aloyouni SY, Abed SY, Saeedi T, El-Sayed SS. Nitazoxanide mitigates methotrexate hepatotoxicity in rats: role in inhibiting apoptosis and regulating endoplasmic reticulum stress. Front Pharmacol 2024; 15:1491249. [PMID: 39687303 PMCID: PMC11647085 DOI: 10.3389/fphar.2024.1491249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 11/14/2024] [Indexed: 12/18/2024] Open
Abstract
Objectives Hepatotoxicity is a severe outcome of methotrexate (MTX) therapy, limiting its clinical use and contributing to its related morbidity and mortality. This study investigated the hepatoprotective effects of nitazoxanide (NTZ), an antiprotozoal drug, against MTX-induced hepatotoxicity and whether endoplasmic reticulum (ER) stress-modulation underlies the expected beneficial effects of NTZ. Methods Thirty-six rats were allocated to six groups, one control group and five MTX groups, where induction of hepatotoxicity was achieved via injecting MTX (20 mg/kg). Groups were assigned as MTX-vehicle, NTZ-100, and NTZ-200 groups (at 100 and 200 mg/kg/day, gavage, respectively), N-acetyl cysteine (NAC) group (500 mg/kg), and 4-phenyl butyric acid (4-PBA) group (150 mg/kg, i.p). Liver function enzymes in serum, hepatic oxidative stress, proinflammatory cytokines, apoptosis, and ER-stress biomarkers were assessed. A histopathological examination was performed. Results Treatment with NTZ lessened the serum liver enzymes, reduced malondialdehyde (lipid peroxidation product), enhanced antioxidant capacity, attenuated proinflammatory cytokines, and suppressed apoptosis. The protective effect of NTZ was dose-dependent, and the findings observed with the high-dose NTZ were similar to those obtained with the ER-stress inhibitor (4-PBA). Conclusion NTZ exerted a hepatoprotective effect in MTX-challenged rats that is mediated via modulation of ER stress and inhibiting apoptosis.
Collapse
Affiliation(s)
| | - Shimaa M. Elshazly
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| | - Fatma El-shaarawy
- Department of Biochemistry, Faculty of Pharmacy, Sinai University, Arish, Egypt
| | - Sawsan A. Zaitone
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, University of Tabuk, Tabuk, Saudi Arabia
| | - Afaf A. Aldahish
- Department of Pharmacology, College of Pharmacy, King Khalid University, Abha, Saudi Arabia
| | - Gehan A. Ahmed
- Forensic Medicine and Clinical Toxicology Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Manal S. Fawzy
- Department of Biochemistry, Faculty of Medicine, Northern Border University, Arar, Saudi Arabia
- Center for Health Research, Northern Border University, Arar, Saudi Arabia
| | - Sheka Yagub Aloyouni
- Research Department, Natural and Health Sciences Research Center, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Sally Y. Abed
- Department of Respiratory Care, College of Applied Medical Science in Jubail, Imam Abdulrahman Bin Faisal University, Jubail, Saudi Arabia
| | - Tahani Saeedi
- Department of Pharmacology and Toxicology, School of Pharmacy, Taibah University, Medina, Saudi Arabia
| | - Shaimaa S. El-Sayed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| |
Collapse
|
9
|
Gao F, Mu G, Tuo Y. Lactiplantibacillus plantarum Y44 Complex Fermented Milk Regulates Lipid Metabolism in Mice Fed with High-Fat Diet by Modulating Gut Microbiota. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:25767-25781. [PMID: 39530424 DOI: 10.1021/acs.jafc.4c08671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
The benefits of fermented milk containing Lactiplantibacillus plantarum (L. plantarum) Y44, known for its weight loss properties, remain unclear. For this, we evaluated the effects of the complex fermented milk (Y44-CFM), obtained through the cofermentation of cow's milk and soybean milk with L. plantarum Y44 and traditional starters, on high-fat diet (HFD)-fed C57BL/6 mice. Our study found that the oral administration of Y44-CFM significantly reduced body weight gain and hepatic lipid accumulation in HFD-fed mice while also mitigating liver injury. Additionally, Y44-CFM regulated the expression of enzymes associated with lipid metabolism in the serum, as well as the corresponding or related genes in the liver, such as fatty acid synthase. Furthermore, HFD-induced systemic inflammation, oxidative stress, and intestinal barrier dysfunction were improved. The primary alterations in hepatic metabolism involved glycerophospholipids and amino acids, including the biosynthesis of valine, leucine, and isoleucine. The diversity and overall structure of the gut microbiota were also regulated, resulting in a significant decrease in the ratio of Firmicutes to Bacteroidetes (F/B) and unclassified_f_Lachnospiraceae, along with a notable increase in Oscillospiraceae. The correlation analysis indicated that Y44-CFM influenced hepatic lipid metabolism by mediating intestinal flora and its production of short-chain fatty acids, ultimately leading to weight reduction.
Collapse
Affiliation(s)
- Fei Gao
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, P. R. China
- Dalian Probiotics Function Research Key Laboratory, Dalian Polytechnic University, Dalian 116034, P. R. China
| | - Guangqing Mu
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, P. R. China
- Dalian Probiotics Function Research Key Laboratory, Dalian Polytechnic University, Dalian 116034, P. R. China
| | - Yanfeng Tuo
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, P. R. China
- Dalian Probiotics Function Research Key Laboratory, Dalian Polytechnic University, Dalian 116034, P. R. China
| |
Collapse
|
10
|
Zhu J, Guo J, Liu Z, Liu J, Yuan A, Chen H, Qiu J, Dou X, Lu D, Le Y. Salvianolic acid A attenuates non-alcoholic fatty liver disease by regulating the AMPK-IGFBP1 pathway. Chem Biol Interact 2024; 400:111162. [PMID: 39047806 DOI: 10.1016/j.cbi.2024.111162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/01/2024] [Accepted: 07/22/2024] [Indexed: 07/27/2024]
Abstract
Non-alcoholic fatty liver disease (NAFLD) affects approximately a quarter of the population and, to date, there is no approved drug therapy for this condition. Individuals with type 2 diabetes mellitus (T2DM) are at a significantly elevated risk of developing NAFLD, underscoring the urgency of identifying effective NAFLD treatments for T2DM patients. Salvianolic acid A (SAA) is a naturally occurring phenolic acid that is an important component of the water-soluble constituents isolated from the roots of Salvia miltiorrhiza Bunge. SAA has been demonstrated to possess anti-inflammatory and antioxidant stress properties. Nevertheless, its potential in ameliorating diabetes-associated NAFLD has not yet been fully elucidated. In this study, diabetic ApoE-/- mice were employed to establish a NAFLD model via a Western diet. Following this, they were treated with different doses of SAA (10 mg/kg, 20 mg/kg) via gavage. The study demonstrated a marked improvement in liver injury, lipid accumulation, inflammation, and the pro-fibrotic phenotype after the administration of SAA. Additionally, RNA-seq analysis indicated that the primary pathway by which SAA alleviates diabetes-induced NAFLD involves the cascade pathways of lipid metabolism. Furthermore, SAA was found to be effective in the inhibition of lipid accumulation, mitochondrial dysfunction and ferroptosis. A functional enrichment analysis of RNA-seq data revealed that SAA treatment modulates the AMPK pathway and IGFBP-1. Further experimental results demonstrated that SAA is capable of inhibiting lipid accumulation through the activation of the AMPK pathway and IGFBP-1.
Collapse
Affiliation(s)
- Ji Zhu
- The Third Affiliated Hospital of Zhejiang Chinese Medical University (Zhongshan Hospital of Zhejiang Province), Hangzhou, 330106, China; Lipid Metabolism Institute (Molecular Medicine Institute), Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| | - Jianan Guo
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China; Lipid Metabolism Institute (Molecular Medicine Institute), Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| | - Zhijun Liu
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China; Lipid Metabolism Institute (Molecular Medicine Institute), Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| | - Jing Liu
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China; Lipid Metabolism Institute (Molecular Medicine Institute), Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| | - Aini Yuan
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China; Lipid Metabolism Institute (Molecular Medicine Institute), Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| | - Hang Chen
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China; Lipid Metabolism Institute (Molecular Medicine Institute), Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| | - Jiannan Qiu
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China; Lipid Metabolism Institute (Molecular Medicine Institute), Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| | - Xiaobing Dou
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China; Lipid Metabolism Institute (Molecular Medicine Institute), Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| | - Dezhao Lu
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China; Lipid Metabolism Institute (Molecular Medicine Institute), Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| | - Yifei Le
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China; Lipid Metabolism Institute (Molecular Medicine Institute), Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| |
Collapse
|
11
|
Li B, Xiao Q, Zhao H, Zhang J, Yang C, Zou Y, Zhang B, Liu J, Sun H, Liu H. Schisanhenol ameliorates non-alcoholic fatty liver disease via inhibiting miR-802 activation of AMPK-mediated modulation of hepatic lipid metabolism. Acta Pharm Sin B 2024; 14:3949-3963. [PMID: 39309511 PMCID: PMC11413670 DOI: 10.1016/j.apsb.2024.05.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 03/25/2024] [Accepted: 04/29/2024] [Indexed: 09/25/2024] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD), characterized by hepatic steatosis, is a common metabolic liver disease worldwide. Currently, satisfactory drugs for NAFLD treatment remain lacking. Obesity and diabetes are the leading causes of NAFLD, and compounds with anti-obesity and anti-diabetic activities are considered suitable candidates for treating NAFLD. In this study, biochemical and histological assays revealed that a natural lignan schisanhenol (SAL) effectively decreased lipid accumulation and improved hepatic steatosis in free fatty acid (FFA)-treated HepG2 cells and high-fat diet (HFD)-induced NAFLD mice. Further, molecular analyses, microRNA (miRNA)-seq, and bioinformatics analyses revealed that SAL may improve NAFLD by targeting the miR-802/adenosine monophosphate-activated protein kinase (AMPK) pathway. Liver-specific overexpression of miR-802 in NAFLD mice significantly impaired SAL-mediated liver protection and decreased the protein levels of phosphorylated (p)-AMPK and PRKAB1. Dual-luciferase assay analysis further confirmed that miR-802 inhibits hepatic AMPK expression by binding to the 3' untranslated region of mouse Prkab1 or human PRKAA1. Additionally, genetic silencing of PRKAA1 blocked SAL-induced AMPK pathway activation in FFA-treated HepG2 cells. The results demonstrate that SAL is an effective drug candidate for treating NAFLD through regulating miR-802/AMPK-mediated lipid metabolism.
Collapse
Affiliation(s)
- Bin Li
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, China
| | - Qi Xiao
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, China
| | - Hongmei Zhao
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Department of Pathophysiology, Peking Union Medical College, Beijing 100005, China
| | - Jianuo Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, China
| | - Chunyan Yang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, China
| | - Yucen Zou
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, China
| | - Bengang Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, China
| | - Jiushi Liu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, China
| | - Haitao Sun
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, China
| | - Haitao Liu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, China
| |
Collapse
|
12
|
Chen H, Zhou Y, Hao H, Xiong J. Emerging mechanisms of non-alcoholic steatohepatitis and novel drug therapies. Chin J Nat Med 2024; 22:724-745. [PMID: 39197963 DOI: 10.1016/s1875-5364(24)60690-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Indexed: 09/01/2024]
Abstract
Non-alcoholic fatty liver disease (NAFLD) has become a leading cause of chronic liver disease globally. It initiates with simple steatosis (NAFL) and can progress to the more severe condition of non-alcoholic steatohepatitis (NASH). NASH often advances to end-stage liver diseases such as liver fibrosis, cirrhosis, and hepatocellular carcinoma (HCC). Notably, the transition from NASH to end-stage liver diseases is irreversible, and the precise mechanisms driving this progression are not yet fully understood. Consequently, there is a critical need for the development of effective therapies to arrest or reverse this progression. This review provides a comprehensive overview of the pathogenesis of NASH, examines the current therapeutic targets and pharmacological treatments, and offers insights for future drug discovery and development strategies for NASH therapy.
Collapse
Affiliation(s)
- Hao Chen
- Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Yang Zhou
- Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Haiping Hao
- Jiangsu Provincial Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China.
| | - Jing Xiong
- Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
13
|
Li W, Chen S, Lang J, Luo J, Chen J, Zhang L, Sun Z, Dong D. The clinical antiprotozoal drug nitazoxanide and its metabolite tizoxanide extend Caenorhabditis elegans lifespan and healthspan. Acta Pharm Sin B 2024; 14:3266-3280. [PMID: 39027239 PMCID: PMC11252460 DOI: 10.1016/j.apsb.2024.03.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 03/02/2024] [Accepted: 03/14/2024] [Indexed: 07/20/2024] Open
Abstract
The drugs extending healthspan in clinic have always been searched. Nitazoxanide is an FDA-approved clinical antiprotozoal drug. Nitazoxanide is rapidly metabolized to tizoxanide after absorption in vivo. Our previous studies find that nitazoxanide and its metabolite tizoxanide induce mild mitochondrial uncoupling and activate cellular AMPK, oral nitazoxanide protects against experimental hyperlipidemia, hepatic steatosis, and atherosclerosis. Here, we demonstrate that both nitazoxanide and tizoxanide extend the lifespan and healthspan of Caenorhabditis elegans through Akt/AMPK/sir 2.1/daf16 pathway. Additionally, both nitazoxanide and tizoxanide improve high glucose-induced shortening of C. elegans lifespan. Nitazoxanide has been a clinical drug with a good safety profile, we suggest that it is a novel anti-aging drug.
Collapse
Affiliation(s)
- Wenfeng Li
- Department of Pharmacology, China Pharmaceutical University, Nanjing 210009, China
| | - Shuming Chen
- Department of Pharmacology, China Pharmaceutical University, Nanjing 210009, China
| | - Jing Lang
- Department of Pharmacology, China Pharmaceutical University, Nanjing 210009, China
| | - Jing Luo
- Department of Pharmacology, China Pharmaceutical University, Nanjing 210009, China
| | - Jiahui Chen
- Department of Pharmacology, China Pharmaceutical University, Nanjing 210009, China
| | - Liping Zhang
- Department of Pharmacology, China Pharmaceutical University, Nanjing 210009, China
| | - Zhijie Sun
- Department of Pharmacology, China Pharmaceutical University, Nanjing 210009, China
| | - Deli Dong
- Department of Pharmacology, China Pharmaceutical University, Nanjing 210009, China
| |
Collapse
|
14
|
Liu KX, Wang ZY, Ying YT, Wei RM, Dong DL, Sun ZJ. The antiprotozoal drug nitazoxanide improves experimental liver fibrosis in mice. Biochem Pharmacol 2024; 224:116205. [PMID: 38615918 DOI: 10.1016/j.bcp.2024.116205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 03/18/2024] [Accepted: 04/11/2024] [Indexed: 04/16/2024]
Abstract
Nitazoxanide is an FDA-approved antiprotozoal drug. Our previous studies find that nitazoxanide and its metabolite tizoxanide affect AMPK, STAT3, and Smad2/3 signals which are involved in the pathogenesis of liver fibrosis, therefore, in the present study, we examined the effect of nitazoxanide on experimental liver fibrosis and elucidated the potential mechanisms. The in vivo experiment results showed that oral nitazoxanide (75, 100 mg·kg-1) significantly improved CCl4- and bile duct ligation-induced liver fibrosis in mice. Oral nitazoxanide activated the inhibited AMPK and inhibited the activated STAT3 in liver tissues from liver fibrosis mice. The in vitro experiment results showed that nitazoxanide and its metabolite tizoxanide activated AMPK and inhibited STAT3 signals in LX-2 cells (human hepatic stellate cells). Nitazoxanide and tizoxanide inhibited cell proliferation and collagen I expression and secretion of LX-2 cells. Nitazoxanide and tizoxanide inhibited transforming growth factor-β1 (TGF-β1)- and IL-6-induced increases of cell proliferation, collagen I expression and secretion, inhibited TGF-β1- and IL-6-induced STAT3 and Smad2/3 activation in LX-2 cells. In mouse primary hepatic stellate cells, nitazoxanide and tizoxanide also activated AMPK, inhibited STAT3 and Smad2/3 activation, inhibited cell proliferation, collagen I expression and secretion. In conclusion, nitazoxanide inhibits liver fibrosis and the underlying mechanisms involve AMPK activation, and STAT3 and Smad2/3 inhibition.
Collapse
Affiliation(s)
- Kai-Xin Liu
- Department of Pharmacology, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Zeng-Yang Wang
- Department of Pharmacology, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Ya-Ting Ying
- Department of Pharmacology, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Rui-Miao Wei
- Department of Pharmacology, China Pharmaceutical University, Nanjing, People's Republic of China
| | - De-Li Dong
- Department of Pharmacology, China Pharmaceutical University, Nanjing, People's Republic of China.
| | - Zhi-Jie Sun
- Department of Pharmacology, China Pharmaceutical University, Nanjing, People's Republic of China.
| |
Collapse
|
15
|
Zhu HTL, Luo J, Peng Y, Cheng XF, Wu SZ, Zhao YD, Chang L, Sun ZJ, Dong DL. Nitazoxanide protects against experimental ulcerative colitis through improving intestinal barrier and inhibiting inflammation. Chem Biol Interact 2024; 395:111013. [PMID: 38663798 DOI: 10.1016/j.cbi.2024.111013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/14/2024] [Accepted: 04/19/2024] [Indexed: 04/28/2024]
Abstract
Ulcerative colitis is a chronic disease with colonic mucosa injury. Nitazoxanide is an antiprotozoal drug in clinic. Nitazoxanide and its metabolite tizoxanide have been demonstrated to activate AMPK and inhibit inflammation, therefore, the aim of the present study is to investigate the effect of nitazoxanide on dextran sulfate sodium (DSS)-induced colitis and the underlying mechanism. Oral administration of nitazoxanide ameliorated the symptoms of mice with DSS-induced colitis, as evidenced by improving the increased disease activity index (DAI), the decreased body weight, and the shortened colon length. Oral administration of nitazoxanide ameliorated DSS-induced intestinal barrier dysfunction and reduced IL-6 and IL-17 expression in colon tissues. Mechanistically, nitazoxanide and its metabolite tizoxanide treatment activated AMPK and inhibited JAK2/STAT3 signals. Nitazoxanide and tizoxanide treatment increased caudal type homeobox 2 (CDX2) expression, increased alkaline phosphatase (ALP) activity and promoted tight junctions in Caco-2 cells. Nitazoxanide and tizoxanide treatment restored the decreased zonula occludens-1(ZO-1) and occludin protein levels induced by LPS or IL-6 in Caco-2 cells. On the other hand, nitazoxanide and tizoxanide regulated macrophage bias toward M2 polarization, as evidenced by the increased arginase-1expression in bone marrow-derived macrophages (BMDM). Nitazoxanide and tizoxanide reduced the increased IL-6, iNOS and CCL2 pro-inflammatory gene expressions and inhibited JAK2/STAT3 activation in BMDM induced by LPS. In conclusion, nitazoxanide protects against DSS-induced ulcerative colitis in mice through improving intestinal barrier and inhibiting inflammation and the underlying mechanism involves AMPK activation and JAK2/STAT3 inhibition.
Collapse
Affiliation(s)
- Hu-Tai-Long Zhu
- Department of Pharmacology, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Jing Luo
- Department of Pharmacology, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Yi Peng
- Department of Pharmacology, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Xiao-Fan Cheng
- Department of Pharmacology, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Shang-Ze Wu
- Department of Pharmacology, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Yin-Di Zhao
- Department of Pharmacology, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Le Chang
- Department of Pharmacology, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Zhi-Jie Sun
- Department of Pharmacology, China Pharmaceutical University, Nanjing, People's Republic of China.
| | - De-Li Dong
- Department of Pharmacology, China Pharmaceutical University, Nanjing, People's Republic of China.
| |
Collapse
|
16
|
Zhao Y, Wang Z, Chen Y, Feng M, Liu X, Chen H, Wang N, Wang Z, Cao S, Ren J, Liu X, Zhao Y, Zhang Y. Asprosin aggravates atherosclerosis via regulating the phenotype transformation of vascular smooth muscle cells. Int J Biol Macromol 2024; 268:131868. [PMID: 38677690 DOI: 10.1016/j.ijbiomac.2024.131868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 04/22/2024] [Accepted: 04/23/2024] [Indexed: 04/29/2024]
Abstract
Phenotype transformation of vascular smooth muscle cells (VSMCs) plays an important role in the development of atherosclerosis. Asprosin is a newly discovered adipokine, which is critical in regulating metabolism. However, the relationship between asprosin and phenotype transformation of VSMCs in atherosclerosis remains unclear. The aim of this study is to investigate whether asprosin affects the progression of atherosclerosis by inducing phenotype transformation of VSMCs. We established an atherosclerosis model in ApoE-/- mice and administered asprosin recombinant protein and asprosin antibody to mice. Knocking down asprosin was also as an intervention. Interestingly, we found a correlation between asprosin levels and atherosclerosis. Asprosin promoted plaque formation and phenotype transformation of VSMCs. While, AspKD or asprosin antibody reduced the plaque lesion and suppressed vascular stiffness in ApoE-/- mice. Mechanistically, asprosin induced phenotype transformation of MOVAs by binding to GPR54, leading to Gαq/11 recruitment and activation of the PLC-PKC-ERK1/2-STAT3 signaling pathway. Si GPR54 or GPR54 antagonist partially inhibited the action of asprosin in MOVAs. Mutant GPR54-(267, 307) residue cancelled the binding of asprosin and GPR54. In summary, this study confirmed asprosin activated GPR54/Gαq/11-dependent ERK1/2-STAT3 signaling pathway, thereby promoting VSMCs phenotype transformation and aggravating atherosclerosis, thus providing a new target for the treatment of atherosclerosis.
Collapse
MESH Headings
- Animals
- Atherosclerosis/metabolism
- Atherosclerosis/pathology
- Atherosclerosis/genetics
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Mice
- Phenotype
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Fibrillin-1/metabolism
- Fibrillin-1/genetics
- Receptors, G-Protein-Coupled/metabolism
- Receptors, G-Protein-Coupled/genetics
- Male
- Signal Transduction
- Disease Models, Animal
- Apolipoproteins E/deficiency
- Apolipoproteins E/genetics
- Apolipoproteins E/metabolism
- Humans
- Extracellular Matrix Proteins/metabolism
- Extracellular Matrix Proteins/genetics
- Mice, Knockout
Collapse
Affiliation(s)
- Yu Zhao
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology, State Key Labratoray-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education, College of Pharmacy, Harbin Medical University, Harbin 150081, China; Department of Pathophysiology, Province Key Laboratory of Medicine-Food Homologous Resources and Prevention and Treatment of Metabolic Diseases, Basic Medical College, Qiqihar Medical University, Qiqihar 161000, China
| | - Zhengkai Wang
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology, State Key Labratoray-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education, College of Pharmacy, Harbin Medical University, Harbin 150081, China
| | - Yi Chen
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology, State Key Labratoray-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education, College of Pharmacy, Harbin Medical University, Harbin 150081, China
| | - Min Feng
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology, State Key Labratoray-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education, College of Pharmacy, Harbin Medical University, Harbin 150081, China
| | - Xinxin Liu
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology, State Key Labratoray-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education, College of Pharmacy, Harbin Medical University, Harbin 150081, China
| | - Huan Chen
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology, State Key Labratoray-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education, College of Pharmacy, Harbin Medical University, Harbin 150081, China
| | - Nannan Wang
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology, State Key Labratoray-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education, College of Pharmacy, Harbin Medical University, Harbin 150081, China
| | - Zhiqi Wang
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology, State Key Labratoray-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education, College of Pharmacy, Harbin Medical University, Harbin 150081, China
| | - Shifeng Cao
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology, State Key Labratoray-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education, College of Pharmacy, Harbin Medical University, Harbin 150081, China
| | - Jing Ren
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology, State Key Labratoray-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education, College of Pharmacy, Harbin Medical University, Harbin 150081, China
| | - Xue Liu
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology, State Key Labratoray-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education, College of Pharmacy, Harbin Medical University, Harbin 150081, China
| | - Yixiu Zhao
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology, State Key Labratoray-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education, College of Pharmacy, Harbin Medical University, Harbin 150081, China.
| | - Yan Zhang
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology, State Key Labratoray-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education, College of Pharmacy, Harbin Medical University, Harbin 150081, China.
| |
Collapse
|
17
|
Xiao Y, Yang D, Zhang H, Guo H, Liao Y, Lian C, Yao Y, Gao H, Huang Y. Theabrownin as a Potential Prebiotic Compound Regulates Lipid Metabolism via the Gut Microbiota, Microbiota-Derived Metabolites, and Hepatic FoxO/PPAR Signaling Pathways. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:8506-8520. [PMID: 38567990 DOI: 10.1021/acs.jafc.3c08541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/18/2024]
Abstract
The dysregulation of lipid metabolism poses a significant health threat, necessitating immediate dietary intervention. Our previous research unveiled the prebiotic-like properties of theabrownin. This study aimed to further investigate the theabrownin-gut microbiota interactions and their downstream effects on lipid metabolism using integrated physiological, genomic, metabolomic, and transcriptomic approaches. The results demonstrated that theabrownin significantly ameliorated dyslipidemia, hepatic steatosis, and systemic inflammation induced by a high-fat/high-cholesterol diet (HFD). Moreover, theabrownin significantly improved HFD-induced gut microbiota dysbiosis and induced significant alterations in microbiota-derived metabolites. Additionally, the detailed interplay between theabrownin and gut microbiota was revealed. Analysis of hepatic transcriptome indicated that FoxO and PPAR signaling pathways played pivotal roles in response to theabrownin-gut microbiota interactions, primarily through upregulating hepatic Foxo1, Prkaa1, Pck1, Cdkn1a, Bcl6, Klf2, Ppara, and Pparg, while downregulating Ccnb1, Ccnb2, Fabp3, and Plin1. These findings underscored the critical role of gut-liver axis in theabrownin-mediated improvements in lipid metabolism disorders and supported the potential of theabrownin as an effective prebiotic compound for targeted regulation of metabolic diseases.
Collapse
Affiliation(s)
- Yue Xiao
- Molecular Toxicology Key Laboratory of Sichuan Provincial Education office, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China
| | - Dongmei Yang
- Molecular Toxicology Key Laboratory of Sichuan Provincial Education office, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China
| | - Haoran Zhang
- The First Clinical College, Changzhi Medical College, Changzhi 046013, China
| | - Huan Guo
- College of Biomass Science and Engineering and Healthy Food Evaluation Research Center, Sichuan University, Chengdu 610065, China
| | - Ying Liao
- College of Life Science, Sichuan Normal University, Chengdu 610101, China
| | - Changhong Lian
- Changzhi Medical College Affiliated Heping Hospital, Changzhi 046099, China
| | - Yuqin Yao
- Molecular Toxicology Key Laboratory of Sichuan Provincial Education office, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China
| | - Hong Gao
- College of Biomass Science and Engineering and Healthy Food Evaluation Research Center, Sichuan University, Chengdu 610065, China
| | - Yina Huang
- Molecular Toxicology Key Laboratory of Sichuan Provincial Education office, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
18
|
Zheng LY, Da YX, Luo X, Zhang X, Sun ZJ, Dong DL. Sorafenib extends the lifespan of C. elegans through mitochondrial uncoupling mechanism. Free Radic Biol Med 2024; 214:101-113. [PMID: 38360276 DOI: 10.1016/j.freeradbiomed.2024.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 02/07/2024] [Accepted: 02/08/2024] [Indexed: 02/17/2024]
Abstract
Sorafenib is a targeted anticancer drug in clinic. Low-dose sorafenib has been reported to activate AMPK through inducing mitochondrial uncoupling without detectable toxicities. AMPK activation has been the approach for extending lifespan, therefore, we investigated the effect of sorafenib on lifespan and physical activity of C. elegans and the underlying mechanisms. In the present study, we found that the effect of sorafenib on C. elegans lifespan was typically hermetic. Sorafenib treatment at higher concentrations (100 μM) was toxic but at lower concentrations (1, 2.5, 5 μM) was beneficial to C. elegans. Sorafenib (1 μM) treatment for whole-life period extended C. elegans lifespan and improved C. elegans physical activity as manifested by increasing pharyngeal pumping and body movement, preserving intestinal barrier integrity, muscle fibers organization and mitochondrial morphology. In addition, sorafenib (1 μM) treatment enhanced C. elegans stress resistance. Sorafenib activated AMPK through inducing mitochondrial uncoupling in C. elegans. Sorafenib treatment activated DAF-16, SKN-1, and increased SOD-3, HSP-16.2, GST-4 expression in C. elegans. Sorafenib treatment induced AMPK-dependent autophagy in C. elegans. We conclude that low-dose sorafenib protects C. elegans against aging through activating AMPK/DAF-16 dependent anti-oxidant pathways and stimulating autophagy responses. Low-dose sorafenib could be a strategy for treating aging and aging-related diseases.
Collapse
Affiliation(s)
- Lu-Yao Zheng
- Department of Pharmacology, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Yan-Xin Da
- Department of Pharmacology, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Xiu Luo
- Department of Pharmacology, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Xiao Zhang
- Department of Pharmacology, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Zhi-Jie Sun
- Department of Pharmacology, China Pharmaceutical University, Nanjing, People's Republic of China.
| | - De-Li Dong
- Department of Pharmacology, China Pharmaceutical University, Nanjing, People's Republic of China.
| |
Collapse
|
19
|
Le Y, Guo J, Liu Z, Liu J, Liu Y, Chen H, Qiu J, Wang C, Dou X, Lu D. Calenduloside E ameliorates non-alcoholic fatty liver disease via modulating a pyroptosis-dependent pathway. JOURNAL OF ETHNOPHARMACOLOGY 2024; 319:117239. [PMID: 37777027 DOI: 10.1016/j.jep.2023.117239] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 09/14/2023] [Accepted: 09/27/2023] [Indexed: 10/02/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Non-alcoholic fatty liver disease (NAFLD) is a prevalent chronic liver condition that can have multiple underlying causes. There are no satisfactory chemical or biological drugs for the treatment of NAFLD. Longyasongmu, the bark and root of Aralia elata (Miq.) Seem, is used extensively in traditional Chinese medicine (TCM) and has been used in treating diverse liver diseases including NAFLD. Based on Aralia elata (Miq.) Seem as the main ingredient, Longya Gantai Capsules have been approved for use in China for the treatment of acute hepatitis and chronic hepatitis. Calenduloside E (CE), a natural pentacyclic triterpenoid saponin, is a significant component of saponin isolated from the bark and root of Aralia elata (Miq.) Seem. However, the role and mechanism of anti-NAFLD effects of CE is still unclear. AIM OF THE STUDY The objective of this study was to examine the potential mechanisms underlying the protective effect of CE on NAFLD. MATERIALS AND METHODS In this study, an NAFLD model was established by Western diet in apoE-/- mice, followed by treatment with various doses of CE (5 mg/kg, 10 mg/kg). The anti-NAFLD effect of CE was assessed by the liver injury, lipid accumulation, inflammation, and pro-fibrotic phenotype. The mechanism of CE in ameliorating NAFLD was studied through transcriptome sequencing (RNA-seq). In vitro, the mouse hepatocytes (AML-12) were stimulated in lipid mixtures with CE and performed the exploration and validation of the relevant pathways using Western blot, immunofluorescence, etc. RESULTS: The findings revealed a significant improvement in liver injury, lipid accumulation, inflammation, and pro-fibrotic phenotype upon CE administration. Furthermore, RNAseq analysis indicated that the primary pathway through which CE alleviates NAFLD involves pyroptosis-related inflammatory cascade pathways. Furthermore, it was observed that CE effectively suppressed inflammasome-mediated pyroptosis both in vivo and in vitro. Remarkably, the functional enrichment analysis of RNA-seq data revealed that the PI3K-Akt signaling pathway is the primarily Signaling transduction pathway modulated by CE treatment. Subsequent experimental outcomes provided further validation of CE's ability to hinder inflammasome-mediated pyroptosis through the inhibition of PI3K/AKT/NF-κB signaling pathway. CONCLUSIONS These findings present a novel pharmacological role of CE in exerting anti-NAFLD effects by inhibiting pyroptosis signaling pathways.
Collapse
Affiliation(s)
- Yifei Le
- School of Life Science, Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang, China.
| | - Jianan Guo
- School of Life Science, Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang, China.
| | - Zhijun Liu
- School of Life Science, Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang, China.
| | - Jing Liu
- School of Life Science, Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang, China.
| | - Ying Liu
- School of Life Science, Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang, China.
| | - Hang Chen
- School of Life Science, Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang, China.
| | - Jiannan Qiu
- School of Life Science, Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang, China.
| | - Cui Wang
- School of Life Science, Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang, China.
| | - Xiaobing Dou
- School of Life Science, Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang, China.
| | - Dezhao Lu
- School of Life Science, Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang, China.
| |
Collapse
|
20
|
Chen XY, Dong YC, Yu YY, Jiang M, Bu WJ, Li P, Sun ZJ, Dong DL. Anthelmintic nitazoxanide protects against experimental pulmonary fibrosis. Br J Pharmacol 2023; 180:3008-3023. [PMID: 37428102 DOI: 10.1111/bph.16190] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 06/02/2023] [Accepted: 07/03/2023] [Indexed: 07/11/2023] Open
Abstract
BACKGROUND AND PURPOSE Nitazoxanide is a therapeutic anthelmintic drug. Our previous studies found that nitazoxanide and its metabolite tizoxanide activated adenosine 5'-monophosphate-activated protein kinase (AMPK) and inhibited signal transducer and activator of transcription 3 (STAT3) signals. As AMPK activation and/or STAT3 inhibition are targets for treating pulmonary fibrosis, we hypothesized that nitazoxanide would be effective in experimental pulmonary fibrosis. EXPERIMENTAL APPROACH The mitochondrial oxygen consumption rate of cells was measured by using the high-resolution respirometry system Oxygraph-2K. The mitochondrial membrane potential of cells was evaluated by tetramethyl rhodamine methyl ester (TMRM) staining. The target protein levels were measured by using western blotting. The mice pulmonary fibrosis model was established through intratracheal instillation of bleomycin. The examination of the lung tissues changes were carried out using haematoxylin and eosin (H&E), and Masson staining. KEY RESULTS Nitazoxanide and tizoxanide activated AMPK and inhibited STAT3 signalling in human lung fibroblast cells (MRC-5 cells). Nitazoxanide and tizoxanide inhibited transforming growth factor-β1 (TGF-β1)-induced proliferation and migration of MRC-5 cells, collagen-I and α-smooth muscle cell actin (α-SMA) expression, and collagen-I secretion from MRC-5 cells. Nitazoxanide and tizoxanide inhibited epithelial-mesenchymal transition (EMT) and inhibited TGF-β1-induced Smad2/3 activation in mouse lung epithelial cells (MLE-12 cells). Oral administration of nitazoxanide reduced the bleomycin-induced mice pulmonary fibrosis and, in the established bleomycin-induced mice, pulmonary fibrosis. Delayed nitazoxanide treatment attenuated the fibrosis progression. CONCLUSIONS AND IMPLICATIONS Nitazoxanide improves the bleomycin-induced pulmonary fibrosis in mice, suggesting a potential application of nitazoxanide for pulmonary fibrosis treatment in the clinic.
Collapse
Affiliation(s)
- Xu-Yang Chen
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Yan-Chao Dong
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Yuan-Yuan Yu
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Man Jiang
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Wen-Jie Bu
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Ping Li
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Zhi-Jie Sun
- Department of Pharmacology, China Pharmaceutical University, Nanjing, China
| | - De-Li Dong
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
- Department of Pharmacology, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
21
|
Cui N, Zhang W, Su F, Zhang Z, Li B, Peng D, Sun Y, Zeng Y, Yang B, Kuang H, Wang Q. Metabolomic and lipidomic studies on the intervention of taurochenodeoxycholic acid in mice with hyperlipidemia. Front Pharmacol 2023; 14:1255931. [PMID: 38034994 PMCID: PMC10684951 DOI: 10.3389/fphar.2023.1255931] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 10/30/2023] [Indexed: 12/02/2023] Open
Abstract
Bile acids are the main component of animal bile and are directly involved in the metabolic process of lipids in vivo. Taurochenodeoxycholic acid (TCDCA) is the primary biologically active substance in bile acids and has biological functions such as antioxidant, antipyretic, anti-inflammatory, and analgesic activities and improves immunity. In the present study, we assessed the impact of TCDCA on hyperlipidemia development in mouse models. Mice were fed a high-fat diet (HFD) to induce hyperlipidemia and orally administered different doses of TCDCA orally for 30 days. Then, indicators such as triglyceride (TG), total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C), and high-density lipoprotein cholesterol (HDL-C) in mice were detected. Using HE and ORO staining techniques, the morphology of the mice's liver tissue was detected. Based on metabolomic and lipidomic analyses, we determined the mechanism of TCDCA in treating hyperlipidemia. The results showed that TCDCA had a significant ameliorating effect on dietary hyperlipidemia. In addition, it exerted therapeutic effects through glycerophospholipid metabolism.
Collapse
Affiliation(s)
- Na Cui
- Key Laboratory of Basic and Application Research of Beiyao, Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Wensen Zhang
- Key Laboratory of Basic and Application Research of Beiyao, Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Fazhi Su
- Key Laboratory of Basic and Application Research of Beiyao, Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Zhihong Zhang
- Key Laboratory of Basic and Application Research of Beiyao, Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Biao Li
- Key Laboratory of Basic and Application Research of Beiyao, Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Donghui Peng
- Key Laboratory of Basic and Application Research of Beiyao, Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Yanping Sun
- Key Laboratory of Basic and Application Research of Beiyao, Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Yuanning Zeng
- School of Chinese Materia Medica, Guangdong Engineering Technology Research Center for Standardized Processing of Chinese Materia Medica Guangdong Pharmaceutical University, Guangdong, China
| | - Bingyou Yang
- Key Laboratory of Basic and Application Research of Beiyao, Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Haixue Kuang
- Key Laboratory of Basic and Application Research of Beiyao, Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Qiuhong Wang
- School of Chinese Materia Medica, Guangdong Engineering Technology Research Center for Standardized Processing of Chinese Materia Medica Guangdong Pharmaceutical University, Guangdong, China
| |
Collapse
|
22
|
Zhang T, Nie Y, Wang J. The emerging significance of mitochondrial targeted strategies in NAFLD treatment. Life Sci 2023; 329:121943. [PMID: 37454757 DOI: 10.1016/j.lfs.2023.121943] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 07/04/2023] [Accepted: 07/12/2023] [Indexed: 07/18/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is the most prevalent chronic liver disease worldwide, ranging from liver steatosis to nonalcoholic steatohepatitis, which ultimately progresses to fibrosis, cirrhosis, and hepatocellular carcinoma. Individuals with NAFLD have a higher risk of developing cardiovascular and extrahepatic cancers. Despite the great progress being made in understanding the pathogenesis and the introduction of new pharmacological targets for NAFLD, no drug or intervention has been accepted for its management. Recent evidence suggests that NAFLD may be a mitochondrial disease, as mitochondrial dysfunction is involved in the pathological processes that lead to NAFLD. In this review, we describe the recent advances in our understanding of the mechanisms associated with mitochondrial dysfunction in NAFLD progression. Moreover, we discuss recent advances in the efficacy of mitochondria-targeted compounds (e.g., Mito-Q, MitoVit-E, MitoTEMPO, SS-31, mitochondrial uncouplers, and mitochondrial pyruvate carrier inhibitors) for treating NAFLD. Furthermore, we present some medications currently being tested in clinical trials for NAFLD treatment, such as exercise, mesenchymal stem cells, bile acids and their analogs, and antidiabetic drugs, with a focus on their efficacy in improving mitochondrial function. Based on this evidence, further investigations into the development of mitochondria-based agents may provide new and promising alternatives for NAFLD management.
Collapse
Affiliation(s)
- Tao Zhang
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, China; Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | - Yingli Nie
- Department of Dermatology, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430014, China.
| | - Jiliang Wang
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| |
Collapse
|
23
|
Zhao Y, Sun N, Song X, Zhu J, Wang T, Wang Z, Yu Y, Ren J, Chen H, Zhan T, Tian J, Ma C, Huang J, Wang J, Zhang Y, Yang B. A novel small molecule AdipoR2 agonist ameliorates experimental hepatic steatosis in hamsters and mice. Free Radic Biol Med 2023; 203:69-85. [PMID: 37044149 DOI: 10.1016/j.freeradbiomed.2023.04.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 04/02/2023] [Indexed: 04/14/2023]
Abstract
Adiponectin receptor 2 (AdipoR2) can be activated by its endogenous ligand adiponectin to reduce hepatic steatosis, and is regarded as a therapeutic target for metabolic associated fatty liver disease (MAFLD). This study proposes a novel anthraquinone compound, emodin succinate monoethyl ester (ESME), which activates AdipoR2, inhibits hepatic lipogenesis, promotes fatty acid oxidation, and alleviates experimental hepatic steatosis in hamsters and mice. Molecular docking shows that ESME has strong binding potential with AdipoR2 by forming a arene-arene interaction. AdipoR2 on the cytomembrane of HepG2 cells can be labeled by fluorescent ESME (Cy5-ESME). ESME activates AdipoR2, AMPK and PPARα, and reduces lipid deposition in palmitic acid or oleic acid-induced HepG2 and L02 cells. Suppression of AdipoR2 expression or AMPK activation completely eliminates the effect of ESME on reducing lipid accumulation in hepatocytes. Oral administration of ESME reduces liver lipid production and accumulation, and alleviates hepatic steatosis in hamsters and Apoe-/- mice induced by high-fat diet. Compared with statins and emodin, ESME showed prepotent efficacy and safety in reducing hepatic steatosis and protecting hepatocytes. Furthermore, ESME activates CaMKK2 and LKB1 in liver to activate AMPK and reduce lipogenesis through stimulating AdipoR2. Taken together, ESME reduces hepatic lipid accumulation and alleviates hepatic steatosis by agonizing AdipoR2. ESME is a promising new agent for clinical treatment of MAFLD.
Collapse
Affiliation(s)
- Yixiu Zhao
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Na Sun
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Xia Song
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Jia Zhu
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Tianshuo Wang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Zhiqi Wang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Yuanyuan Yu
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Jing Ren
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Huan Chen
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Tingting Zhan
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Jiaying Tian
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Chunyue Ma
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Jian Huang
- Department of Medicinal Chemistry and Natural Medicine Chemistry, College of Pharmacy, Harbin Medical University, Harbin, China
| | - Jinhui Wang
- Department of Medicinal Chemistry and Natural Medicine Chemistry, College of Pharmacy, Harbin Medical University, Harbin, China
| | - Yan Zhang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China.
| | - Baofeng Yang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China.
| |
Collapse
|
24
|
Ma MH, Li FF, Li WF, Zhao H, Jiang M, Yu YY, Dong YC, Zhang YX, Li P, Bu WJ, Sun ZJ, Dong DL. Repurposing nitazoxanide as a novel anti-atherosclerotic drug based on mitochondrial uncoupling mechanisms. Br J Pharmacol 2023; 180:62-79. [PMID: 36082580 DOI: 10.1111/bph.15949] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 08/03/2022] [Accepted: 08/28/2022] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND AND PURPOSE The anthelmintic drug nitazoxanide has a mitochondrial uncoupling effect. Mitochondrial uncouplers have been proven to inhibit smooth muscle cell proliferation and migration, inhibit NLRP3 inflammasome activation of macrophages and improve dyslipidaemia. Therefore, we aimed to demonstrate that nitazoxanide would protect against atherosclerosis. EXPERIMENTAL APPROACH The mitochondrial oxygen consumption of cells was measured by using the high-resolution respirometry system, Oxygraph-2K. The proliferation and migration of A10 cells were measured by using Edu immunofluorescence staining, wound-induced migration and the Boyden chamber assay. Protein levels were measured by using the western blot technique. ApoE (-/-) mice were fed with a Western diet to establish an atherosclerotic model in vivo. KEY RESULTS The in vitro experiments showed that nitazoxanide and tizoxanide had a mitochondrial uncoupling effect and activated cellular AMPK. Nitazoxanide and tizoxanide inhibited serum- and PDGF-induced proliferation and migration of A10 cells. Nitazoxanide and tizoxanide inhibited NLRP3 inflammasome activation in RAW264.7 macrophages, the mechanism by which involved the AMPK/IκBα/NF-κB pathway. Nitazoxanide and tizoxanide also induced autophagy in A10 cells and RAW264.7 macrophages. The in vivo experiments demonstrated that oral administration of nitazoxanide reduced the increase in serum IL-1β and IL-6 levels and suppressed atherosclerosis in Western diet-fed ApoE (-/-) mice. CONCLUSION AND IMPLICATIONS Nitazoxanide inhibits the formation of atherosclerotic plaques in ApoE (-/-) mice fed on a Western diet. In view of nitazoxanide being an antiprotozoal drug already approved by the FDA, we propose it as a novel anti-atherosclerotic drug with clinical translational potential.
Collapse
Affiliation(s)
- Ming-Hui Ma
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, People's Republic of China
| | - Feng-Feng Li
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, People's Republic of China
| | - Wen-Feng Li
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, People's Republic of China
| | - Hui Zhao
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, People's Republic of China
| | - Man Jiang
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, People's Republic of China
| | - Yuan-Yuan Yu
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, People's Republic of China
| | - Yan-Chao Dong
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, People's Republic of China
| | - Yi-Xin Zhang
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, People's Republic of China
| | - Ping Li
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, People's Republic of China
| | - Wen-Jie Bu
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, People's Republic of China
| | - Zhi-Jie Sun
- Department of Pharmacology, China Pharmaceutical University, Nanjing, People's Republic of China
| | - De-Li Dong
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, People's Republic of China.,Department of Pharmacology, China Pharmaceutical University, Nanjing, People's Republic of China
| |
Collapse
|
25
|
Prikhodko VA, Bezborodkina NN, Okovityi SV. Pharmacotherapy for Non-Alcoholic Fatty Liver Disease: Emerging Targets and Drug Candidates. Biomedicines 2022; 10:274. [PMID: 35203484 PMCID: PMC8869100 DOI: 10.3390/biomedicines10020274] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/22/2022] [Accepted: 01/24/2022] [Indexed: 02/08/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD), or metabolic (dysfunction)-associated fatty liver disease (MAFLD), is characterized by high global incidence and prevalence, a tight association with common metabolic comorbidities, and a substantial risk of progression and associated mortality. Despite the increasingly high medical and socioeconomic burden of NAFLD, the lack of approved pharmacotherapy regimens remains an unsolved issue. In this paper, we aimed to provide an update on the rapidly changing therapeutic landscape and highlight the major novel approaches to the treatment of this disease. In addition to describing the biomolecules and pathways identified as upcoming pharmacological targets for NAFLD, we reviewed the current status of drug discovery and development pipeline with a special focus on recent evidence from clinical trials.
Collapse
Affiliation(s)
- Veronika A. Prikhodko
- Department of Pharmacology and Clinical Pharmacology, Saint Petersburg State Chemical and Pharmaceutical University, 14A Prof. Popov Str., 197022 St. Petersburg, Russia;
| | - Natalia N. Bezborodkina
- Zoological Institute, Russian Academy of Sciences, 1 Universitetskaya emb., 199034 St. Petersburg, Russia;
| | - Sergey V. Okovityi
- Department of Pharmacology and Clinical Pharmacology, Saint Petersburg State Chemical and Pharmaceutical University, 14A Prof. Popov Str., 197022 St. Petersburg, Russia;
- Scientific, Clinical and Educational Center of Gastroenterology and Hepatology, Saint Petersburg State University, 7/9 Universitetskaya emb., 199034 St. Petersburg, Russia
| |
Collapse
|
26
|
MI S, GU J, CAO X, LI Y, XU Q, CHEN W, ZHANG Y. Regulatory mechanism of fermented wheat germ on lipid metabolism in hyperlipidemia rats via activation of AMPK pathway. FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.57222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Shengquan MI
- Beijing Union University, China; Beijing Key Laboratory of Bioactive Substances and Functional Foods, China
| | - Junxia GU
- Beijing Union University, China; Beijing Key Laboratory of Bioactive Substances and Functional Foods, China
| | - Xuelian CAO
- Beijing Union University, China; Beijing Key Laboratory of Bioactive Substances and Functional Foods, China
| | - Yi LI
- Beijing Union University, China; Beijing Key Laboratory of Bioactive Substances and Functional Foods, China
| | - Qile XU
- Beijing Union University, China; Beijing Key Laboratory of Bioactive Substances and Functional Foods, China
| | - Wen CHEN
- Beijing Union University, China; Beijing Key Laboratory of Bioactive Substances and Functional Foods, China
| | - Yanzhen ZHANG
- Beijing Union University, China; Beijing Key Laboratory of Bioactive Substances and Functional Foods, China
| |
Collapse
|