1
|
Weiskirchen R, Weiskirchen S, Grassi C, Scaggiante B, Grassi M, Tierno D, Biasin A, Truong NH, Minh TD, Cemazar M, Pastorin G, Tonon F, Grassi G. Recent advances in optimizing siRNA delivery to hepatocellular carcinoma cells. Expert Opin Drug Deliv 2025; 22:729-745. [PMID: 40126051 DOI: 10.1080/17425247.2025.2484287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Accepted: 03/21/2025] [Indexed: 03/25/2025]
Abstract
INTRODUCTION Hepatocellularcarcinoma (HCC), the primary form of liver cancer, is the second leading cause of cancer-related deaths worldwide. Current therapies have limited effectiveness, particularly in advanced stages of the disease, highlighting the need for innovative treatment options. Small-interfering RNA(siRNA) molecules show great promise as a therapeutic solution since they can inhibit the expression of genes promoting HCC growth. Their cost-effective synthesis has further encouraged their potential use as novel drugs. However, siRNAs are vulnerable to degradation in biological environments, necessitating protective delivery systems. Additionally, targeted delivery to HCC is critical for optimal efficacy and minimal undesired side effects. AREACOVERED This review addresses the challenges associated with the delivery of siRNA toHCC, discussing and focusing on delivery systems based on lipid and polymeric nanoparticles in publications from the past five years. EXPERT OPINION Future nano particles will need to effectively cross the vessel wall, migrate through the extracellular matrix and finally cross the HCC cell membrane. This may be achieved by optimizing nanoparticle size, the equipment of nanoparticles withHCC targeting moieties and loading nanoparticles with siRNAs againstHCC-specific oncogenes.
Collapse
Affiliation(s)
- Ralf Weiskirchen
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), RWTH University Hospital Aachen, Aachen, Germany
| | - Sabine Weiskirchen
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), RWTH University Hospital Aachen, Aachen, Germany
| | | | | | - Mario Grassi
- Department of Engineering and Architecture, Trieste University, Trieste, Italy
| | - Domenico Tierno
- Clinical Department of Medical, Surgical and Health Sciences, Cattinara University Hospital, Trieste Univer-sity, Trieste, Italy
| | - Alice Biasin
- Department of Engineering and Architecture, Trieste University, Trieste, Italy
- Clinical Department of Medical, Surgical and Health Sciences, Cattinara University Hospital, Trieste Univer-sity, Trieste, Italy
| | - Nhung Hai Truong
- Laboratory of Regenerative Biomedicine, University of Science-VNUHCM, Ho Chi MInh City, Vietnam
- Faculty of Biology and Biotechnology, Viet Nam National University, Ho Chi Minh City, Vietnam
| | - Thanh Dang Minh
- Laboratory of Regenerative Biomedicine, University of Science-VNUHCM, Ho Chi MInh City, Vietnam
- Faculty of Biology and Biotechnology, Viet Nam National University, Ho Chi Minh City, Vietnam
| | - Maja Cemazar
- Department of Experimental Oncology, Institute of Oncology Ljubljana, Ljubljana, Slovenia
- Faculty of Health Sciences, University of Primorska, Izola, Slovenia
| | - Giorgia Pastorin
- Pharmacy Department, National University of Singapore, Singapore
| | - Federica Tonon
- Clinical Department of Medical, Surgical and Health Sciences, Cattinara University Hospital, Trieste Univer-sity, Trieste, Italy
| | - Gabriele Grassi
- Clinical Department of Medical, Surgical and Health Sciences, Cattinara University Hospital, Trieste Univer-sity, Trieste, Italy
| |
Collapse
|
2
|
Ren X, Yang W, Yan X, Zhang H. Exploring RNA binding proteins in hepatocellular carcinoma: insights into mechanisms and therapeutic potential. J Exp Clin Cancer Res 2025; 44:130. [PMID: 40275278 PMCID: PMC12020288 DOI: 10.1186/s13046-025-03395-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2025] [Accepted: 04/14/2025] [Indexed: 04/26/2025] Open
Abstract
Hepatocellular carcinoma (HCC), the most prevalent type of primary liver cancer, is linked to elevated global incidence and mortality rates. Elucidating the intricate molecular pathways that drive the progression of HCC is imperative for devising targeted and effective therapeutic interventions. RNA-binding proteins (RBPs) serve as pivotal regulators of post-transcriptional processes, influencing various cellular functions. This review endeavors to provide a comprehensive analysis of the expression, function, and potential implications of RBPs in HCC. We discuss the classification and diverse roles of RBPs, with a particular focus on key RBPs implicated in HCC and their association with disease progression. Additionally, we explore the mechanisms by which RBPs contribute to HCC, including their impact on gene expression, cell proliferation, cell metastasis, angiogenesis, signaling pathways, and post-transcriptional modifications. Importantly, we examine the potential of RBPs as therapeutic targets and prognostic biomarkers, offering insights into their relevance in HCC treatment. Finally, we outline future research directions, emphasizing the need for further investigation into the functional mechanisms of RBPs and their clinical translation for personalized HCC therapy. This comprehensive review highlights the pivotal role of RBPs in HCC and their potential as novel therapeutic avenues to improve patient outcomes.
Collapse
Affiliation(s)
- Xing Ren
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Wenna Yang
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Xiuli Yan
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China.
| | - Hui Zhang
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| |
Collapse
|
3
|
Sun L, Wan AH, Yan S, Liu R, Li J, Zhou Z, Wu R, Chen D, Bu X, Ou J, Li K, Lu X, Wan G, Ke Z. A multidimensional platform of patient-derived tumors identifies drug susceptibilities for clinical lenvatinib resistance. Acta Pharm Sin B 2024; 14:223-240. [PMID: 38261805 PMCID: PMC10793100 DOI: 10.1016/j.apsb.2023.09.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 09/07/2023] [Accepted: 09/13/2023] [Indexed: 01/25/2024] Open
Abstract
Lenvatinib, a second-generation multi-receptor tyrosine kinase inhibitor approved by the FDA for first-line treatment of advanced liver cancer, facing limitations due to drug resistance. Here, we applied a multidimensional, high-throughput screening platform comprising patient-derived resistant liver tumor cells (PDCs), organoids (PDOs), and xenografts (PDXs) to identify drug susceptibilities for conquering lenvatinib resistance in clinically relevant settings. Expansion and passaging of PDCs and PDOs from resistant patient liver tumors retained functional fidelity to lenvatinib treatment, expediting drug repurposing screens. Pharmacological screening identified romidepsin, YM155, apitolisib, NVP-TAE684 and dasatinib as potential antitumor agents in lenvatinib-resistant PDC and PDO models. Notably, romidepsin treatment enhanced antitumor response in syngeneic mouse models by triggering immunogenic tumor cell death and blocking the EGFR signaling pathway. A combination of romidepsin and immunotherapy achieved robust and synergistic antitumor effects against lenvatinib resistance in humanized immunocompetent PDX models. Collectively, our findings suggest that patient-derived liver cancer models effectively recapitulate lenvatinib resistance observed in clinical settings and expedite drug discovery for advanced liver cancer, providing a feasible multidimensional platform for personalized medicine.
Collapse
Affiliation(s)
- Lei Sun
- Department of Pathology, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
- National-Local Joint Engineering Laboratory of Druggability and New Drug Evaluation, National Engineering Research Center for New Drug and Druggability (Cultivation), Guangdong Province Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Arabella H. Wan
- Department of Pathology, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Shijia Yan
- National-Local Joint Engineering Laboratory of Druggability and New Drug Evaluation, National Engineering Research Center for New Drug and Druggability (Cultivation), Guangdong Province Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Ruonian Liu
- National-Local Joint Engineering Laboratory of Druggability and New Drug Evaluation, National Engineering Research Center for New Drug and Druggability (Cultivation), Guangdong Province Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Jiarui Li
- National-Local Joint Engineering Laboratory of Druggability and New Drug Evaluation, National Engineering Research Center for New Drug and Druggability (Cultivation), Guangdong Province Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Zhuolong Zhou
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Ruirui Wu
- National-Local Joint Engineering Laboratory of Druggability and New Drug Evaluation, National Engineering Research Center for New Drug and Druggability (Cultivation), Guangdong Province Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Dongshi Chen
- Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Xianzhang Bu
- National-Local Joint Engineering Laboratory of Druggability and New Drug Evaluation, National Engineering Research Center for New Drug and Druggability (Cultivation), Guangdong Province Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Jingxing Ou
- Department of Hepatic Surgery and Liver Transplantation Center, Third Affiliated Hospital, Organ Transplantation Institute, Sun Yat-sen University, Organ Transplantation Research Center of Guangdong Province, Guangdong Province Engineering Laboratory for Transplantation Medicine, Guangzhou 510630, China
- Guangdong Provincial Key Laboratory of Liver Disease Research, Guangzhou 510630, China
| | - Kai Li
- Department of Ultrasound, Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China
| | - Xiongbin Lu
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Melvin and Bren Simon Comprehensive Cancer Center, Indiana University, Indianapolis, IN 46202, USA
| | - Guohui Wan
- National-Local Joint Engineering Laboratory of Druggability and New Drug Evaluation, National Engineering Research Center for New Drug and Druggability (Cultivation), Guangdong Province Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Zunfu Ke
- Department of Pathology, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| |
Collapse
|
4
|
Jin Z, Meng Y, Wang M, Chen D, Zhu M, Huang Y, Xiong L, Xia S, Xiong Z. Comprehensive analysis of basement membrane and immune checkpoint related lncRNA and its prognostic value in hepatocellular carcinoma via machine learning. Heliyon 2023; 9:e20462. [PMID: 37810862 PMCID: PMC10556786 DOI: 10.1016/j.heliyon.2023.e20462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 09/13/2023] [Accepted: 09/26/2023] [Indexed: 10/10/2023] Open
Abstract
Background Hepatocellular carcinoma (HCC), which is characterized by its high malignancy, generally exhibits poor response to immunotherapy. As part of the tumor microenvironment, basement membranes (BMs) are involved in tumor development and immune activities. Presently, there is no integrated analysis linking the basement membrane with immune checkpoints, especially from the perspective of lncRNA. Methods Based on transcriptome data from The Cancer Genome Atlas, BMs-related and immune checkpoint-related lncRNAs were identified. By applying univariable Cox regression and Machine learning (LASSO and SVM-RFE algorithm), a 10-lncRNA prognosis signature was constructed. The prognostic significance of this signature was assessed by survival analysis. GSEA, ssGSEA, and drug sensitivity analysis were conducted to investigate potential functional pathways, immune status, and clinical implications of guiding individual treatments in HCC. Finally, the promoting migration effect of LINC01224 was validated via in vitro experiments. Results The multiple Cox regression, receiver operating characteristic curves, and stratified survival analysis of clinical subgroups exhibited the robust prognostic ability of the lncRNA signature. Results of the GSEA and drug sensitivity analysis revealed significant differences in potential functional pathways and response to drugs between the two risk groups. In addition, the risk level of HCC patients was distinctly correlated with immune cell infiltration status. More importantly, LINC01224 was independently associated with the OS of HCC patients (P < 0.05), suppressing the expression of LINC01224 inhibited the migration of HCC cells. Conclusion This study developed a reliable signature for the prognosis of HCC based on BM and immune checkpoint related lncRNA, revealing that LINC01224 might be a prognostic biomarker for HCC associated with the progression of HCC.
Collapse
Affiliation(s)
- Ze Jin
- Department of Gastroenterology, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yajun Meng
- Department of Gastroenterology, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Mengmeng Wang
- Department of Gastroenterology, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Di Chen
- Department of Gastroenterology, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Mengpei Zhu
- Department of Gastroenterology, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yumei Huang
- Department of Gastroenterology, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lina Xiong
- Department of Gastroenterology, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shang Xia
- Department of Internal Medicine and Geriatrics, Zhongnan Hospital of Wuhan University, Wuhan University, NO.169 Donghu Road, Wuhan, 430071, Hubei, China
| | - Zhifan Xiong
- Department of Gastroenterology, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
5
|
Zheng S, Li G, Shi J, Liu X, Li M, He Z, Tian C, Kamei KI. Emerging platinum(IV) prodrug nanotherapeutics: A new epoch for platinum-based cancer therapy. J Control Release 2023; 361:819-846. [PMID: 37597809 DOI: 10.1016/j.jconrel.2023.08.035] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 08/14/2023] [Accepted: 08/16/2023] [Indexed: 08/21/2023]
Abstract
Owing to the unique DNA damaging cytotoxicity, platinum (Pt)-based chemotherapy has long been the first-line choice for clinical oncology. Unfortunately, Pt drugs are restricted by the severe dose-dependent toxicity and drug resistance. Correspondingly, Pt(IV) prodrugs are developed with the aim to improve the antitumor performance of Pt drugs. However, as "free" molecules, Pt(IV) prodrugs are still subject to unsatisfactory in vivo destiny and antitumor efficacy. Recently, Pt(IV) prodrug nanotherapeutics, inheriting both the merits of Pt(IV) prodrugs and nanotherapeutics, have emerged and demonstrated the promise to address the underexploited dilemma of Pt-based cancer therapy. Herein, we summarize the latest fronts of emerging Pt(IV) prodrug nanotherapeutics. First, the basic outlines of Pt(IV) prodrug nanotherapeutics are overviewed. Afterwards, how versatile Pt(IV) prodrug nanotherapeutics overcome the multiple biological barriers of antitumor drug delivery is introduced in detail. Moreover, advanced combination therapies based on multimodal Pt(IV) prodrug nanotherapeutics are discussed with special emphasis on the synergistic mechanisms. Finally, prospects and challenges of Pt(IV) prodrug nanotherapeutics for future clinical translation are spotlighted.
Collapse
Affiliation(s)
- Shunzhe Zheng
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Guanting Li
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Jianbin Shi
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Xinying Liu
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Meng Li
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Zhonggui He
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Chutong Tian
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China; Key Laboratory of Advanced Drug Delivery Systems of Zhejiang Province, Hangzhou 310058, China.
| | - Ken-Ichiro Kamei
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China; Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Kyoto 606-8501, Japan.
| |
Collapse
|
6
|
Chen Z, Wang X, Zhao N, Chen H, Guo G. Advancements in pH-responsive nanocarriers: enhancing drug delivery for tumor therapy. Expert Opin Drug Deliv 2023; 20:1623-1642. [PMID: 38059646 DOI: 10.1080/17425247.2023.2292678] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 12/05/2023] [Indexed: 12/08/2023]
Abstract
INTRODUCTION Tumors pose a significant global economic and health burden, with conventional cancer treatments lacking tumor specificity, leading to limited efficiency and undesirable side effects. Targeted tumor therapy is imminent. Tumor cells produce lactate and hydrogen ions (H+) by Warburg effect, forming an acidic tumor microenvironment (TME), which can be employed to design targeted tumor therapy. Recently, progress in nanotechnology has led to the development of pH-responsive nanocarriers, which have gathered significant attention. Under acidic tumor conditions, they exhibit targeted accumulation within tumor sites and controlled release profiles of therapeutic reagents, enabling precise tumor therapy. AREAS COVERED This review comprehensively summarize the principles underlying pH-responsive features, discussing various types of pH-responsive nanocarriers, their advantages, and limitations. Innovative therapeutic drugs are also examined, followed by an exploration of recent advancements in applying various pH-responsive nanocarriers as delivery systems for enhanced tumor therapy. EXPERT OPINIONS pH-responsive nanocarriers have garnered significant attention for their capability to achieve targeted accumulation of therapeutic agents at tumor sites and controlled drug delivery profiles, ultimately increasing the efficiency of tumor eradication. It is anticipated that the employment of pH-responsive nanocarriers will elevate the effectiveness and safety of tumor therapy, contributing to improved overall outcomes.
Collapse
Affiliation(s)
- Zhouyun Chen
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, China
| | - Xiaoxiao Wang
- West China School of Stomatology, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Na Zhao
- School of Pharmacy, Shihezi University, Shihezi, China
| | - Haifeng Chen
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, China
| | - Gang Guo
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
7
|
Tao W. Editorial of Special Column on RNA Therapeutics and Drug Delivery Technologies for Medical Applications. Acta Pharm Sin B 2023; 13:1346-1347. [PMID: 37139417 PMCID: PMC10150037 DOI: 10.1016/j.apsb.2023.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023] Open
Affiliation(s)
- Wei Tao
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| |
Collapse
|