1
|
Bai X, Guo YR, Zhao ZM, Li XY, Dai DQ, Zhang JK, Li YS, Zhang CD. Macrophage polarization in cancer and beyond: from inflammatory signaling pathways to potential therapeutic strategies. Cancer Lett 2025; 625:217772. [PMID: 40324582 DOI: 10.1016/j.canlet.2025.217772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2025] [Revised: 04/30/2025] [Accepted: 05/02/2025] [Indexed: 05/07/2025]
Abstract
Macrophages are innate immune cells distributed throughout the body that play vital roles in organ development, tissue homeostasis, and immune surveillance. Macrophages acquire a binary M1/M2 polarized phenotype through signaling cascades upon sensing different signaling molecules in the environment, thereby playing a core role in a series of immune tasks, rendering precise regulation essential. M1/M2 macrophage phenotypes regulate inflammatory responses, while controlled activation of inflammatory signaling pathways is involved in regulating macrophage polarization. Among the relevant signaling pathways, we focus on the six well-characterized NF-κB, MAPK, JAK-STAT, PI3K/AKT, inflammasome, and cGAS-STING inflammatory pathways, and elucidate their roles and crosstalk in macrophage polarization. Furthermore, the effects of many environmental signals that influence macrophage polarization are investigated by modulating these pathways in vivo and in vitro. We thus detail the physiological and pathophysiological status of these six inflammatory signaling pathways and involvement in regulating macrophage polarization in cancer and beyond, as well as describe potential therapeutic approaches targeting these signaling pathways. In this review, the latest research advances in inflammatory signaling pathways regulating macrophage polarization are reviewed, as targeting these inflammatory signaling pathways provides suitable strategies to intervene in macrophage polarization and various tumor and non-tumor diseases.
Collapse
Affiliation(s)
- Xiao Bai
- Department of Surgical Oncology, The Fourth Affiliated Hospital of China Medical University, Shenyang 110032, China
| | - Yun-Ran Guo
- Health Sciences Institute of China Medical University, Shenyang 110122, China
| | - Zhe-Ming Zhao
- Department of Surgical Oncology, The Fourth Affiliated Hospital of China Medical University, Shenyang 110032, China
| | - Xin-Yun Li
- Clinical Medicine, The Fourth Affiliated Hospital of China Medical University, Shenyang 110032, China
| | - Dong-Qiu Dai
- Department of Surgical Oncology, The Fourth Affiliated Hospital of China Medical University, Shenyang 110032, China; Cancer Center, The Fourth Affiliated Hospital of China Medical University, Shenyang 110032, China.
| | - Jia-Kui Zhang
- Department of Surgical Oncology, The Fourth Affiliated Hospital of China Medical University, Shenyang 110032, China.
| | - Yong-Shuang Li
- Department of Surgical Oncology, The Fourth Affiliated Hospital of China Medical University, Shenyang 110032, China.
| | - Chun-Dong Zhang
- Department of Surgical Oncology, The Fourth Affiliated Hospital of China Medical University, Shenyang 110032, China; Central Laboratory, The Fourth Affiliated Hospital of China Medical University, Shenyang 110032, China.
| |
Collapse
|
2
|
Li Z, Cheng W, Gao K, Liang S, Ke L, Wang M, Fan J, Li D, Zhang P, Xu Z, Li N. Pyroptosis: A spoiler of peaceful coexistence between cells in degenerative bone and joint diseases. J Adv Res 2025; 71:227-262. [PMID: 38876191 DOI: 10.1016/j.jare.2024.06.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 05/23/2024] [Accepted: 06/07/2024] [Indexed: 06/16/2024] Open
Abstract
BACKGROUND As people age, degenerative bone and joint diseases (DBJDs) become more prevalent. When middle-aged and elderly people are diagnosed with one or more disorders such as osteoporosis (OP), osteoarthritis (OA), and intervertebral disc degeneration (IVDD), it often signals the onset of prolonged pain and reduced functionality. Chronic inflammation has been identified as the underlying cause of various degenerative diseases, including DBJDs. Recently, excessive activation of pyroptosis, a form of programed cell death (PCD) mediated by inflammasomes, has emerged as a primary driver of harmful chronic inflammation. Consequently, pyroptosis has become a potential target for preventing and treating DBJDs. AIM OF REVIEW This review explored the physiological and pathological roles of the pyroptosis pathway in bone and joint development and its relation to DBJDs. Meanwhile, it elaborated the molecular mechanisms of pyroptosis within individual cell types in the bone marrow and joints, as well as the interplay among different cell types in the context of DBJDs. Furthermore, this review presented the latest compelling evidence supporting the idea of regulating the pyroptosis pathway for DBJDs treatment, and discussed the potential, limitations, and challenges of various therapeutic strategies involving pyroptosis regulation. KEY SCIENTIFIC CONCEPTS OF REVIEW In summary, an interesting identity for the unregulated pyroptosis pathway in the context of DBJDs was proposed in this review, which was undertaken as a spoiler of peaceful coexistence between cells in a degenerative environment. Over the extended course of DBJDs, pyroptosis pathway perpetuated its activity through crosstalk among pyroptosis cascades in different cell types, thus exacerbating the inflammatory environment throughout the entire bone marrow and joint degeneration environment. Correspondingly, pyroptosis regulation therapy emerged as a promising option for clinical treatment of DBJDs.
Collapse
Affiliation(s)
- Zhichao Li
- First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250014, China; Department of Orthopedics, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250014, China; Center for Translational Medicine Research and Development, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Wenxiang Cheng
- Center for Translational Medicine Research and Development, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Kuanhui Gao
- First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250014, China
| | - Songlin Liang
- First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250014, China; Center for Translational Medicine Research and Development, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Liqing Ke
- Center for Translational Medicine Research and Development, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Mengjie Wang
- First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250014, China
| | - Jilin Fan
- First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250014, China
| | - Dandan Li
- College of Integrated Traditional Chinese and Western Medicine, Hebei University of Chinese Medicine, Shijiazhuang 050011, China
| | - Peng Zhang
- Center for Translational Medicine Research and Development, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; Faculty of Biomedical Engineering, Shenzhen University of Advanced Technology, Shenzhen 518000, China; Key Laboratory of Biomedical Imaging Science and System, Chinese Academy of Sciences, Shenzhen, 518000 China; Shandong Zhongke Advanced Technology Co., Ltd., Jinan, 250300 China.
| | - Zhanwang Xu
- First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250014, China; Department of Orthopedics, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250014, China.
| | - Nianhu Li
- First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250014, China; Department of Orthopedics, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250014, China.
| |
Collapse
|
3
|
Wu Y, Xiong J, Chen G, Liu Y, Zhao C, Zhang Z, Xu H. Oxymatrine relieves non-alcoholic fatty liver disease by promoting sirtuin 1/adenosine 5'-monophosphate-activated protein kinase pathway and peroxisome proliferator activated receptor alpha-mediated hepatic fatty acid oxidation. Eur J Pharmacol 2025; 987:177173. [PMID: 39637931 DOI: 10.1016/j.ejphar.2024.177173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 11/19/2024] [Accepted: 12/02/2024] [Indexed: 12/07/2024]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a liver disease without approved treatment. Oxymatrine (OMT) has protective effects in various liver diseases. We aimed to investigate the roles and mechanisms of OMT in NAFLD. NAFLD models were established using high-fat and high-sucrose diet-fed rats and oleic acid (OA)-stimulated hepatocytes, respectively. Then, OMT was used to treat the NAFLD models, with metformin as a positive control. Liver damage, lipid accumulation and hepatic lipid profile of NAFLD rats were assessed. Peroxisome proliferator activated receptor alpha (PPARα), sirtuin 1 (Sirt1)/adenosine 5'-monophosphate-activated protein kinase (AMPK) pathway- and fatty acid oxidation (acyl-CoA oxidase 1 and carnitine palmitoyltransferase 1A)-associated proteins were measured both in vivo and in vitro. Furthermore, hepatocytes were transfected with si-Sirt1 and oe-PPARα to verify the mechanisms of OMT in NAFLD. NAFLD rats supplemented with OMT displayed reduced liver damage and lipid accumulation. After OMT intervention, the liver lipid profile of NAFLD rats was changed greatly, most of the top differentially expressed lipid metabolites were triglyceride, moreover, diacylglycerol content was decreased in NAFLD rats. OMT activated the Sirt1/AMPK pathway and PPARα, and upregulated acyl-CoA oxidase 1 and carnitine palmitoyltransferase 1A expressions in NAFLD models. In vitro, OMT enhanced viability, and improved lipid accumulation in OA-stimulated hepatocytes. However, the protective functions of OMT in OA-exposed hepatocytes were offset by Sirt1 knockdown, while PPARα overexpression further counteracted the effects of Sirt1 knockdown. OMT could relieve NAFLD by promoting Sirt1/AMPK pathway- and PPARα-mediated hepatic fatty acid oxidation, indicating that OMT is a potential approach for NAFLD treatment.
Collapse
Affiliation(s)
- Yijun Wu
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Jingfang Xiong
- Department of Geriatrics, Hangzhou Red Cross Hospital, Hangzhou, 310003, China
| | - Gaofeng Chen
- Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Yihui Liu
- Department of Gastroenterology and Hepatology, Hangzhou Red Cross Hospital, Hangzhou, 310003, China
| | - Changqing Zhao
- Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; Department of Hepatology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Zhaolin Zhang
- Department of Gastroenterology and Hepatology, Hangzhou Red Cross Hospital, Hangzhou, 310003, China
| | - Hong Xu
- Department of Gastroenterology and Hepatology, Hangzhou Red Cross Hospital, Hangzhou, 310003, China.
| |
Collapse
|
4
|
Zhang M, Li K, Huang X, Xu D, Zong R, Hu Q, Dong X, Zhang Q, Jiang C, Ge Y, Li C, Ping J. Macrophage Notch1 signaling modulates regulatory T cells via the TGFB axis in early MASLD. JHEP Rep 2025; 7:101242. [PMID: 39717502 PMCID: PMC11664078 DOI: 10.1016/j.jhepr.2024.101242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 09/30/2024] [Accepted: 10/04/2024] [Indexed: 12/25/2024] Open
Abstract
Background & Aims Hepatic immune imbalance is crucial for driving metabolic dysfunction-associated steatotic liver disease (MASLD) progression. However, the role of hepatic regulatory T cells (Tregs) in MASLD initiation and the mechanisms responsible for their change are not completely understood. Methods A mouse model subjected to a short-term high-fat diet (HFD) to mimic early steatosis, along with liver biopsy samples from patients with simple steatosis, and macrophage-specific Notch1-knockout mice (Notch1M-KO), were used to investigate the role of Tregs in early MASLD and the effect of hepatic macrophage Notch1 signaling on Treg frequency. The miRNAs correlated with Treg differentiation were analyzed using exosomal miRNA sequencing. Results A decrease in Tregs contributed to HFD-induced hepatic steatosis and insulin resistance (five/group/time point, p <0.001). Remarkably, the frequency of Tregs was negatively correlated with Notch1 activation in hepatic macrophages during hepatic steatosis (38/group, r = -0.735, p <0.001). Furthermore, Notch1 deficiency attenuated hepatic lipid deposition and reversed Treg levels (five/group, p <0.01 and <0.05, respectively). Moreover, Treg depletion in Notch1M-KO mice greatly diminished the ameliorative effect of macrophagic Notch1 deletion on hepatic steatosis. Mechanistically, macrophage Notch1 activation increased the level of exosomal miR-142a-3p (by one- to two- fold), impairing Treg differentiation by targeting transforming growth factor beta receptor 1 (TGFBR1) on T cells. Consistently, HFD-fed Notch1M-KO mice exhibited reduced miR-142a-3p levels, elevated TGFBR1 expression on T cells, and increased Treg frequency in the liver. Conclusions These findings highlight the crucial role of hepatic Tregs during the early stage of MASLD and add a novel, non-negligible pathway for macrophage involvement in hepatic steatosis. We identify a previously unrecognized molecular mechanism involving the macrophage Notch1/exosomal miR-142a-3p/TGFBR1 pathway in regulating Treg differentiation, providing a rationale for refined therapeutic strategies for MASLD. Impact and implications The immune mechanisms driving MASLD progression, particularly during the early stages of disease, are not fully understood, which limits the development of effective interventions. This study elucidated a novel mechanism by which hepatic macrophage Notch1 signaling modulated Tregs through the exosomal miR-142a-3p/TGFBR1 axis, contributing to the progression of MASLD. These findings provide a rationale for a potential immunological approach to treat MASLD in the future.
Collapse
Affiliation(s)
- Mengya Zhang
- Department of Pharmacology, Wuhan University TaiKang Medical School (School of Basic Medical Sciences), Wuhan 430071, China
| | - Kun Li
- Department of Hepatobiliary and Pancreatic Surgery, Hubei Provincial Clinical Medicine Research Center for Minimally Invasive Diagnosis and Treatment of Hepatobiliary and Pancreatic Diseases, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Xiaoxing Huang
- Department of Blood Transfusion, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Dongqin Xu
- Department of Pharmacology, Wuhan University TaiKang Medical School (School of Basic Medical Sciences), Wuhan 430071, China
| | - Ruobin Zong
- Department of Physiology, Wuhan University TaiKang Medical School (School of Basic Medical Sciences), Wuhan 430071, China
| | - Qintong Hu
- Department of Pharmacology, Wuhan University TaiKang Medical School (School of Basic Medical Sciences), Wuhan 430071, China
| | - Xiaoyu Dong
- Department of Pharmacology, Wuhan University TaiKang Medical School (School of Basic Medical Sciences), Wuhan 430071, China
| | - Qinyong Zhang
- Department of Pharmacology, Wuhan University TaiKang Medical School (School of Basic Medical Sciences), Wuhan 430071, China
| | - Chaochen Jiang
- Department of Pharmacology, Wuhan University TaiKang Medical School (School of Basic Medical Sciences), Wuhan 430071, China
| | - Yue Ge
- Department of Pharmacology, Wuhan University TaiKang Medical School (School of Basic Medical Sciences), Wuhan 430071, China
| | - Changyong Li
- Department of Physiology, Wuhan University TaiKang Medical School (School of Basic Medical Sciences), Wuhan 430071, China
| | - Jie Ping
- Department of Pharmacology, Wuhan University TaiKang Medical School (School of Basic Medical Sciences), Wuhan 430071, China
| |
Collapse
|
5
|
Long Q, Ye H, Song S, Li J, Wu J, Mao J, Li R, Ke Li, Gao Z, Zheng Y. A transcriptome-based risk model in sepsis enables prognostic prediction and drug repositioning. iScience 2024; 27:111277. [PMID: 39628572 PMCID: PMC11613189 DOI: 10.1016/j.isci.2024.111277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 10/02/2024] [Accepted: 10/25/2024] [Indexed: 12/06/2024] Open
Abstract
Septic management presented a tremendous challenge due to heterogeneous host responses. We aimed to develop a risk model for early septic stratification based on transcriptomic signature. Here, we combined genes OLAH, LY96, HPGD, and ABLIM1 into a prognostic risk score model, which demonstrated exceptional performance in septic diagnosis (AUC = 0.99-1.00) and prognosis (AUC = 0.61-0.70), outperforming that of Mars and SRS endotypes. Also, the model unveiled immunosuppressive status in high-risk patients and a poor response to hydrocortisone in low-risk individuals. Single-cell transcriptome analysis further elucidated expression patterns and effects of the four genes across immune cell types, illustrating integrated host responses reflected by this model. Upon distinct transcriptional profiles of risk subgroups, we identified fenretinide and meloxicam as therapeutic agents, which significantly improved survival in septic mice models. Our study introduced a risk model that optimized risk stratification and drug repurposing of sepsis, thereby offering a comprehensive management approach.
Collapse
Affiliation(s)
- Qiuyue Long
- Department of Respiratory, Critical Care and Sleep Medicine, Xiang’an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361101, China
- Institute of Chest and Lung Diseases, Xiamen University, Xiamen 361101, China
| | - Hongli Ye
- Department of Respiratory, Critical Care and Sleep Medicine, Xiang’an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361101, China
- Institute of Chest and Lung Diseases, Xiamen University, Xiamen 361101, China
| | - Shixu Song
- Department of Respiratory, Critical Care and Sleep Medicine, Xiang’an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361101, China
- Institute of Chest and Lung Diseases, Xiamen University, Xiamen 361101, China
| | - Jiwei Li
- Department of Respiratory, Critical Care and Sleep Medicine, Xiang’an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361101, China
- Institute of Chest and Lung Diseases, Xiamen University, Xiamen 361101, China
| | - Jing Wu
- Department of Respiratory, Critical Care and Sleep Medicine, Xiang’an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361101, China
- Institute of Chest and Lung Diseases, Xiamen University, Xiamen 361101, China
| | - Jingsong Mao
- Department of Vascular Intervention, Guilin Medical College Affiliated Hospital, Guilin Medical College, Guilin 541000, China
| | - Ran Li
- Department of Respiratory and Critical Care Medicine, Peking University People’s Hospital, Beijing 100044, China
| | - Ke Li
- Department of Critical Care Medicine, Xiang’an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361101, China
| | - Zhancheng Gao
- Department of Respiratory, Critical Care and Sleep Medicine, Xiang’an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361101, China
- Institute of Chest and Lung Diseases, Xiamen University, Xiamen 361101, China
- Department of Respiratory and Critical Care Medicine, Peking University People’s Hospital, Beijing 100044, China
| | - Yali Zheng
- Department of Respiratory, Critical Care and Sleep Medicine, Xiang’an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361101, China
- Institute of Chest and Lung Diseases, Xiamen University, Xiamen 361101, China
| |
Collapse
|
6
|
Yan L, Yan Y, Yang K, Chang Q, Zhang L. Metabolomics reveals dysregulated all-trans retinoic acid and polyunsaturated fatty acid metabolism contribute to PXR-induced hepatic steatosis in mice. Toxicol Lett 2024; 398:150-160. [PMID: 38971454 DOI: 10.1016/j.toxlet.2024.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 06/05/2024] [Accepted: 07/02/2024] [Indexed: 07/08/2024]
Abstract
Activation of pregnane X receptor (PXR) by xenobiotics has been associated with metabolic diseases. This study aimed to reveal the impact of PXR activation on hepatic metabolome and explore novel mechanisms underlying PXR-mediated lipid metabolism disorder in the liver. Wild-type and PXR-deficient male C57BL/6 mice were used as in vivo models, and hepatic steatosis was induced by pregnenolone-16α-carbonitrile, a typical rodent PXR agonist. Metabolomic analysis of liver tissues showed that PXR activation led to significant changes in metabolites involved in multiple metabolic pathways previously reported, including lipid metabolism, energy homeostasis, and amino acid metabolism. Moreover, the level of hepatic all-trans retinoic acid (ATRA), the main active metabolite of vitamin A, was significantly increased by PXR activation, and genes involved in ATRA metabolism exhibited differential expression following PXR activation or deficiency. Consistent with previous research, the expression of downstream target genes of peroxisome proliferator-activated receptor α (PPARα) was decreased. Analysis of fatty acids by Gas Chromatography-Mass Spectrometer further revealed changes in polyunsaturated fatty acid metabolism upon PXR activation, suggesting inhibition of PPARα activity. Taken together, our findings reveal a novel metabolomic signature of hepatic steatosis induced by PXR activation in mice.
Collapse
Affiliation(s)
- Liang Yan
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou Univerisity, Zhengzhou 450052, China.
| | - Yachun Yan
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou Univerisity, Zhengzhou 450052, China
| | - Kun Yang
- Department of Pharmacology, School of Basic Medicine, Zhengzhou University, Zhengzhou 450052, China
| | - Qi Chang
- Department of Pharmacology, School of Basic Medicine, Zhengzhou University, Zhengzhou 450052, China
| | - Lirong Zhang
- Department of Pharmacology, School of Basic Medicine, Zhengzhou University, Zhengzhou 450052, China.
| |
Collapse
|
7
|
Wu J, Wang J, Duan C, Han C, Hou X. Identifying MS4A6A + macrophages as potential contributors to the pathogenesis of nonalcoholic fatty liver disease, periodontitis, and type 2 diabetes mellitus. Heliyon 2024; 10:e29340. [PMID: 38644829 PMCID: PMC11033123 DOI: 10.1016/j.heliyon.2024.e29340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 03/14/2024] [Accepted: 04/05/2024] [Indexed: 04/23/2024] Open
Abstract
Purpose Concrete epidemiological evidence has suggested the mutually-contributing effect respectively between nonalcoholic fatty liver disease (NAFLD), type 2 diabetes mellitus (T2DM), and periodontitis (PD); however, their shared crosstalk mechanism remains an open issue. Method The NAFLD, PD, and T2DM-related datasets were obtained from the NCBI GEO repository. Their common differentially expressed genes (DEGs) were identified and the functional enrichment analysis performed by the DAVID platform determined relevant biological processes and pathways. Then, the STRING database established a PPI network of such DEGs and topological analysis through Cytoscape 3.7.1 software along with the machine-learning analysis by the least absolute shrinkage and selection operator (LASSO) algorithm screened out hub characteristic genes. Their efficacy was validated by external datasets using the receiver operating characteristic (ROC) curve, and gene expression and location of the most robust one was determined using single-cell sequencing and immunohistochemical staining. Finally, the promising drugs were predicted through the CTD database, and the CB-DOCK 2 and Pymol platform mimicked molecular docking. Result Intersection of differentially expressed genes from three datasets identified 25 shared DEGs of the three diseases, which were enriched in MHC II-mediated antigen presenting process. PPI network and LASSO machine-learning analysis determined 4 feature genes, of which the MS4A6A gene mainly expressed by macrophages was the hub gene and key immune cell type. Molecular docking simulation chosen fenretinide as the most promising medicant for MS4A6A+ macrophages. Conclusion MS4A6A+ macrophages were suggested to be important immune-related mediators in the progression of NAFLD, PD, and T2DM pathologies.
Collapse
Affiliation(s)
- Junhao Wu
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Jinsheng Wang
- Department of Gastroenterology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310016, China
| | - Caihan Duan
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Chaoqun Han
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xiaohua Hou
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| |
Collapse
|
8
|
Hou C, Wang D, Zhao M, Ballar P, Zhang X, Mei Q, Wang W, Li X, Sheng Q, Liu J, Wei C, Shen Y, Yang Y, Wang P, Shao J, Xu S, Wang F, Sun Y, Shen Y. MANF brakes TLR4 signaling by competitively binding S100A8 with S100A9 to regulate macrophage phenotypes in hepatic fibrosis. Acta Pharm Sin B 2023; 13:4234-4252. [PMID: 37799387 PMCID: PMC10547964 DOI: 10.1016/j.apsb.2023.07.027] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 05/18/2023] [Accepted: 06/13/2023] [Indexed: 10/07/2023] Open
Abstract
The mesencephalic astrocyte-derived neurotrophic factor (MANF) has been recently identified as a neurotrophic factor, but its role in hepatic fibrosis is unknown. Here, we found that MANF was upregulated in the fibrotic liver tissues of the patients with chronic liver diseases and of mice treated with CCl4. MANF deficiency in either hepatocytes or hepatic mono-macrophages, particularly in hepatic mono-macrophages, clearly exacerbated hepatic fibrosis. Myeloid-specific MANF knockout increased the population of hepatic Ly6Chigh macrophages and promoted HSCs activation. Furthermore, MANF-sufficient macrophages (from WT mice) transfusion ameliorated CCl4-induced hepatic fibrosis in myeloid cells-specific MANF knockout (MKO) mice. Mechanistically, MANF interacted with S100A8 to competitively block S100A8/A9 heterodimer formation and inhibited S100A8/A9-mediated TLR4-NF-κB signal activation. Pharmacologically, systemic administration of recombinant human MANF significantly alleviated CCl4-induced hepatic fibrosis in both WT and hepatocytes-specific MANF knockout (HKO) mice. This study reveals a mechanism by which MANF targets S100A8/A9-TLR4 as a "brake" on the upstream of NF-κB pathway, which exerts an impact on macrophage differentiation and shed light on hepatic fibrosis treatment.
Collapse
Affiliation(s)
- Chao Hou
- School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China
- Biopharmaceutical Research Institute, Anhui Medical University, Hefei 230032, China
| | - Dong Wang
- School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China
- Biopharmaceutical Research Institute, Anhui Medical University, Hefei 230032, China
| | - Mingxia Zhao
- School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China
- Biopharmaceutical Research Institute, Anhui Medical University, Hefei 230032, China
| | - Petek Ballar
- Department of Biochemistry, Faculty of Pharmacy, Ege University, Izmir 35100, Turkey
| | - Xinru Zhang
- School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China
- Biopharmaceutical Research Institute, Anhui Medical University, Hefei 230032, China
| | - Qiong Mei
- School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China
- Biopharmaceutical Research Institute, Anhui Medical University, Hefei 230032, China
| | - Wei Wang
- School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China
- Biopharmaceutical Research Institute, Anhui Medical University, Hefei 230032, China
| | - Xiang Li
- School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China
- Biopharmaceutical Research Institute, Anhui Medical University, Hefei 230032, China
| | - Qiang Sheng
- School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China
- Biopharmaceutical Research Institute, Anhui Medical University, Hefei 230032, China
| | - Jun Liu
- School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China
- Biopharmaceutical Research Institute, Anhui Medical University, Hefei 230032, China
| | - Chuansheng Wei
- School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China
- Biopharmaceutical Research Institute, Anhui Medical University, Hefei 230032, China
| | - Yujun Shen
- School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China
- Biopharmaceutical Research Institute, Anhui Medical University, Hefei 230032, China
| | - Yi Yang
- School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China
- Biopharmaceutical Research Institute, Anhui Medical University, Hefei 230032, China
| | - Peng Wang
- School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China
- Biopharmaceutical Research Institute, Anhui Medical University, Hefei 230032, China
| | - Juntang Shao
- School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China
- Biopharmaceutical Research Institute, Anhui Medical University, Hefei 230032, China
| | - Sa Xu
- School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China
- Biopharmaceutical Research Institute, Anhui Medical University, Hefei 230032, China
| | - Fuyan Wang
- School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China
- Biopharmaceutical Research Institute, Anhui Medical University, Hefei 230032, China
| | - Yang Sun
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Yuxian Shen
- School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China
- Biopharmaceutical Research Institute, Anhui Medical University, Hefei 230032, China
| |
Collapse
|
9
|
Park SJ, Garcia Diaz J, Um E, Hahn YS. Major roles of kupffer cells and macrophages in NAFLD development. Front Endocrinol (Lausanne) 2023; 14:1150118. [PMID: 37274349 PMCID: PMC10235620 DOI: 10.3389/fendo.2023.1150118] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 05/09/2023] [Indexed: 06/06/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is an important public health problem with growing numbers of NAFLD patients worldwide. Pathological conditions are different in each stage of NAFLD due to various factors. Preclinical and clinical studies provide evidence for a crucial role of immune cells in NAFLD progression. Liver-resident macrophages, kupffer cells (KCs), and monocytes-derived macrophages are the key cell types involved in the progression of NAFLD, non-alcoholic steatohepatitis (NASH), and hepatocellular carcinoma (HCC). Their unique polarization contributes to the progression of NAFLD. KCs are phagocytes with self-renewal abilities and play a role in regulating and maintaining homeostasis. Upon liver damage, KCs are activated and colonized at the site of the damaged tissue. The secretion of inflammatory cytokines and chemokines by KCs play a pivotal role in initiating NAFLD pathogenesis. This review briefly describes the role of immune cells in the immune system in NAFLD, and focuses on the pathological role and molecular pathways of KCs and recruited macrophages. In addition, the relationship between macrophages and insulin resistance is described. Finally, the latest therapeutics that target KCs and macrophages are summarized for the prevention and treatment of NAFLD.
Collapse
Affiliation(s)
- Soo-Jeung Park
- Beirne B. Carter Center for Immunology Research, University of Virginia, Charlottesville, VA, United States
| | - Josefina Garcia Diaz
- Beirne B. Carter Center for Immunology Research, University of Virginia, Charlottesville, VA, United States
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, VA, United States
| | - Eugene Um
- Beirne B. Carter Center for Immunology Research, University of Virginia, Charlottesville, VA, United States
| | - Young S. Hahn
- Beirne B. Carter Center for Immunology Research, University of Virginia, Charlottesville, VA, United States
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, VA, United States
| |
Collapse
|