2
|
Li X, Ayada I, Li P, Pan Q. Denifanstat for the treatment of metabolic dysfunction-associated steatohepatitis. Lancet Gastroenterol Hepatol 2025; 10:108-109. [PMID: 39805278 DOI: 10.1016/s2468-1253(24)00388-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 11/02/2024] [Accepted: 11/07/2024] [Indexed: 01/16/2025]
Affiliation(s)
- Xincheng Li
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, 3015 CN Rotterdam, Netherlands; Department of Surgery, Erasmus MC Transplant Institute, University Medical Center, Rotterdam, Netherlands
| | - Ibrahim Ayada
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, 3015 CN Rotterdam, Netherlands
| | - Pengfei Li
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, 3015 CN Rotterdam, Netherlands
| | - Qiuwei Pan
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, 3015 CN Rotterdam, Netherlands.
| |
Collapse
|
6
|
Xu M, Tan J, Zhu L, Ge C, Dong W, Dai X, Kuang Q, Zhong S, Lai L, Yi C, Li Q, Lou D, Hu L, Liu X, Kuang G, Luo J, Feng J, Wang B. The deubiquitinating enzyme 13 retards non-alcoholic steatohepatitis via blocking inactive rhomboid protein 2-dependent pathway. Acta Pharm Sin B 2023; 13:1071-1092. [PMID: 36970206 PMCID: PMC10031279 DOI: 10.1016/j.apsb.2022.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 08/22/2022] [Accepted: 10/26/2022] [Indexed: 12/14/2022] Open
Abstract
Nowadays potential preclinical drugs for the treatment of nonalcoholic steatohepatitis (NASH) have failed to achieve expected therapeutic efficacy because the pathogenic mechanisms are underestimated. Inactive rhomboid protein 2 (IRHOM2), a promising target for treatment of inflammation-related diseases, contributes to deregulated hepatocyte metabolism-associated nonalcoholic steatohepatitis (NASH) progression. However, the molecular mechanism underlying Irhom2 regulation is still not completely understood. In this work, we identify the ubiquitin-specific protease 13 (USP13) as a critical and novel endogenous blocker of IRHOM2, and we also indicate that USP13 is an IRHOM2-interacting protein that catalyzes deubiquitination of Irhom2 in hepatocytes. Hepatocyte-specific loss of the Usp13 disrupts liver metabolic homeostasis, followed by glycometabolic disorder, lipid deposition, increased inflammation, and markedly promotes NASH development. Conversely, transgenic mice with Usp13 overexpression, lentivirus (LV)- or adeno-associated virus (AAV)-driven Usp13 gene therapeutics mitigates NASH in 3 models of rodent. Mechanistically, in response to metabolic stresses, USP13 directly interacts with IRHOM2 and removes its K63-linked ubiquitination induced by ubiquitin-conjugating enzyme E2N (UBC13), a ubiquitin E2 conjugating enzyme, and thus prevents its activation of downstream cascade pathway. USP13 is a potential treatment target for NASH therapy by targeting the Irhom2 signaling pathway.
Collapse
Affiliation(s)
- Minxuan Xu
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing 400067, China
- College of Modern Health Industry, Chongqing University of Education, Chongqing 400067, China
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, China
| | - Jun Tan
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing 400067, China
- College of Modern Health Industry, Chongqing University of Education, Chongqing 400067, China
| | - Liancai Zhu
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, China
| | - Chenxu Ge
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing 400067, China
- College of Modern Health Industry, Chongqing University of Education, Chongqing 400067, China
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, China
| | - Wei Dong
- Shandong Cancer Hospital and Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, China
| | - Xianling Dai
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing 400067, China
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, China
| | - Qin Kuang
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing 400067, China
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, China
| | - Shaoyu Zhong
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing 400067, China
- College of Modern Health Industry, Chongqing University of Education, Chongqing 400067, China
| | - Lili Lai
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing 400067, China
- College of Modern Health Industry, Chongqing University of Education, Chongqing 400067, China
| | - Chao Yi
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing 400067, China
- College of Modern Health Industry, Chongqing University of Education, Chongqing 400067, China
| | - Qiang Li
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing 400067, China
- College of Modern Health Industry, Chongqing University of Education, Chongqing 400067, China
| | - Deshuai Lou
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing 400067, China
- College of Modern Health Industry, Chongqing University of Education, Chongqing 400067, China
| | - Linfeng Hu
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing 400067, China
- College of Modern Health Industry, Chongqing University of Education, Chongqing 400067, China
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, China
| | - Xi Liu
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing 400067, China
- College of Modern Health Industry, Chongqing University of Education, Chongqing 400067, China
| | - Gang Kuang
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing 400067, China
- College of Modern Health Industry, Chongqing University of Education, Chongqing 400067, China
| | - Jing Luo
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing 400067, China
- College of Modern Health Industry, Chongqing University of Education, Chongqing 400067, China
| | - Jing Feng
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, China
| | - Bochu Wang
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, China
| |
Collapse
|