1
|
Zhu K, Wang J, Wang Z, Chen Q, Song J, Chen X. Ultrasound-Activated Theranostic Materials and Their Bioapplications. Angew Chem Int Ed Engl 2025; 64:e202422278. [PMID: 40091509 DOI: 10.1002/anie.202422278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 03/01/2025] [Accepted: 03/16/2025] [Indexed: 03/19/2025]
Abstract
Ultrasound (US) is a promising external excitation modality for bioapplications, offering significant advantages over X-rays or lasers due to its low cost, high biosafety, and ideal tissue penetration depth. US-activated theranostic materials, comprising organic, inorganic, and hybrid-based compounds, hold particular value in synergistic cancer therapeutic and diagnostic applications. These materials exhibit excellent imaging properties, high drug delivery and release efficiency, and enhanced reactive oxygen species (ROS) production, making them suitable for clinical diagnostic imaging and therapeutic interventions. This review summarizes recent research on the design, performance, and optimization of US-mediated molecules/nanosystems for a wide range of biomedical applications. Additionally, the multifunctional use of these sonosensitizers in imaging, drug delivery, and sonodynamic therapy, especially in combination with other treatments, could pave the way for innovative strategies in disease therapy. Finally, an overview of this field's challenges and potential future directions is provided, highlighting pathways to promote clinical translation and application.
Collapse
Affiliation(s)
- Kang Zhu
- State Key Laboratory of Chemical Resource Engineering, Cellege of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, P.R. China
| | - Jimei Wang
- State Key Laboratory of Chemical Resource Engineering, Cellege of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, P.R. China
| | - Zhao Wang
- College of Biological and Chemical Engineering, Qilu Institute of Technology, Jinan, 250000, P.R. China
| | - Qing Chen
- State Key Laboratory of Chemical Resource Engineering, Cellege of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, P.R. China
| | - Jibin Song
- State Key Laboratory of Chemical Resource Engineering, Cellege of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, P.R. China
| | - Xiaoyuan Chen
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117599, Singapore
- Nanomedicine Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
- Theranostics Center of Excellence (TCE), Yong Loo Lin School of Medicine, National University of Singapore, 11 Biopolis Way, Helios, Singapore, 138667, Singapore
- Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Singapore
- Department of Pharmacy and Pharmaceutical Sciences, National University of Singapore, Lower Kent Ridge Road, 4 Science Drive 2, Singapore, 117544, Singapore
| |
Collapse
|
2
|
Su J, Yan T, Zhang X, Yan T, Wang Z. Tumor microenvironment-responsive diagnosis and treatment of integrated drug-loaded CdTe quantum dots for treatment tumors. NANOTECHNOLOGY 2025; 36:235101. [PMID: 40345213 DOI: 10.1088/1361-6528/add6ad] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Accepted: 05/09/2025] [Indexed: 05/11/2025]
Abstract
The acidic tumor microenvironment is a common feature of tumors, and boric acid-functionalized quantum dots (BA-QDs) exhibit pH-sensitive boron affinity effects and fluorescence emission characteristics. In this study, CdTe QDs were prepared using the water phase synthesis method. Additionally, BA-QDs were prepared by modifying QDs with 4-mercaptophenylboric acid. Hesperetin, baicalein, quercetin, and other model drugs were used, with QDs and BA-QDs serving as carriers, to create a drug-loaded system of QDs with tumor microenvironment-responsive drug release performance. The physical and chemical properties were characterized using dynamic light scattering (DLS), Fourier transform infrared spectroscopy, transmission electron microscopy, x-ray diffraction, etc. Our findings showed that the synthesis of drug-loaded QDs with a uniform particle size was successful. The experiments involved studying the adsorption kinetics of the QDs and the degree of dissolution of the drug-loaded QDsin vitro. BA-QDs exhibited pH-responsive drug release and fluorescence emission properties.In vitrocell experiments were conducted to examine the uptake and imaging effects of QDs and BA-QDs at the cell level. The results showed that both QDs and BA-QDs exhibited effective imaging at the cell level. Moreover, the three drug-loaded BA-QDs inhibited HepG2 cancer cells by about 80%, indicating a significant inhibitory effect on cancer cells. Here, we developed a universal new technology for tumor diagnosis and treatment, provided innovative approaches for targeted cancer diagnosis and treatment, and broadened the application scope of nanofluorescence technology.
Collapse
Affiliation(s)
- Jiahao Su
- Department of Chemical Biology and Pharmaceutical Engineering, School of Chemistry and Chemical Engineering, Anhui University of Technology, Ma'anshan 243032, People's Republic of China
| | - Tingyuan Yan
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 210009, Jiangsu, People's Republic of China
| | - Xiankang Zhang
- Department of Chemical Biology and Pharmaceutical Engineering, School of Chemistry and Chemical Engineering, Anhui University of Technology, Ma'anshan 243032, People's Republic of China
| | - Tingxuan Yan
- Department of Chemical Biology and Pharmaceutical Engineering, School of Chemistry and Chemical Engineering, Anhui University of Technology, Ma'anshan 243032, People's Republic of China
| | - Zhixiang Wang
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 210009, Jiangsu, People's Republic of China
| |
Collapse
|
3
|
Wang Z, Nie S, Wang M, Niu H, Wei L, Yang Z, Liu X, Chen Y, Yang Y, Li C, Zhang Q, Feng L, Ma H, Chen R, Cheng Y. An oxygen-independent therapeutic nanosystem for fighting against hypoxic and antioxidant microenvironment of tumor. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2025; 268:113184. [PMID: 40409132 DOI: 10.1016/j.jphotobiol.2025.113184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2025] [Revised: 05/08/2025] [Accepted: 05/17/2025] [Indexed: 05/25/2025]
Abstract
The innate hypoxic and antioxidant defendant microenvironment are the main obstacles for improving reactive oxygen species (ROS) based therapeutic efficacy against cancer. Herein, bismuth tungstate (BWO) nanoparticles (NPs) were fabricated for ultrasound activated hydroxyl radical (OH•) production through being reacted with water in an oxygen-independent manner due to their more positive potential of valent band position than that of OH• generation. For relieving antioxidant defense, BWOST NPs were designed through loading L-buthionine sulfoximine into hollow BWO NPs to inhibit the synthesis of glutathione (GSH), and coating pH-responsive tannic acid-Fe complex on the surface to prevent drug leakage. Both in vitro and in vivo assessments demonstrated that BWOST NPs could effectively lower intracellular GSH levels, inducing apoptosis of cancer cells and eliminating tumors. Therefore, BWOST NPs showed an amplified sonodynamic therapy efficacy through lower antioxidant defense and oxygen-independent OH• generation, which provided an effective strategy for improving ROS based cancer therapy.
Collapse
Affiliation(s)
- Zixuan Wang
- Jilin Provincial Key Laboratory of Human Health Status Identification and Function Enhancement, School of Materials Science and Engineering, Changchun University, Changchun 130022, China
| | - Shuwei Nie
- Jilin Provincial Key Laboratory of Human Health Status Identification and Function Enhancement, School of Materials Science and Engineering, Changchun University, Changchun 130022, China
| | - Manru Wang
- Jilin Provincial Key Laboratory of Human Health Status Identification and Function Enhancement, School of Materials Science and Engineering, Changchun University, Changchun 130022, China
| | - Huina Niu
- Jilin Provincial Key Laboratory of Human Health Status Identification and Function Enhancement, School of Materials Science and Engineering, Changchun University, Changchun 130022, China
| | - Liqi Wei
- Jilin Provincial Key Laboratory of Human Health Status Identification and Function Enhancement, School of Materials Science and Engineering, Changchun University, Changchun 130022, China
| | - Zhiqi Yang
- Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, College of Life Science, Jilin Agricultural University, Changchun 130118, China
| | - Xin Liu
- Jilin Provincial Key Laboratory of Human Health Status Identification and Function Enhancement, School of Materials Science and Engineering, Changchun University, Changchun 130022, China
| | - Yining Chen
- Jilin Provincial Key Laboratory of Human Health Status Identification and Function Enhancement, School of Materials Science and Engineering, Changchun University, Changchun 130022, China
| | - Yunan Yang
- Jilin Provincial Key Laboratory of Human Health Status Identification and Function Enhancement, School of Materials Science and Engineering, Changchun University, Changchun 130022, China
| | - Chunjiang Li
- Jilin Huaen Biotechnology Co. Ltd., Changchun 130000, China
| | - Qin Zhang
- Jilin Provincial Key Laboratory of Human Health Status Identification and Function Enhancement, School of Materials Science and Engineering, Changchun University, Changchun 130022, China
| | - Lina Feng
- Jilin Provincial Key Laboratory of Human Health Status Identification and Function Enhancement, School of Materials Science and Engineering, Changchun University, Changchun 130022, China
| | - Hongxia Ma
- Jilin Provincial Key Laboratory of Human Health Status Identification and Function Enhancement, School of Materials Science and Engineering, Changchun University, Changchun 130022, China.
| | - Rui Chen
- Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, College of Life Science, Jilin Agricultural University, Changchun 130118, China.
| | - Yan Cheng
- Jilin Provincial Key Laboratory of Human Health Status Identification and Function Enhancement, School of Materials Science and Engineering, Changchun University, Changchun 130022, China.
| |
Collapse
|
4
|
Zhou L, Zhang TJ, Zhang L, Deng QY, Xia ZY, Chen SL, Cheng DB, Qiao ZY, Wang H. Stimuli-responsive peptide-based nanodrug delivery systems for tumor therapy. Chem Commun (Camb) 2025; 61:7384-7407. [PMID: 40293360 DOI: 10.1039/d5cc00950b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/30/2025]
Abstract
Compared to free chemotherapeutic drugs, nano-sized drug delivery systems exhibit enhanced therapeutic effects and reduced in vivo toxicity. Peptide-based drug delivery systems have garnered significant attention due to the advantageous properties of peptides, including their excellent biocompatibility, diverse side-chain functionalities, and ability to form stable secondary structures. Incorporating stimuli-responsive amino acid residues or specific responsive moieties within their side chains endows these peptide-based drug delivery systems with unique stimuli-responsive characteristics. In this review, we summarize recent advancements and mechanisms in peptide-based nanodrug delivery systems that are capable of responding to one or multiple stimuli as well as conclude with a concise overview of the challenges that lie ahead in this field.
Collapse
Affiliation(s)
- Lei Zhou
- School of Chemistry, Chemical Engineering & Life Science, Wuhan University of Technology, Wuhan 430070, China.
- CAS Center for Excellence in Nanoscience Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), Beijing 100190, China.
| | - Ting-Jie Zhang
- CAS Center for Excellence in Nanoscience Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), Beijing 100190, China.
| | - Lu Zhang
- School of Chemistry, Chemical Engineering & Life Science, Wuhan University of Technology, Wuhan 430070, China.
| | - Qiu-Ying Deng
- School of Chemistry, Chemical Engineering & Life Science, Wuhan University of Technology, Wuhan 430070, China.
| | - Zhi-Yu Xia
- School of Chemistry, Chemical Engineering & Life Science, Wuhan University of Technology, Wuhan 430070, China.
| | - Si-Lin Chen
- School of Chemistry, Chemical Engineering & Life Science, Wuhan University of Technology, Wuhan 430070, China.
- CAS Center for Excellence in Nanoscience Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), Beijing 100190, China.
| | - Dong-Bing Cheng
- School of Chemistry, Chemical Engineering & Life Science, Wuhan University of Technology, Wuhan 430070, China.
- Hubei Longzhong Laboratory, Wuhan University of Technology Xiangyang Demonstration Zone, Xiangyang 441000, Hubei, China
| | - Zeng-Ying Qiao
- CAS Center for Excellence in Nanoscience Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), Beijing 100190, China.
| | - Hao Wang
- CAS Center for Excellence in Nanoscience Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), Beijing 100190, China.
| |
Collapse
|
5
|
Fleite S, Cassanello M, Buera MDP. Modifications of biological membranes, fat globules and liposomes promoted by cavitation processes. Consequences and applications. Chem Phys Lipids 2025; 267:105462. [PMID: 39622431 DOI: 10.1016/j.chemphyslip.2024.105462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 11/23/2024] [Accepted: 11/27/2024] [Indexed: 12/09/2024]
Abstract
Cavitation-based technologies, such as ultrasound (or acoustic cavitation, AC) and hydrodynamic cavitation (HC), are gaining interest among green processing technologies due to their cost effectiveness in operation, toxic solvent use reduction, and ability to obtain superior processed products, compared to conventional methods. Both AC and HC generate bubbles, but their effects may differ and it is difficult to make comparisons as both are based on different phenomena and are subject to different operational variables. AC is one of the most used techniques in extraction and homogenization processes at the laboratory level. However, upscaling to an industrial level is hard. On the other hand, HC is based on the passage of the liquid through a constriction (orifice plate, Venturi, throttling valve), which causes an increase in liquid velocity at the expense of local pressure, forcing the pressure around the contraction below the threshold pressure that induces the formation of cavities. Some applications of cavitation technologies, such as the production of liposomes or lipid nanoparticles (LNPs) allow the generation of delivery systems for biomedical applications.Many others (inactivation of pathogenic viruses, bacteria and algae for water purification, extraction procedures, third generation of biofuel production, green extractions) are based on the disruption of lipid membranes. There are also applications aimed at the modification of membranes (like the milk fat globule) for the development of innovative products. Process parameters, such as cavitation intensity, duration and temperature define the impact of the process on the physical, chemical, and biological characteristics of the membranes. Thus, the adequate implementation of cavitation processes requires understanding of interactions and synergistic mechanisms in complex systems and of their effects on membranes at the microscopic or molecular level. In the present work, the use of cavitation technologies for the generation of LNPs or nanostructured lipid carriers, and the effects of AC and HC treatments on several types of membrane systems (liposomes, solid lipid nanoparticles, milk fat globules, algae and bacterial membranes) are discussed, focusing on the structural and chemical modifications of lipidic structures under cavitation.
Collapse
Affiliation(s)
- Santiago Fleite
- CONICET - Universidad de Buenos Aires, Instituto de Tecnología de Alimentos y Procesos Químicos (ITAPROQ), Ciudad Universitaria, Intendente Güiraldes 2160, Buenos Aires C1428EGA, Argentina; Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Industrias, Ciudad Universitaria, Intendente Güiraldes 2160, Buenos Aires C1428EGA, Argentina; Universidad de Buenos Aires, Facultad de Agronomía, Cátedra de Química Inorgánica y Analítica, Argentina
| | - Miryan Cassanello
- CONICET - Universidad de Buenos Aires, Instituto de Tecnología de Alimentos y Procesos Químicos (ITAPROQ), Ciudad Universitaria, Intendente Güiraldes 2160, Buenos Aires C1428EGA, Argentina; Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Industrias, Ciudad Universitaria, Intendente Güiraldes 2160, Buenos Aires C1428EGA, Argentina
| | - María Del Pilar Buera
- CONICET - Universidad de Buenos Aires, Instituto de Tecnología de Alimentos y Procesos Químicos (ITAPROQ), Ciudad Universitaria, Intendente Güiraldes 2160, Buenos Aires C1428EGA, Argentina; Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Industrias, Ciudad Universitaria, Intendente Güiraldes 2160, Buenos Aires C1428EGA, Argentina; Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Orgánica, Ciudad Universitaria, Intendente Güiraldes 2160, Buenos Aires C1428EGA, Argentina.
| |
Collapse
|
6
|
Li K, Wang S, Chen C, Xie Y, Dai X, Chen Y. Sonocatalytic biomaterials. Coord Chem Rev 2025; 522:216242. [DOI: 10.1016/j.ccr.2024.216242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
7
|
Yang H, Qu Y, Tian Y, Wang C, Sun Y, Dai Z, Yue X, Cheng W. Ultrasound-Targeted Microbubble Destruction Enhances the Inhibitory Effect of Sonodynamic Therapy against Hepatocellular Carcinoma. ACS OMEGA 2024; 9:51253-51263. [PMID: 39758613 PMCID: PMC11696411 DOI: 10.1021/acsomega.4c07746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 11/16/2024] [Accepted: 11/28/2024] [Indexed: 01/07/2025]
Abstract
Purpose: To assess the anticancer effect of microbubbles (MBs) in combination with sinoporphyrin sodium (DVDMS)-mediated sonodynamic therapy (SDT) for the in vitro and in vivo treatment of hepatocellular carcinoma (HCC). Methods: HepG2 cells were used for in vitro experiments. Reactive oxygen species (ROS) production was detected using 2',7'-dichlorodihydrofluorescein diacetate and singlet oxygen sensor green in vitro and in solution, respectively. Cytotoxicity was evaluated using a Cell Counting Kit 8 assay and the calcein AM/PI double-staining method. Annexin V-FITC/PI staining was employed to analyze the rate of cell apoptosis. Cell surface calreticulin exposure, high mobility group box 1 release, and adenosine triphosphate secretion were measured to detect immunogenic cell death (ICD). The anticancer effect of the combination therapy was further assessed in Hepa1-6 tumor-bearing mice. Results: Compared with SDT alone, ROS production in the MBs + SDT group was enhanced 1.2-fold (p < 0.0001). The cytotoxic effect of DVDMS-mediated SDT on HepG2 cells was concentration-dependent, and the additional application of MBs increased cytotoxicity. Additionally, MBs augmented the SDT-induced apoptosis rate from 33.26 ± 13.48 to 72.95 ± 7.95% (p < 0.01). Notably, our results demonstrated that MBs can enhance SDT-induced ICD. In in vivo experiments, SDT combined with MBs significantly reduced tumor volume, with negligible differences in mouse body weight. Furthermore, MBs effectively enhanced SDT-induced tumor tissue destruction. Conclusion: The present study indicates that MBs can markedly improve the anticancer effects of SDT in HCC.
Collapse
Affiliation(s)
- Huajing Yang
- Department
of Ultrasound, Harbin Medical University
Cancer Hospital, No.150 Haping Road, Harbin, Heilongjiang Province 150081, China
| | - Yunfeng Qu
- Department
of Biomedical Engineering, College of Future Technology, National
Biomedical Imaging Center, Peking University, No.5 Yiheyuan Road, Beijing 100871, China
| | - Yuhang Tian
- Department
of Ultrasound, Harbin Medical University
Cancer Hospital, No.150 Haping Road, Harbin, Heilongjiang Province 150081, China
| | - Chunyue Wang
- Department
of Ultrasound, Harbin Medical University
Cancer Hospital, No.150 Haping Road, Harbin, Heilongjiang Province 150081, China
| | - Yucao Sun
- Department
of Ultrasound, Harbin Medical University
Cancer Hospital, No.150 Haping Road, Harbin, Heilongjiang Province 150081, China
| | - Zhifei Dai
- Department
of Biomedical Engineering, College of Future Technology, National
Biomedical Imaging Center, Peking University, No.5 Yiheyuan Road, Beijing 100871, China
| | - Xiuli Yue
- School
of Environment, Harbin Institute of Technology, No.92 Xidazhi Street, Harbin, Heilongjiang Province 150001, China
| | - Wen Cheng
- Department
of Ultrasound, Harbin Medical University
Cancer Hospital, No.150 Haping Road, Harbin, Heilongjiang Province 150081, China
| |
Collapse
|
8
|
Datta P, Moolayadukkam S, Chowdhury D, Rayes A, Lee NS, Sahu RP, Zhou Q, Puri IK. Recent Advances and Future Directions in Sonodynamic Therapy for Cancer Treatment. BME FRONTIERS 2024; 2024:0080. [PMID: 39735354 PMCID: PMC11671681 DOI: 10.34133/bmef.0080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/18/2024] [Accepted: 11/18/2024] [Indexed: 12/31/2024] Open
Abstract
Deep-tissue solid cancer treatment has a poor prognosis, resulting in a very low 5-year patient survival rate. The primary challenges facing solid tumor therapies are accessibility, incomplete surgical removal of tumor tissue, the resistance of the hypoxic and heterogeneous tumor microenvironment to chemotherapy and radiation, and suffering caused by off-target toxicities. Here, sonodynamic therapy (SDT) is an evolving therapeutic approach that uses low-intensity ultrasound to target deep-tissue solid tumors. The ability of ultrasound to deliver energy safely and precisely into small deep-tissue (>10 cm) volumes makes SDT more effective than conventional photodynamic therapy. While SDT is currently in phase 1/2 clinical trials for glioblastoma multiforme, its use for other solid cancer treatments, such as breast, pancreatic, liver, and prostate cancer, is still in the preclinical stage, with further investigation required to improve its therapeutic efficacy. This review, therefore, focuses on recent advances in SDT cancer treatments. We describe the interaction between ultrasound and sonosensitizer molecules and the associated energy transfer mechanism to malignant cells, which plays a central role in SDT-mediated cell death. Different sensitizers used in clinical and preclinical trials of various cancer treatments are listed, and the critical ultrasound parameters for SDT are reviewed. We also discuss approaches to improve the efficacies of these sonosensitizers, the role of the 3-dimensional spheroid in vitro investigations, ultrasound-controlled CAR-T cell and SDT-based multimodal therapy, and machine learning for sonosensitizer optimization, which could facilitate clinical translation of SDT.
Collapse
Affiliation(s)
- Priyankan Datta
- Department of Aerospace and Mechanical Engineering,
University of Southern California, Los Angeles, CA 90089, USA
| | - Sreejesh Moolayadukkam
- Department of Aerospace and Mechanical Engineering,
University of Southern California, Los Angeles, CA 90089, USA
- Iovine and Young Academy,
University of Southern California, Los Angeles, CA 90089, USA
| | - Dhrubajyoti Chowdhury
- Mork Family Department of Chemical Engineering and Material Science,
University of Southern California, Los Angeles, CA 90089, USA
| | - Adnan Rayes
- Alfred E. Mann Department of Biomedical Engineering,
University of Southern California, Los Angeles, CA 90089, USA
| | - Nan Sook Lee
- Alfred E. Mann Department of Biomedical Engineering,
University of Southern California, Los Angeles, CA 90089, USA
| | - Rakesh P. Sahu
- Department of Materials Science and Engineering,
McMaster University, Hamilton, ON L8S 4L8, Canada
- School of Biomedical Engineering,
McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Qifa Zhou
- Alfred E. Mann Department of Biomedical Engineering,
University of Southern California, Los Angeles, CA 90089, USA
| | - Ishwar K. Puri
- Department of Aerospace and Mechanical Engineering,
University of Southern California, Los Angeles, CA 90089, USA
- Mork Family Department of Chemical Engineering and Material Science,
University of Southern California, Los Angeles, CA 90089, USA
- Alfred E. Mann Department of Biomedical Engineering,
University of Southern California, Los Angeles, CA 90089, USA
| |
Collapse
|
9
|
Datta P, Moolayadukkam S, Prasad Sahu R, Ganguly R, Sen S, Puri IK. Deciphering the hydrodynamics of lipid-coated microbubble sonoluminescence for sonodynamic therapy. ULTRASONICS SONOCHEMISTRY 2024; 111:107090. [PMID: 39366089 PMCID: PMC11488432 DOI: 10.1016/j.ultsonch.2024.107090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 09/16/2024] [Accepted: 09/30/2024] [Indexed: 10/06/2024]
Abstract
Sonodynamic therapy (SDT) is a minimally invasive targeted cancer therapy that uses focused low-intensity ultrasound (<10 MPa, <10 W/cm2) to activate sonosensitizer drugs. Once activated, these chemical compounds generate reactive oxygen species (ROS) to damage and kill cancer cells. A Phase I clinical trial has shown promising results for treating glioblastoma with SDT. We hypothesize that the efficacy of SDT can be improved by introducing lipid-coated microbubbles that produce a sonochemical effect that enhances ROS production. We investigate the hydrodynamics of a U.S. Food and Drug Administration (FDA)-approved microbubble, Lumason®, and a phospholipid-coated oxygen microbubble to predict the ultrasound parameters that induce sonoluminescence onset in biophysically relevant medium (e.g., water and blood) under clinical SDT conditions. The threshold pressures and frequencies for sonoluminescence with these therapeutic agents lie between 20 kHz - 1 MHz and 0.05 MPa - 1 MPa, respectively. The lipid-coated oxygen microbubble exhibits stronger sonoluminescence than the Lumason® microbubble, suggesting its use for improving SDT efficacy.
Collapse
Affiliation(s)
- Priyankan Datta
- Department of Aerospace and Mechanical Engineering, University of Southern California, Los Angeles, CA 90089, United States.
| | - Sreejesh Moolayadukkam
- Department of Aerospace and Mechanical Engineering, University of Southern California, Los Angeles, CA 90089, United States; Iovine and Young Academy, University of Southern California, Los Angeles, CA 90089, United States
| | - Rakesh Prasad Sahu
- Department of Materials Science and Engineering, McMaster University, Hamilton, ON L8S 4L8, Canada; Department of Mechanical Engineering, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Ranjan Ganguly
- Department of Power Engineering, Jadavpur University, Salt Lake, Kolkata 700106, India
| | - Swarnendu Sen
- Department of Mechanical Engineering, Jadavpur University, Kolkata 700032, India
| | - Ishwar K Puri
- Department of Aerospace and Mechanical Engineering, University of Southern California, Los Angeles, CA 90089, United States; Mork Family Department of Chemical Engineering and Material Science, University of Southern California, Los Angeles, CA 90089, United States; Alfred E. Mann Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90089, United States
| |
Collapse
|
10
|
Hu D, Li Y, Li R, Wang M, Zhou K, He C, Wei Q, Qian Z. Recent advances in reactive oxygen species (ROS)-responsive drug delivery systems for photodynamic therapy of cancer. Acta Pharm Sin B 2024; 14:5106-5131. [PMID: 39807318 PMCID: PMC11725102 DOI: 10.1016/j.apsb.2024.10.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 09/21/2024] [Accepted: 09/28/2024] [Indexed: 01/16/2025] Open
Abstract
Reactive oxygen species (ROS)-responsive drug delivery systems (DDSs) have garnered significant attention in cancer research because of their potential for precise spatiotemporal drug release tailored to high ROS levels within tumors. Despite the challenges posed by ROS distribution heterogeneity and endogenous supply constraints, this review highlights the strategic alliance of ROS-responsive DDSs with photodynamic therapy (PDT), enabling selective drug delivery and leveraging PDT-induced ROS for enhanced therapeutic efficacy. This review delves into the biological importance of ROS in cancer progression and treatment. We elucidate in detail the operational mechanisms of ROS-responsive linkers, including thioether, thioketal, selenide, diselencide, telluride and aryl boronic acids/esters, as well as the latest developments in ROS-responsive nanomedicines that integrate with PDT strategies. These insights are intended to inspire the design of innovative ROS-responsive nanocarriers for enhanced cancer PDT.
Collapse
Affiliation(s)
- Danrong Hu
- Rehabilitation Medicine Center and Institute of Rehabilitation Medicine, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
- Key Laboratory of Rehabilitation Medicine in Sichuan Province, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yicong Li
- Rehabilitation Medicine Center and Institute of Rehabilitation Medicine, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Ran Li
- Rehabilitation Medicine Center and Institute of Rehabilitation Medicine, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
- Key Laboratory of Rehabilitation Medicine in Sichuan Province, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Meng Wang
- Rehabilitation Medicine Center and Institute of Rehabilitation Medicine, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Kai Zhou
- Department of Orthopedics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Chengqi He
- Rehabilitation Medicine Center and Institute of Rehabilitation Medicine, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
- Key Laboratory of Rehabilitation Medicine in Sichuan Province, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Quan Wei
- Rehabilitation Medicine Center and Institute of Rehabilitation Medicine, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
- Key Laboratory of Rehabilitation Medicine in Sichuan Province, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Zhiyong Qian
- Rehabilitation Medicine Center and Institute of Rehabilitation Medicine, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
11
|
Chen Y, Ding T, Qian Z, Ma Z, Zhou L, Li Z, Lv R, Xu Y, Xu Y, Hao L, Zhu C, Yao X, Yu W, Fan W. Biodegradable persistent ROS-generating nanosonosensitizers for enhanced synergistic cancer therapy by inducing cascaded oxidative stress. NANOSCALE HORIZONS 2024; 9:2306-2319. [PMID: 39295580 DOI: 10.1039/d4nh00189c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/21/2024]
Abstract
Sonodynamic therapy (SDT) is gaining popularity in cancer treatment due to its superior controllability and high tissue permeability. Nonetheless, the efficacy of SDT is severely diminished by the transient generation of limited reactive oxygen species (ROS). Herein, we introduce an acid-activated nanosonosensitizer, CaO2@PCN, by the controllable coating of porphyrinic metal-organic frameworks (PCN-224) on CaO2 to induce cascaded oxidative stress in tumors. The PCN-224 doping can generate ROS during SDT to induce intracellular oxidative stress and abnormal calcium channels. Meanwhile, the ultrasound also promotes extracellular calcium influx. In addition, CaO2@PCN sequentially degrades in the tumor cell lysosomes, releasing Ca2+ and H2O2 to induce further abnormal calcium channels and elevate the levels of Ca2+. Insufficient catalase (CAT) in tumor cells promotes intracellular calcium overload, which can induce persistent ROS generation and mitochondrial dysfunction through ion interference therapy (IIT). More importantly, PCN-224 also protects CaO2 against significant degradation under neutral conditions. Hence, the well-designed CaO2@PCN produces synergistic SDT/IIT effects and persistent ROS against cancer. More notably, the acidity-responsive biodegradability endows CaO2@PCN with excellent biosafety and promising clinical potential.
Collapse
Affiliation(s)
- Yue Chen
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Advanced Pharmaceuticals and Biomaterials, China Pharmaceutical University, Nanjing 211198, China.
| | - Tong Ding
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211100, China.
| | - Zhengzheng Qian
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Advanced Pharmaceuticals and Biomaterials, China Pharmaceutical University, Nanjing 211198, China.
| | - Zerui Ma
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Advanced Pharmaceuticals and Biomaterials, China Pharmaceutical University, Nanjing 211198, China.
| | - Liming Zhou
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Advanced Pharmaceuticals and Biomaterials, China Pharmaceutical University, Nanjing 211198, China.
| | - Zhiling Li
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211100, China.
| | - Runkai Lv
- School of Flexible Electronics (Future Technologies) and Institute of Advanced Materials (IAM), Nanjing Tech University (Nanjing Tech), Nanjing 211816, China.
| | - Yinghui Xu
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Advanced Pharmaceuticals and Biomaterials, China Pharmaceutical University, Nanjing 211198, China.
| | - Yingjie Xu
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Advanced Pharmaceuticals and Biomaterials, China Pharmaceutical University, Nanjing 211198, China.
| | - Linhui Hao
- School of Flexible Electronics (Future Technologies) and Institute of Advanced Materials (IAM), Nanjing Tech University (Nanjing Tech), Nanjing 211816, China.
| | - Chen Zhu
- Department of Orthopedics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China.
| | - Xikuang Yao
- School of Flexible Electronics (Future Technologies) and Institute of Advanced Materials (IAM), Nanjing Tech University (Nanjing Tech), Nanjing 211816, China.
| | - Wenying Yu
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211100, China.
| | - Wenpei Fan
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Advanced Pharmaceuticals and Biomaterials, China Pharmaceutical University, Nanjing 211198, China.
| |
Collapse
|
12
|
Zhang J, Liu Z, Zhang Z, Yang H, Wang H, Yang Z, Xu Y, Li S, Yang D. Recent Advances in Silica-Based Nanomaterials for Enhanced Tumor Imaging and Therapy. ACS APPLIED BIO MATERIALS 2024; 7:7133-7169. [PMID: 39495482 DOI: 10.1021/acsabm.4c01318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2024]
Abstract
Cancer remains a formidable challenge, inflicting profound physical, psychological, and financial burdens on patients. In this context, silica-based nanomaterials have garnered significant attention for their potential in tumor imaging and therapy owing to their exceptional properties, such as biocompatibility, customizable porosity, and versatile functionalization capabilities. This review meticulously examines the latest advancements in the application of silica-based nanomaterials for tumor imaging and therapy. It underscores their potential in enhancing various cancer imaging modalities, including fluorescence imaging, magnetic resonance imaging, computed tomography, positron emission tomography, ultrasound imaging, and multimodal imaging approaches. Moreover, the review delves into their therapeutic efficacy in chemotherapy, radiotherapy, phototherapy, immunotherapy, gas therapy, sonodynamic therapy, chemodynamic therapy, starvation therapy, and gene therapy. Critical evaluations of the biosafety profiles and degradation pathways of these nanomaterials within biological environments are also presented. By discussing the current challenges and prospects, this review aims to provide a nuanced perspective on the clinical translation of silica-based nanomaterials, thereby highlighting their promise in revolutionizing cancer diagnostics, enabling real-time monitoring of therapeutic responses, and advancing personalized medicine.
Collapse
Affiliation(s)
- Junjie Zhang
- School of Fundamental Sciences, Bengbu Medical University, Bengbu 233030, China
| | - Zilu Liu
- School of Fundamental Sciences, Bengbu Medical University, Bengbu 233030, China
| | - Zhijing Zhang
- School of Fundamental Sciences, Bengbu Medical University, Bengbu 233030, China
| | - Hui Yang
- School of Fundamental Sciences, Bengbu Medical University, Bengbu 233030, China
| | - Hui Wang
- School of Fundamental Sciences, Bengbu Medical University, Bengbu 233030, China
| | - Zhenlu Yang
- Department of Radiology, Guizhou Provincial People's Hospital, Guiyang, Guizhou 550000, China
| | - Yunjian Xu
- School of Radiology, Shandong First Medical University and Shandong Academy of Medical Sciences, Tai'an 271000, China
- Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250000, China
| | - Shengke Li
- Macao Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao 999078, China
| | - Dongliang Yang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), School of Physical and Mathematical Sciences, Nanjing Tech University (NanjingTech), Nanjing 211816, China
| |
Collapse
|
13
|
Yang F, Lv J, Ma W, Yang Y, Hu X, Yang Z. Engineering Sonosensitizer-Derived Nanotheranostics for Augmented Sonodynamic Therapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2402669. [PMID: 38970544 DOI: 10.1002/smll.202402669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 06/13/2024] [Indexed: 07/08/2024]
Abstract
Sonodynamic therapy (SDT), featuring noninvasive, deeper penetration, low cost, and repeatability, is a promising therapy approach for deep-seated tumors. However, the general or only utilization of SDT shows low efficiency and unsatisfactory treatment outcomes due to the complicated tumor microenvironment (TME) and SDT process. To circumvent the issues, three feasible approaches for enhancing SDT-based therapeutic effects, including sonosensitizer optimization, strategies for conquering hypoxia TME, and combinational therapy are summarized, with a particular focus on the combination therapy of SDT with other therapy modalities, including chemodynamic therapy, photodynamic therapy, photothermal therapy, chemotherapy, starvation therapy, gas therapy, and immunotherapy. In the end, the current challenges in SDT-based therapy on tumors are discussed and feasible approaches for enhanced therapeutic effects are provided. It is envisioned that this review will provide new insight into the strategic design of high-efficiency sonosensitizer-derived nanotheranostics, thereby augmenting SDT and accelerating the potential clinical transformation.
Collapse
Affiliation(s)
- Fuhong Yang
- Strait Institute of Flexible Electronics (SIFE, Future Technologies), Fujian Key Laboratory of Flexible Electronics, Fujian Normal University and Strait Laboratory of Flexible Electronics (SLoFE), Fuzhou, 350117, China
| | - Jingqi Lv
- Strait Institute of Flexible Electronics (SIFE, Future Technologies), Fujian Key Laboratory of Flexible Electronics, Fujian Normal University and Strait Laboratory of Flexible Electronics (SLoFE), Fuzhou, 350117, China
| | - Wen Ma
- Strait Institute of Flexible Electronics (SIFE, Future Technologies), Fujian Key Laboratory of Flexible Electronics, Fujian Normal University and Strait Laboratory of Flexible Electronics (SLoFE), Fuzhou, 350117, China
| | - Yanling Yang
- Strait Institute of Flexible Electronics (SIFE, Future Technologies), Fujian Key Laboratory of Flexible Electronics, Fujian Normal University and Strait Laboratory of Flexible Electronics (SLoFE), Fuzhou, 350117, China
| | - Xiaoming Hu
- Strait Institute of Flexible Electronics (SIFE, Future Technologies), Fujian Key Laboratory of Flexible Electronics, Fujian Normal University and Strait Laboratory of Flexible Electronics (SLoFE), Fuzhou, 350117, China
- Jiangxi Key Laboratory of Nanobiomaterials, School of Materials Science and Engineering, East China Jiaotong University, Nanchang, 330013, China
| | - Zhen Yang
- Strait Institute of Flexible Electronics (SIFE, Future Technologies), Fujian Key Laboratory of Flexible Electronics, Fujian Normal University and Strait Laboratory of Flexible Electronics (SLoFE), Fuzhou, 350117, China
| |
Collapse
|
14
|
Mousavi SM, Kalashgrani MY, Javanmardi N, Riazi M, Akmal MH, Rahmanian V, Gholami A, Chiang WH. Recent breakthroughs in graphene quantum dot-enhanced sonodynamic and photodynamic therapy. J Mater Chem B 2024; 12:7041-7062. [PMID: 38946657 DOI: 10.1039/d4tb00767k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Water-soluble graphene quantum dots (GQDs) have recently exhibited considerable potential for diverse biomedical applications owing to their exceptional optical and chemical properties. However, the pronounced heterogeneity in the composition, size, and morphology of GQDs poses challenges for a comprehensive understanding of the intricate correlation between their structural attributes and functional properties. This variability also introduces complexities in scaling the production processes and addressing safety considerations. Light and sound have firmly established their role in clinical applications as pivotal energy sources for minimally invasive therapeutic interventions. Given the limited penetration depth of light, photodynamic therapy (PDT) predominantly targets superficial conditions such as dermatological disorders, head and neck malignancies, ocular ailments, and early-stage esophageal cancer. Conversely, ultrasound-based sonodynamic therapy (SDT) capitalizes on its superior ability to propagate and focus ultrasound within biological tissues, enabling a diverse range of therapeutic applications, including the management of gliomas, breast cancer, hematological tumors, and modulation of the blood-brain barrier (BBB). Considering the advancements in theranostic and precision therapies, reevaluating these conventional energy sources and their associated sensitizers is imperative. This review introduces three prevalent treatment modalities that harness light and sound stimuli: PDT, SDT, and a synergistic approach that integrates PDT and SDT. This study delineated the therapeutic dynamics and contemporary designs of sensitizers tailored to these modalities. By exploring the historical context of the field and elucidating the latest design strategies, this review underscores the pivotal role of GQDs in propelling the evolution of PDT and SDT. This aspires to stimulate researchers to develop "multimodal" therapies integrating both light and sound stimuli.
Collapse
Affiliation(s)
- Seyyed Mojtaba Mousavi
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan.
| | | | - Negar Javanmardi
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Mohsen Riazi
- Biotechnology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Muhammad Hussnain Akmal
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan.
| | - Vahid Rahmanian
- Department of Mechanical Engineering, Université du Québec à Trois-Rivières, Drummondville, Quebec, J2C 0R5, Canada.
- Centre national intégré du manufacturier intelligent (CNIMI), Université du Québec à Trois-Rivières, Drummondville, QC, Canada
| | - Ahmad Gholami
- Biotechnology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Wei-Hung Chiang
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan.
- Sustainable Electrochemical Energy Development (SEED) Center, National Taiwan University of Science and Technology, Taipei City 10607, Taiwan
- Advanced Manufacturing Research Center, National Taiwan University of Science and Technology, Taipei City 10607, Taiwan
| |
Collapse
|
15
|
Li T, Wang Y, Zhou D. Manipulation of protein corona for nanomedicines. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2024; 16:e1982. [PMID: 39004508 DOI: 10.1002/wnan.1982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/11/2024] [Accepted: 06/20/2024] [Indexed: 07/16/2024]
Abstract
Nanomedicines have significantly advanced the development of diagnostic and therapeutic strategies for various diseases, while they still encounter numerous challenges. Upon entry into the human body, nanomedicines interact with biomolecules to form a layer of proteins, which is defined as the protein corona that influences the biological properties of nanomedicines. Traditional approaches have primarily focused on designing stealthy nanomedicines to evade biomolecule adsorption; however, due to the intricacies of the biological environment within body, this method cannot completely prevent biomolecule adsorption. As research on the protein corona progresses, manipulating the protein corona to modulate the in vivo behaviors of nanomedicines has become a research focus. In this review, modern strategies focused on influencing the biological efficacy of nanomedicines in vivo by manipulating protein corona, along with their wide-ranging applications across diverse diseases are critically summarized, highlighted and discussed. Finally, future directions for this important yet challenging research area are also briefly discussed. This article is categorized under: Nanotechnology Approaches to Biology > Nanoscale Systems in Biology Therapeutic Approaches and Drug Discovery > Emerging Technologies Biology-Inspired Nanomaterials > Protein and Virus-Based Structures.
Collapse
Affiliation(s)
- Tao Li
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, People's Republic of China
- Southern Medical University, Guangzhou, People's Republic of China
| | - Yupeng Wang
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, People's Republic of China
- Southern Medical University, Guangzhou, People's Republic of China
| | - Dongfang Zhou
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, People's Republic of China
- Southern Medical University, Guangzhou, People's Republic of China
| |
Collapse
|
16
|
Ren X, Yang Y, Kong X, Liu Z. Integrin α vβ 3-targeted self-assembled polypeptide nanomicelles for efficacious sonodynamic therapy against breast cancer. NANOSCALE 2024; 16:9953-9965. [PMID: 38693876 DOI: 10.1039/d4nr00794h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2024]
Abstract
Sonodynamic therapy (SDT) is an advanced non-invasive cancer treatment strategy with moderate tissue penetration, less invasiveness and a reliable curative effect. However, due to the low stability, potential bio-toxicity and lack of tumor targeting capability of most sonosensitizers, the vast clinical application of SDT has been challenging and limited. Therefore, it is desirable to develop a novel approach to implement sonosensitizers to SDT for cancer treatments. In this study, an amphiphilic polypeptide was designed to effectively encapsulate rose bengal (RB) as a model sonosensitizer to form peptido-nanomicelles (REPNs). The as-fabricated REPNs demonstrated satisfactory tumor targeting and fluorescence performances, which made them superb imaging tracers in vivo. In the meantime, they generated considerable amounts of reactive oxygen species (ROS) to promote tumor cell apoptosis under ultrasound irradiation and showed excellent anti-tumor performance without obvious side effects. These engineered nanomicelles in combination with medical ultrasound may be used to achieve integrin αvβ3-targeted sonodynamic therapy against breast cancer, and it is also a promising non-invasive cancer treatment strategy for clinical translations.
Collapse
Affiliation(s)
- Xueli Ren
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Tianjin University, 300072, Tianjin, China.
| | - Yanxi Yang
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Tianjin University, 300072, Tianjin, China.
| | - Xinru Kong
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Tianjin University, 300072, Tianjin, China.
| | - Zhe Liu
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Tianjin University, 300072, Tianjin, China.
| |
Collapse
|
17
|
Zhang B, Huang Y, Huang Y. Advances in Nanodynamic Therapy for Cancer Treatment. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:648. [PMID: 38607182 PMCID: PMC11013863 DOI: 10.3390/nano14070648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/04/2024] [Accepted: 04/07/2024] [Indexed: 04/13/2024]
Abstract
Nanodynamic therapy (NDT) exerts its anti-tumor effect by activating nanosensitizers to generate large amounts of reactive oxygen species (ROS) in tumor cells. NDT enhances tumor-specific targeting and selectivity by leveraging the tumor microenvironment (TME) and mechanisms that boost anti-tumor immune responses. It also minimizes damage to surrounding healthy tissues and enhances cytotoxicity in tumor cells, showing promise in cancer treatment, with significant potential. This review covers the research progress in five major nanodynamic therapies: photodynamic therapy (PDT), electrodynamic therapy (EDT), sonodynamic therapy (SDT), radiodynamic therapy (RDT), and chemodynamic therapy (CDT), emphasizing the significant role of advanced nanotechnology in the development of NDT for anti-tumor purposes. The mechanisms, effects, and challenges faced by these NDTs are discussed, along with their respective solutions for enhancing anti-tumor efficacy, such as pH response, oxygen delivery, and combined immunotherapy. Finally, this review briefly addresses challenges in the clinical translation of NDT.
Collapse
Affiliation(s)
| | | | - Yong Huang
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning 530021, China; (B.Z.); (Y.H.)
| |
Collapse
|
18
|
Chang M, Zhang L, Wang Z, Chen L, Dong Y, Yang J, Chen Y. Nanomedicine/materdicine-enabled sonocatalytic therapy. Adv Drug Deliv Rev 2024; 205:115160. [PMID: 38110153 DOI: 10.1016/j.addr.2023.115160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/10/2023] [Accepted: 12/14/2023] [Indexed: 12/20/2023]
Abstract
The advent of numerous treatment modalities with desirable therapeutic efficacy has been made possible by the fast development of nanomedicine and materdicine, among which the ultrasound (US)-triggered sonocatalytic process as minimal or non-invasive method has been frequently employed for diagnostic and therapeutic purposes. In comparison to phototherapeutic approaches with inherent penetration depth limitations, sonocatalytic therapy shatters the depth limit of photoactivation and offers numerous remarkable prospects and advantages, including mitigated side effects and appropriate tissue-penetration depth. Nevertheless, the optimization of sonosensitizers and therapies remains a significant issue in terms of precision, intelligence and efficiency. In light of the fact that nanomedicine and materdicine can effectively enhance the theranostic efficiency, we herein aim to furnish a cutting-edge review on the latest progress and development of nanomedicine/materdicine-enabled sonocatalytic therapy. The design methodologies and biological features of nanomedicine/materdicine-based sonosensitizers are initially introduced to reveal the underlying relationship between composition/structure, sonocatalytic function and biological effect, in accompany with a thorough discussion of nanomedicine/materdicine-enabled synergistic therapy. Ultimately, the facing challenges and future perspectives of this intriguing sonocatalytic therapy are highlighted and outlined to promote technological advancements and clinical translation in efficient disease treatment.
Collapse
Affiliation(s)
- Meiqi Chang
- Laboratory Center, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200071, PR China
| | - Lu Zhang
- Department of Radiotherapy, Affiliated Hospital of Hebei University, Hebei University, Baoding 071000, PR China
| | - Zeyu Wang
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, PR China
| | - Liang Chen
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, PR China
| | - Yang Dong
- Department of Breast Surgery, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan 250117, PR China.
| | - Jishun Yang
- Naval Medical Center of PLA, Medical Security Center, Shanghai 200052, PR China.
| | - Yu Chen
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, PR China.
| |
Collapse
|
19
|
Xie X, Zhang J, Wang Y, Shi W, Tang R, Tang Q, Sun S, Wu R, Xu S, Wang M, Liang X, Cui L. Nanomaterials augmented bioeffects of ultrasound in cancer immunotherapy. Mater Today Bio 2024; 24:100926. [PMID: 38179429 PMCID: PMC10765306 DOI: 10.1016/j.mtbio.2023.100926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 11/30/2023] [Accepted: 12/18/2023] [Indexed: 01/06/2024] Open
Abstract
Immunotherapy as a milestone in cancer treatment has made great strides in the past decade, but it is still limited by low immune response rates and immune-related adverse events. Utilizing bioeffects of ultrasound to enhance tumor immunotherapy has attracted more and more attention, including sonothermal, sonomechanical, sonodynamic and sonopiezoelectric immunotherapy. Moreover, the emergence of nanomaterials has further improved the efficacy of ultrasound mediated immunotherapy. However, most of the summaries in this field are about a single aspect of the biological effects of ultrasound, which is not comprehensive and complete currently. This review proposes the recent progress of nanomaterials augmented bioeffects of ultrasound in cancer immunotherapy. The concept of immunotherapy and the application of bioeffects of ultrasound in cancer immunotherapy are initially introduced. Then, according to different bioeffects of ultrasound, the representative paradigms of nanomaterial augmented sono-immunotherapy are described, and their mechanisms are discussed. Finally, the challenges and application prospects of nanomaterial augmented ultrasound mediated cancer immunotherapy are discussed in depth, hoping to pave the way for cancer immunotherapy and promote the clinical translation of ultrasound mediated cancer immunotherapy through the reasonable combination of nanomaterials augmented ultrasonic bioeffects.
Collapse
Affiliation(s)
- Xinxin Xie
- Department of Ultrasound, Peking University Third Hospital, Beijing, 100191, P.R. China
| | - Jinxia Zhang
- Department of Ultrasound, Peking University Third Hospital, Beijing, 100191, P.R. China
| | - Yuan Wang
- Department of Ultrasound, Peking University Third Hospital, Beijing, 100191, P.R. China
| | - Wanrui Shi
- Department of Ultrasound, Peking University Third Hospital, Beijing, 100191, P.R. China
| | - Rui Tang
- Department of Ultrasound, Peking University Third Hospital, Beijing, 100191, P.R. China
| | - Qingshuang Tang
- Department of Ultrasound, Peking University Third Hospital, Beijing, 100191, P.R. China
| | - Suhui Sun
- Department of Ultrasound, Peking University Third Hospital, Beijing, 100191, P.R. China
| | - Ruiqi Wu
- Department of Ultrasound, Peking University Third Hospital, Beijing, 100191, P.R. China
| | - Shuyu Xu
- Department of Ultrasound, Peking University Third Hospital, Beijing, 100191, P.R. China
| | - Mengxin Wang
- Department of Ultrasound, Peking University Third Hospital, Beijing, 100191, P.R. China
| | - Xiaolong Liang
- Department of Ultrasound, Peking University Third Hospital, Beijing, 100191, P.R. China
| | - Ligang Cui
- Department of Ultrasound, Peking University Third Hospital, Beijing, 100191, P.R. China
| |
Collapse
|
20
|
Li S, Mok GSP, Dai Y. Lipid bilayer-based biological nanoplatforms for sonodynamic cancer therapy. Adv Drug Deliv Rev 2023; 202:115110. [PMID: 37820981 DOI: 10.1016/j.addr.2023.115110] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 10/01/2023] [Accepted: 10/08/2023] [Indexed: 10/13/2023]
Abstract
Sonodynamic therapy (SDT) has been developed as a promising alternative therapeutic modality for cancer treatment, involving the synergetic application of sonosensitizers and low-intensity ultrasound. However, the antitumor efficacy of SDT is significantly limited due to the poor performance of conventional sonosensitizers in vivo and the constrained tumor microenvironment (TME). Recent breakthroughs in lipid bilayer-based nanovesicles (LBBNs), including multifunctional liposomes, exosomes, and isolated cellular membranes, have brought new insights into the advancement of SDT. Despite their distinct sources and preparation methods, the lipid bilayer structure in common allows them to be functionalized in many comparable ways to serve as ideal nanocarriers against challenges arising from the tumor-specific sonosensitizer delivery and the complicated TME. In this review, we provide a comprehensive summary of the recent advances in LBBN-based SDT, with particular attention on how LBBNs can be engineered to improve the delivery efficiency of sonosensitizers and overcome physical, biological, and immune barriers within the TME for enhanced sonodynamic cancer therapy. We anticipate that this review will offer valuable guidance in the construction of LBBN-based nanosonosensitizers and contribute to the development of advanced strategies for next-generation sonodynamic cancer therapy.
Collapse
Affiliation(s)
- Songhao Li
- Cancer Centre and Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau SAR 999078, China; MoE Frontiers Science Center for Precision Oncology, University of Macau, Macau SAR 999078, China
| | - Greta S P Mok
- Biomedical Imaging Laboratory (BIG), Department of Electrical and Computer Engineering, Faculty of Science and Technology, University of Macau, Macau SAR 999078, China
| | - Yunlu Dai
- Cancer Centre and Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau SAR 999078, China; MoE Frontiers Science Center for Precision Oncology, University of Macau, Macau SAR 999078, China.
| |
Collapse
|