1
|
Xi X, Wang Y, An G, Feng S, Zhu Q, Wu Z, Chen J, Zuo Z, Wang Q, Wang MW, Gu Y. A novel shark VNAR antibody-based immunotoxin targeting TROP-2 for cancer therapy. Acta Pharm Sin B 2024; 14:4806-4818. [PMID: 39664437 PMCID: PMC11628804 DOI: 10.1016/j.apsb.2024.08.023] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 06/11/2024] [Accepted: 07/15/2024] [Indexed: 12/13/2024] Open
Abstract
TROP-2, a tumor-associated antigen, has been implicated in the progression of various epithelial tumors. Due to its favorable expression profile, TROP-2 has emerged as a promising target for antibody-drug conjugates (ADCs) based anti-tumor therapies. Although ADCs have shown efficacy in cancer treatment, their application in solid tumors is hindered by their high molecular weight, poor tumor penetration, and release of cytotoxic molecules. Therefore, a recombinant immunotoxin was developed based on a shark-derived variable domain of immunoglobulin new antigen receptor (VNAR) antibody. VNARs are only one-tenth the size of IgG antibodies and possess remarkable tissue penetration capabilities and high stability. In this study, a shark VNAR phage display library was created, leading to the identification of shark VNAR-5G8 that targets TROP-2. VNAR-5G8 exhibited a high affinity and cellular internalization ability towards cells expressing high levels of TROP-2. Epitope analysis revealed that VNAR-5G8 recognizes a hidden epitope consisting of CRD and TY-1 on TROP-2. Subsequently, VNAR-5G8 was fused with a truncated form of Pseudomonas exotoxin (PE38) to create the recombinant immunotoxin (5G8-PE38), which exhibited significant anti-tumor activity in vitro and in vivo. Overall, this study highlights the promise of 5G8-PE38 as a valuable candidate for cancer therapy.
Collapse
Affiliation(s)
- Xiaozhi Xi
- College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
- Laboratory for Marine Drugs and Bioproducts of Qingdao Marine Science and Technology Center, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
- Oncology Department, Shandong Second Provincial General Hospital, Jinan 250022, China
| | - Yanqing Wang
- Laboratory for Marine Drugs and Bioproducts of Qingdao Marine Science and Technology Center, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Guiqi An
- Laboratory for Marine Drugs and Bioproducts of Qingdao Marine Science and Technology Center, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Shitao Feng
- Laboratory for Marine Drugs and Bioproducts of Qingdao Marine Science and Technology Center, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Qiumei Zhu
- Laboratory for Marine Drugs and Bioproducts of Qingdao Marine Science and Technology Center, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Zhongqiu Wu
- Laboratory for Marine Drugs and Bioproducts of Qingdao Marine Science and Technology Center, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Jin Chen
- College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Zhicheng Zuo
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, China
| | - Qiang Wang
- Oncology Department, Shandong Second Provincial General Hospital, Jinan 250022, China
| | - Ming-Wei Wang
- Research Center for Deepsea Bioresources (Sanya), Hainan 572025, China
| | - Yuchao Gu
- College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
- Laboratory for Marine Drugs and Bioproducts of Qingdao Marine Science and Technology Center, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| |
Collapse
|
2
|
Lei Y, Shen Y, Chen F, He R, Zhang Z, Zhou Y, Yu JC, Crommen J, Jiang Z, Wang Q. Multiepitope recognition technology promotes the in-depth analysis of antibody‒drug conjugates. Acta Pharm Sin B 2024; 14:4962-4976. [PMID: 39664422 PMCID: PMC11628813 DOI: 10.1016/j.apsb.2024.06.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/08/2024] [Accepted: 06/11/2024] [Indexed: 12/13/2024] Open
Abstract
The dynamic tracking of antibody‒drug conjugates (ADCs) in serum is crucial. However, a versatile bioanalytical platform is lacking due to serious matrix interferences, the heterogeneity and complex biotransformation of ADCs, and the recognition deficiencies of traditional affinity technologies. To overcome this, a multiepitope recognition technology (MERT) was developed by simultaneously immobilizing CDR and non-CDR ligands onto MOF@AuNPs. MERT's excellent specificity, ultrahigh ligand density, and potential synergistic recognition ability enable it to target the different key regions of ADCs to overcome the deficiencies of traditional technologies. The binding capacity of MERT for antibodies is ten to hundred times higher than that of the mono-epitope or Fc-specific affinity technologies. Since MERT can efficiently capture target ADCs from serum, a novel bioanalytical platform based on MERT and RPLC‒QTOF-MS has been developed to monitor the dynamic changes of ADCs in serum, including the fast changes of drug-to-antibody ratio from 3.67 to 0.22, the loss of payloads (maytansinol), and the unexpected hydrolysis of the succinimide ring of the linker, which will contribute to clarify the fate of ADCs and provide a theoretical basis for future design. In summary, the MERT-based versatile platform will open a new avenue for in-depth studies of ADCs in biological fluids.
Collapse
Affiliation(s)
- Yutian Lei
- Institute of Pharmaceutical Analysis, College of Pharmacy/State Key Laboratory of Bioactive Molecules and Druggability Assessment/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou 510632, China
- School of Biomedical Engineering, Sun Yat-sen University, Shenzhen 518107, China
| | - Yuan Shen
- Department of Clinical Pharmacy, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science & Technology, Wuhan 430016, China
| | - Feng Chen
- Institute of Pharmaceutical Analysis, College of Pharmacy/State Key Laboratory of Bioactive Molecules and Druggability Assessment/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou 510632, China
| | - Rui He
- Institute of Pharmaceutical Analysis, College of Pharmacy/State Key Laboratory of Bioactive Molecules and Druggability Assessment/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou 510632, China
| | - Zhang Zhang
- Institute of Pharmaceutical Analysis, College of Pharmacy/State Key Laboratory of Bioactive Molecules and Druggability Assessment/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou 510632, China
| | - Ying Zhou
- Institute of Pharmaceutical Analysis, College of Pharmacy/State Key Laboratory of Bioactive Molecules and Druggability Assessment/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou 510632, China
| | - Jin-Chen Yu
- Bio-Thera Solutions, Ltd, Guangzhou 510700, China
| | - Jacques Crommen
- Institute of Pharmaceutical Analysis, College of Pharmacy/State Key Laboratory of Bioactive Molecules and Druggability Assessment/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou 510632, China
- Laboratory for the Analysis of Medicines, Department of Pharmaceutical Sciences, CIRM, University of Liege, Liege B-4000, Belgium
| | - Zhengjin Jiang
- Institute of Pharmaceutical Analysis, College of Pharmacy/State Key Laboratory of Bioactive Molecules and Druggability Assessment/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou 510632, China
| | - Qiqin Wang
- Institute of Pharmaceutical Analysis, College of Pharmacy/State Key Laboratory of Bioactive Molecules and Druggability Assessment/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou 510632, China
| |
Collapse
|
3
|
Zuo C, Zhou J, Bian S, Zhang Q, Lei Y, Shen Y, Chen Z, Ye P, Shi L, Mu M, Qu JH, Jiang Z, Wang Q. Comparative study of trastuzumab modification analysis using mono/multi-epitope affinity technology with LC-QTOF-MS. J Pharm Anal 2024; 14:101015. [PMID: 39698314 PMCID: PMC11652880 DOI: 10.1016/j.jpha.2024.101015] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/19/2024] [Accepted: 05/30/2024] [Indexed: 12/20/2024] Open
Abstract
Dynamic tracking analysis of monoclonal antibodies (mAbs) biotransformation in vivo is crucial, as certain modifications could inactivate the protein and reduce drug efficacy. However, a particular challenge (i.e. immune recognition deficiencies) in biotransformation studies may arise when modifications occur at the paratope recognized by the antigen. To address this limitation, a multi-epitope affinity technology utilizing the metal organic framework (MOF)@Au@peptide@aptamer composite material was proposed and developed by simultaneously immobilizing complementarity determining region (CDR) mimotope peptide (HH24) and non-CDR mimotope aptamer (CH1S-6T) onto the surface of MOF@Au nanocomposite. Comparative studies demonstrated that MOF@Au@peptide@aptamer exhibited significantly enhanced enrichment capabilities for trastuzumab variants in comparison to mono-epitope affinity technology. Moreover, the higher deamidation ratio for LC-Asn-30 and isomerization ratio for HC-Asn-55 can only be monitored by the novel bioanalytical platform based on MOF@Au@peptide@aptamer and liquid chromatography-quadrupole time of flight-mass spectrometry (LC-QTOF-MS). Therefore, multi-epitope affinity technology could effectively overcome the biases of traditional affinity materials for key sites modification analysis of mAb. Particularly, the novel bioanalytical platform can be successfully used for the tracking analysis of trastuzumab modifications in different biological fluids. Compared to the spiked phosphate buffer (PB) model, faster modification trends were monitored in the spiked serum and patients' sera due to the catalytic effect of plasma proteins and relevant proteases. Differences in peptide modification levels of trastuzumab in patients' sera were also monitored. In summary, the novel bioanalytical platform based on the multi-epitope affinity technology holds great potentials for in vivo biotransformation analysis of mAb, contributing to improved understanding and paving the way for future research and clinical applications.
Collapse
Affiliation(s)
- Chengyi Zuo
- Institute of Pharmaceutical Analysis, College of Pharmacy/State Key Laboratory of Bioactive Molecules and Druggability Assessment/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research of China, Jinan University, Guangzhou, 510632, China
| | - Jingwei Zhou
- Institute of Pharmaceutical Analysis, College of Pharmacy/State Key Laboratory of Bioactive Molecules and Druggability Assessment/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research of China, Jinan University, Guangzhou, 510632, China
| | - Sumin Bian
- School of Engineering, Westlake University, Hangzhou, 310024, China
| | - Qing Zhang
- The First Affiliated Hospital of Jinan University, Guangzhou, 510632, China
| | - Yutian Lei
- School of Biomedical Engineering, Sun Yat-sen University, Shenzhen, Guang dong, 518107, China
| | - Yuan Shen
- Institute of Pharmaceutical Analysis, College of Pharmacy/State Key Laboratory of Bioactive Molecules and Druggability Assessment/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research of China, Jinan University, Guangzhou, 510632, China
| | - Zhiwei Chen
- Institute of Pharmaceutical Analysis, College of Pharmacy/State Key Laboratory of Bioactive Molecules and Druggability Assessment/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research of China, Jinan University, Guangzhou, 510632, China
| | - Peijun Ye
- Institute of Pharmaceutical Analysis, College of Pharmacy/State Key Laboratory of Bioactive Molecules and Druggability Assessment/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research of China, Jinan University, Guangzhou, 510632, China
| | - Leying Shi
- Institute of Pharmaceutical Analysis, College of Pharmacy/State Key Laboratory of Bioactive Molecules and Druggability Assessment/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research of China, Jinan University, Guangzhou, 510632, China
| | - Mao Mu
- Guangdong Institute for Drug Control, Guangzhou, 510663, China
| | - Jia-Huan Qu
- Institute of Pharmaceutical Analysis, College of Pharmacy/State Key Laboratory of Bioactive Molecules and Druggability Assessment/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research of China, Jinan University, Guangzhou, 510632, China
| | - Zhengjin Jiang
- Institute of Pharmaceutical Analysis, College of Pharmacy/State Key Laboratory of Bioactive Molecules and Druggability Assessment/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research of China, Jinan University, Guangzhou, 510632, China
| | - Qiqin Wang
- Institute of Pharmaceutical Analysis, College of Pharmacy/State Key Laboratory of Bioactive Molecules and Druggability Assessment/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research of China, Jinan University, Guangzhou, 510632, China
| |
Collapse
|
4
|
He Q, Chen F, Zhao Z, Pei P, Gan Y, Zhou A, Zhou J, Qu JH, Crommen J, Fillet M, Li Y, Wang Q, Jiang Z. Supramolecular Mimotope Peptide Nanofibers Promote Antibody-Ligand Polyvalent and Instantaneous Recognition for Biopharmaceutical Analysis. Anal Chem 2024; 96:5940-5950. [PMID: 38562013 DOI: 10.1021/acs.analchem.4c00051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Peptide-based supramolecules exhibit great potential in various fields due to their improved target recognition ability and versatile functions. However, they still suffer from numerous challenges for the biopharmaceutical analysis, including poor self-assembly ability, undesirable ligand-antibody binding rates, and formidable target binding barriers caused by ligand crowding. To tackle these issues, a "polyvalent recognition" strategy employing the CD20 mimotope peptide derivative NBD-FFVLR-GS-WPRWLEN (acting on the CDR domains of rituximab) was proposed to develop supramolecular nanofibers for target antibody recognition. These nanofibers exhibited rapid self-assembly within only 1 min and robust stability. Their binding affinity (179 nM) for rituximab surpassed that of the monomeric peptide (7 μM) by over 38-fold, highlighting that high ligand density and potential polyvalent recognition can efficiently overcome the target binding barriers of traditional supramolecules. Moreover, these nanofibers exhibited an amazing "instantaneous capture" rate (within 15 s), a high recovery (93 ± 3%), and good specificity for the target antibody. High-efficiency enrichment of rituximab was achieved from cell culture medium with good recovery and reproducibility. Intriguingly, these peptide nanofibers combined with bottom-up proteomics were successful in tracking the deamidation of asparagine 55 (from 10 to 16%) on the rituximab heavy chain after 21 day incubation in human serum. In summary, this study may open up an avenue for the development of versatile mimotope peptide supramolecules for biorecognition and bioanalysis of biopharmaceuticals.
Collapse
Affiliation(s)
- Qiaoxian He
- Institute of Pharmaceutical Analysis, College of Pharmacy/State Key Laboratory of Bioactive Molecules and Druggability Assessment/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou 510632, China
| | - Feng Chen
- Institute of Pharmaceutical Analysis, College of Pharmacy/State Key Laboratory of Bioactive Molecules and Druggability Assessment/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou 510632, China
| | - Zheng Zhao
- Institute of Pharmaceutical Analysis, College of Pharmacy/State Key Laboratory of Bioactive Molecules and Druggability Assessment/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou 510632, China
| | - Pengfei Pei
- Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Yongqing Gan
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Aixuan Zhou
- Institute of Pharmaceutical Analysis, College of Pharmacy/State Key Laboratory of Bioactive Molecules and Druggability Assessment/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou 510632, China
| | - Jingwei Zhou
- Institute of Pharmaceutical Analysis, College of Pharmacy/State Key Laboratory of Bioactive Molecules and Druggability Assessment/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou 510632, China
| | - Jia-Huan Qu
- Institute of Pharmaceutical Analysis, College of Pharmacy/State Key Laboratory of Bioactive Molecules and Druggability Assessment/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou 510632, China
| | - Jacques Crommen
- Institute of Pharmaceutical Analysis, College of Pharmacy/State Key Laboratory of Bioactive Molecules and Druggability Assessment/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou 510632, China
- Laboratory for the Analysis of Medicines, Department of Pharmaceutical Sciences, CIRM, University of Liege, CHU B36, B-4000 Liege, Belgium
| | - Marianne Fillet
- Institute of Pharmaceutical Analysis, College of Pharmacy/State Key Laboratory of Bioactive Molecules and Druggability Assessment/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou 510632, China
- Laboratory for the Analysis of Medicines, Department of Pharmaceutical Sciences, CIRM, University of Liege, CHU B36, B-4000 Liege, Belgium
| | - Yingchun Li
- School of Science, Harbin Institute of Technology, Shenzhen, Guangdong 518055, China
| | - Qiqin Wang
- Institute of Pharmaceutical Analysis, College of Pharmacy/State Key Laboratory of Bioactive Molecules and Druggability Assessment/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou 510632, China
| | - Zhengjin Jiang
- Institute of Pharmaceutical Analysis, College of Pharmacy/State Key Laboratory of Bioactive Molecules and Druggability Assessment/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou 510632, China
| |
Collapse
|
5
|
Zhou J, Wu H, Shao J, Qu JH, Li M, Zhaiman H, Wang Q, Jiang Z. Biomimetic affinity membrane roll column for rapid purification of C-reactive protein. J Chromatogr A 2024; 1713:464541. [PMID: 38041978 DOI: 10.1016/j.chroma.2023.464541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 11/26/2023] [Accepted: 11/27/2023] [Indexed: 12/04/2023]
Abstract
To in-depth explore the action mechanism of C-reactive protein (CRP) and precisely study its signaling pathways, it is essential to acquire high-purity CRP while preserving its intact structure and functionality. In this study, we propose and fabricate a high-density 2-methacryloyloxyethyl phosphorylcholine (MPC)-modified membrane roll column (MPC-MRC) using a surface-initiated atom transfer radical polymerization (SI-ATRP) approach, which can overcome these limitations (long incubation time and low adsorption capacity) of conventional enrichment materials. The MPC-MRC incorporates a high-density 2-hydroxyethyl methacrylate polymer brush to prevent non-specific protein adsorption and multiple MPC polymer brush layers for high-performance enrichment of CRP in the company of calcium ions. Furthermore, the MPC-MRC exhibits high permeability, hydrophilicity, and mechanical strength. Compared to previous technologies, this novel material demonstrates significantly higher CRP binding capacity (310.3 mg/g), shorter processing time (only 15 min), and lower cost (only 12 USD/column). Notably, the MPC-MRC enables fast and effective purification of CRP from both human and rat serum, exhibiting good selectivity, recovery (> 91.3 %), and purity (> 95.2 %). Thus, this proposed purification approach based on MPC-MRC holds great potential for target protein enrichment from complex samples, as well as facilitating in-depth studies of its biological functions.
Collapse
Affiliation(s)
- Jingwei Zhou
- Institute of Pharmaceutical Analysis, College of Pharmacy/State Key Laboratory of Bioactive Molecules and Druggability Assessment/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou 510632, China
| | - Huihui Wu
- Occupational Health Laboratory, Anhui No.2 Provincial People's Hospital/Anhui No.2 Provincial People's Hospital Clinical College, Anhui Medical University, Anhui, 230041, PR China
| | - Jianxiong Shao
- Institute of Pharmaceutical Analysis, College of Pharmacy/State Key Laboratory of Bioactive Molecules and Druggability Assessment/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou 510632, China
| | - Jia-Huan Qu
- Institute of Pharmaceutical Analysis, College of Pharmacy/State Key Laboratory of Bioactive Molecules and Druggability Assessment/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou 510632, China
| | - Minyi Li
- Institute of Pharmaceutical Analysis, College of Pharmacy/State Key Laboratory of Bioactive Molecules and Druggability Assessment/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou 510632, China
| | - Huayun Zhaiman
- Institute of Pharmaceutical Analysis, College of Pharmacy/State Key Laboratory of Bioactive Molecules and Druggability Assessment/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou 510632, China
| | - Qiqin Wang
- Institute of Pharmaceutical Analysis, College of Pharmacy/State Key Laboratory of Bioactive Molecules and Druggability Assessment/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou 510632, China; Key Laboratory of Drug-Targeting and Drug Delivery System of Sichuan Province, Sichuan, 610065, PR China.
| | - Zhengjin Jiang
- Institute of Pharmaceutical Analysis, College of Pharmacy/State Key Laboratory of Bioactive Molecules and Druggability Assessment/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou 510632, China.
| |
Collapse
|