1
|
Manohar M, Shetty A, Lobo CL, Jain P, Hebbar S, Dhas N, Sutar KP, Sukeewandhi J, Perumalsamy H, Balusamy SR, Jamous YF, Dubey A, El-Zahaby SA. Emerging trends in chitosan based colloidal drug delivery systems: A translational journey from research to practice. Carbohydr Polym 2025; 360:123604. [PMID: 40399015 DOI: 10.1016/j.carbpol.2025.123604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2025] [Revised: 04/01/2025] [Accepted: 04/10/2025] [Indexed: 05/23/2025]
Abstract
Chitosan, a natural polymer derived from chitin, has garnered significant interest in pharmaceutical and biomedical applications due to its distinctive properties, such as controlled drug release, mucoadhesive capabilities, in situ gelling property, enhancement of permeation, and efflux pump inhibitory effect. In this review, various types of chitosan based colloidal drug delivery systems such as vesicular, and particulate systems were discussed along with their role in pre-clinical biomedical applications. Some important clinical applications of chitosan-based drug delivery systems in treating major chronic diseases were also discussed. Using Chitosan in delivery of drugs and gene therapy had many beneficial outcomes, however, obtaining clinical acceptance and regulatory approval requires a careful approach for proving efficacy and safety. In order to present the current status of chitosan-based drug delivery systems, filled patents employing chitosan derivatives were also part of this review. This will help forward the use of chitosan-based drug delivery system from research to practice. Finally, the future prospects for chitosan-based delivery systems were discussed.
Collapse
Affiliation(s)
- Mahadev Manohar
- Nitte (Deemed to be University), NGSM Institute of Pharmaceutical Sciences, Department of Pharmaceutics, Mangaluru, India
| | - Amitha Shetty
- Nitte (Deemed to be University), NGSM Institute of Pharmaceutical Sciences, Department of Pharmaceutics, Mangaluru, India
| | - Cynthia Lizzie Lobo
- Nitte (Deemed to be University), NGSM Institute of Pharmaceutical Sciences, Department of Pharmaceutics, Mangaluru, India
| | - Praneetha Jain
- Nitte (Deemed to be University), NGSM Institute of Pharmaceutical Sciences, Department of Pharmacy Practice, Mangaluru, India
| | - Srinivas Hebbar
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, India
| | - Namdev Dhas
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, India
| | - Kishori P Sutar
- Department of Pharmaceutics, KLE College of Pharmacy, Belagavi, KLE Academy of Higher Education and Research, Belagavi, India
| | - Johan Sukeewandhi
- Faculty of Biotechnology, University of Surabaya, Surabaya 60293, Indonesia
| | - Haribalan Perumalsamy
- Center for Creative Convergence Education, Hanyang University, Seoul 04763, Republic of Korea; Research Institute for Convergence of Basic Science, Hanyang University, Seoul 04763, Republic of Korea
| | - Sri Renukadevi Balusamy
- Department of Food Science and Biotechnology, Sejong University, Gwangjin-gu, Seoul 05006, Republic of Korea.
| | - Yahya F Jamous
- Vaccine and Bioprocessing National Center, King Abdulaziz City for Science and Technology (KACST), Riyadh 11442, Saudi Arabia
| | - Akhilesh Dubey
- Nitte (Deemed to be University), NGSM Institute of Pharmaceutical Sciences, Department of Pharmaceutics, Mangaluru, India.
| | - Sally A El-Zahaby
- Department of Pharmaceutics and Industrial Pharmacy, PharmD Program, Egypt-Japan University of Science and Technology (E-JUST), Alexandria, Egypt
| |
Collapse
|
2
|
Zhou W, Han M, Zhang H, Zhang T, Tian H, Yang T, Liu T. Effect of PVP and HPMC on production of indomethacin amorphous nanoparticles: experiments and molecular dynamics simulations. Drug Dev Ind Pharm 2025; 51:622-633. [PMID: 40253617 DOI: 10.1080/03639045.2025.2495136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 04/01/2025] [Accepted: 04/14/2025] [Indexed: 04/22/2025]
Abstract
OBJECTIVE This study investigated the effect of molecular interactions between drug and polymers on preparation of nanoamorphous indomethacin (IND) through milling of solid dispersions (SDs). SIGNIFICANCE The polymer selection (molecular interaction) emerged as a critical factor in the dynamic milling process for achieving nanoamorphous drug. METHODS Polyvinylpyrrolidone (PVP) and hydroxypropyl methylcellulose (HPMC) were selected as models. Amorphous dispersions were used to prepare nanoamorphous drugs by applying wet milling. Molecular simulations were employed to elucidate the molecular mechanisms of drug-polymer miscibility, interaction energy, and molecular migration. RESULTS Both PVP and HPMC related SDs could be nanosized after milling. The rate of size reduction might be related to the solid state of the dispersions. The combination of amorphous PVP SDs with reduced particle size significantly improved the dissolution rate of IND. However, HPMC-based samples exhibited recrystallization during milling. Molecular simulation indicated that PVP formed strong molecular interaction with the drug to maintain the amorphous form, which contributed to avoid recrystallization induced by the external milling forces. The radial distribution function of hydrated IND/HPMC amorphous cells demonstrated the absence of hydrogen bonding interactions between IND and HPMC. CONCLUSION PVP contributed to maintain the amorphous state during the milling process, which resulted from the higher molecular binding energy compared to HPMC. Controlled milling of amorphous SD with optimized polymer selection could simultaneously achieve nanoamorphous particle and enhanced dissolution rate.
Collapse
Affiliation(s)
- Wenhui Zhou
- Department of Pharmaceutical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, China
| | - Mengmeng Han
- Department of Pharmaceutical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, China
| | - Haosen Zhang
- Department of Pharmaceutical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, China
| | - Tianwei Zhang
- Department of Pharmaceutical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, China
| | - Haiyun Tian
- Department of Pharmaceutical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, China
| | - Tingting Yang
- School of Life Sciences, Yunnan University, Kunming, China
| | - Tao Liu
- Department of Pharmaceutical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, China
| |
Collapse
|
3
|
Wei W, Zhang Q, Su W. Improvement of the Solubility, Permeability, and Pharmacological Activity of Decoquinate-Loaded Hydroxypropyl- β-Cyclodextrin-Tea Saponins Ternary ComplexA. Pharmaceuticals (Basel) 2025; 18:743. [PMID: 40430561 PMCID: PMC12114652 DOI: 10.3390/ph18050743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2025] [Revised: 05/13/2025] [Accepted: 05/16/2025] [Indexed: 05/29/2025] Open
Abstract
Objectives: This study was performed to simultaneously improve the solubility, permeability, and pharmacological activity of decoquinate (DQ). Methods: A ternary DQ solid dispersion with hydroxypropyl-β-cyclodextrin (HP-β-CD) and tea saponin (TS) was mechanochemically prepared to enhance the efficacy of DQ. Results: The encapsulation efficiency of the ternary complex reached 93.51%, and the drug loading was 9.48%. The mean particle size was 90.88 ± 0.44 nm. The polydispersity index was 0.244 ± 0.004, and the zeta potential was -38.81 ± 0.75 mV. The sugar ring moiety formed multiple hydrogen bonds with the surface of HP-β-CD, creating favorable conditions for the development of a stable ternary complex through sophisticated molecular interactions that facilitated its assembly. In vivo studies demonstrated that the DQ/HP-β-CD/TS ternary complex drinking water demonstrated superior anticoccidial activity compared to pure DQ and commercial feed formulations against Eimeria tenella. Conclusions: This innovative mechanochemically synthesized ternary complex demonstrates remarkable promise for improving DQ-based formulations, as it simultaneously boosts aqueous solubility, permeability, and therapeutic efficacy. These synergistic enhancements position the compound as a strong candidate for pharmaceutical development.
Collapse
Affiliation(s)
- Wei Wei
- Department of Pharmacology, Ningxia Medical University, Yinchuan 750004, China
| | - Qihong Zhang
- National Engineering Research Center for Process Development of Active Pharmaceutical Ingredients, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, China
| | - Weike Su
- National Engineering Research Center for Process Development of Active Pharmaceutical Ingredients, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, China
- Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, China
| |
Collapse
|
4
|
Banerjee A, Kajol, Biswas M, Das NR, Pathak RK. Supra-Hybrid Nanocarriers of Calix[4]Arene and PLGA for Enhanced Encapsulation and Extended Delivery of Gossypol in Cancer Therapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025:e2501235. [PMID: 40370280 DOI: 10.1002/smll.202501235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Revised: 03/28/2025] [Indexed: 05/16/2025]
Abstract
In this study, supra-hybrid nanocarriers Cal-P NPs are developed by combining amphiphilic macrocyclic calix[4]arene and PLGA, offering adequate stability and multifunctionality as a single-platform nanocarrier resulting in monodispersed nanoparticles with unique synthetic tunability and an optimized hydrophobic core for therapeutic encapsulation. Unlike conventional multicomponent systems, the design eliminates the need for many external stabilizers while enabling tailored PEGylation for controlled drug release, as demonstrated with hydrophobic gossypol. This innovation addresses key limitations in cancer nanomedicine, including premature drug leakage and dose frequency, through a synthetically tunable and structurally optimized, bioresistant core. Gossypol, a model bioactive molecule with poor water solubility, is effectively loaded into the Cal-P NPs, significantly enhancing its aqueous solubility to millimolar concentrations. The encapsulation is driven by favorable interactions between gossypol and the hydrophobic groups of calixarene and PLGA, resulting in a stable core with sustained release properties. Validated through in vivo pharmacokinetic studies and detailed anticancer experiments in two distinct cancer cell lines, GP-Cal-P NPs demonstrated their potential as a robust platform for therapeutic delivery. These findings emphasize the versatility of Cal-P NPs in addressing challenges associated with hydrophobic drugs and highlight their promise for further preclinical and clinical development.
Collapse
Affiliation(s)
- Arka Banerjee
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER Berhampur), Berhampur, Odisha, 760010, India
| | - Kajol
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER Berhampur), Berhampur, Odisha, 760010, India
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER Berhampur), Berhampur, Odisha, 760010, India
| | - Megha Biswas
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER Berhampur), Berhampur, Odisha, 760010, India
| | - Nihar Ranjan Das
- Department of Pharmacology, GITAM School of Pharmacy, GITAM deemed to be University, Gandhi Nagar, Visakhapatnam, Andhra Pradesh, 530045, India
- Department of Pharmacology, Roland Institute of Pharmaceutical Sciences, Berhampur, Odisha, 760010, India
| | - Rakesh Kumar Pathak
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER Berhampur), Berhampur, Odisha, 760010, India
| |
Collapse
|
5
|
Dutta D, Hoque AA, Paul B, Begum S, Sarkar UA, Mukherjee B. Molecular insights into the antineoplastic potential of apigenin and its derivatives: paving the way for nanotherapeutic innovations. Expert Opin Drug Deliv 2025; 22:639-658. [PMID: 40063738 DOI: 10.1080/17425247.2025.2477664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2024] [Accepted: 03/06/2025] [Indexed: 03/18/2025]
Abstract
INTRODUCTION Apigenin, a widely distributed bioactive flavonoid, has recently gained excellent attention among researchers as an effective anticancer drug that can alternate cancer-signaling pathways, induce programmed cell death, and reduce tumor growth in various cancer types. Despite its impressive anti-neoplastic activity, high hydrophobicity, and nonspecific biodistribution make apigenin difficult for pharmaceutical applications. AREAS COVERED We highlighted the therapeutic potential of apigenin and its derivatives in different cancer types, along with their mechanism of action. Nanoengineered drug delivery systems have remarkable applications in minimizing drug degradation and enhancing the therapeutic efficacy of drugs with sustained release, prolonged blood retention time, and reduced off-target toxicities. This review has evaluated and explored the molecular interactions of this novel flavonoid in various cancer signaling pathways to selectively inhibit neoplastic development in multiple cancer types. To ensure the complete coverage of the explored research area, Google Scholar, PubMed, and Web of Science were used to find not only the most relevant but also connected and similar articles. EXPERT OPINION A comprehensive overview of apigenin nanotherapy in cancer treatment can establish a platform to overcome its difficulties for pharmaceutical applications and efficient clinical translation from bench to bedside.
Collapse
Affiliation(s)
- Debasmita Dutta
- Dana Farber Cancer Institute, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Ashique Al Hoque
- Department of Pharmaceutical Technology, Jadavpur University, Kolkata, India
| | - Brahamacharry Paul
- Department of Pharmaceutical Technology, Jadavpur University, Kolkata, India
| | - Shahnaz Begum
- Department of Chemistry, Jadavpur University, Kolkata, India
| | - Uday Aditya Sarkar
- Dana Farber Cancer Institute, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Biswajit Mukherjee
- Department of Pharmaceutical Technology, Jadavpur University, Kolkata, India
| |
Collapse
|
6
|
Guo Y, Wang H, Zhu Q, Mao Y, Wen X, Zhang X, Mao S, Yuan H, Guan J. Exploration of enalapril-lacidipine co-amorphous system with superior dissolution, in vivo absorption and physical stability via incorporated into mesoporous silica. Eur J Pharm Sci 2025; 207:107033. [PMID: 39921148 DOI: 10.1016/j.ejps.2025.107033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 01/17/2025] [Accepted: 02/04/2025] [Indexed: 02/10/2025]
Abstract
In the present study, enalapril (ENP) was taking as a potential co-former to fabricate co-amorphous system with lacidipine (LCDP). The ENP/LCDP co-amorphous system was firstly prepared with or without mesoporous SiO2 and characterized by DSC, XRD and SEM technologies. The potential molecular interactions were evaluated by FTIR spectrums. Furthermore, the dissolution and pharmacokinetics behavior of various formulations were also carried out. It was demonstrated that the completely co-amorphization was obtained at ENP/LCDP 2:1 molar ratio by the intermolecular interactions between ENP and LCDP. The ENP/LCDP co-amorphous system significantly improve the dissolution rate of LCDP and ENP respectively. Compared to the naked ENP/LCDP co-amorphous system, remarkable enhancement of dissolution rate and bioavailability of model drugs was observed by incorporated the co-amorphous system into mesoporous SiO2, and a superior physical stability was also observed after accelerated study. Raman mapping revealed that the less microstructure phase separation could be the main reason for the better stability in presence of mesoporous SiO2. In conclusion, ENP could be successfully used as a potential co-former to fabricate co-amorphous system with poorly water-soluble drugs and collaborates the co-amorphous with mesoporous SiO2 become a promising strategy to achieve stable amorphous formulation for further enhancement of dissolution rate and bioavailability.
Collapse
Affiliation(s)
- Yuhan Guo
- School of Pharmacy, Shenyang Key Laboratory of Intelligent Mucosal Drug Delivery Systems, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Hanyu Wang
- School of Pharmacy, Shenyang Key Laboratory of Intelligent Mucosal Drug Delivery Systems, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Qiang Zhu
- School of Pharmacy, Nantong University, Nantong 226001, China
| | - Ying Mao
- School of Pharmacy, Shenyang Key Laboratory of Intelligent Mucosal Drug Delivery Systems, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Xiangce Wen
- School of Pharmacy, Shenyang Key Laboratory of Intelligent Mucosal Drug Delivery Systems, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Xin Zhang
- School of Pharmacy, Shenyang Key Laboratory of Intelligent Mucosal Drug Delivery Systems, Shenyang Pharmaceutical University, Shenyang 110016, China; Joint International Research Laboratory of Intelligent Drug Delivery Systems, Ministry of Education, China
| | - Shirui Mao
- School of Pharmacy, Shenyang Key Laboratory of Intelligent Mucosal Drug Delivery Systems, Shenyang Pharmaceutical University, Shenyang 110016, China; Joint International Research Laboratory of Intelligent Drug Delivery Systems, Ministry of Education, China
| | - Huiya Yuan
- Department of Forensic Analytical Toxicology, China Medical University School of Forensic Medicine, Shenyang 110112, China; Liaoning Province Key Laboratory of Forensic Bio-evidence Science, Shenyang 110112, China; China Medical University Center of Forensic Investigation, Shenyang 110112, China.
| | - Jian Guan
- School of Pharmacy, Shenyang Key Laboratory of Intelligent Mucosal Drug Delivery Systems, Shenyang Pharmaceutical University, Shenyang 110016, China; Joint International Research Laboratory of Intelligent Drug Delivery Systems, Ministry of Education, China.
| |
Collapse
|
7
|
Zoupanou N, Papakyriakopoulou P, Georgiou N, Cheilari A, Javornik U, Podbevsek P, Tzeli D, Valsami G, Mavromoustakos T. Spectroscopic Characterization Using 1H and 13C Nuclear Magnetic Resonance and Computational Analysis of the Complex of Donepezil with 2,6-Methyl-β-Cyclodextrin and Hydroxy Propyl Methyl Cellulose. Molecules 2025; 30:1169. [PMID: 40076392 PMCID: PMC11902010 DOI: 10.3390/molecules30051169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Revised: 02/28/2025] [Accepted: 03/03/2025] [Indexed: 03/14/2025] Open
Abstract
Donepezil (DH), a selective acetylcholinesterase inhibitor, is widely used to manage symptoms of mild to moderate Alzheimer's disease by enhancing cholinergic neurotransmission and preventing acetylcholine breakdown. Despite the effectiveness of oral formulations, extensive hepatic metabolism and low systemic bioavailability have driven the search for alternative delivery systems. This study focuses on nasal delivery as a non-parenteral substitute, utilizing hydroxypropyl methylcellulose (HPMC) for its mucoadhesive properties and methyl-β-cyclodextrin (Me-β-CD) for its ability to enhance permeability and form inclusion complexes with drugs. Prior studies demonstrated the potential of HPMC-based nasal films for nose-to-brain delivery of donepezil and highlighted Me-β-CD's role in improving drug solubility. Building on this, transparent gel formulations containing DH, HPMC, and 2,6 Me-β-CD were developed to investigate molecular interactions within two- and three-component systems. This study utilized a combination of nuclear magnetic resonance (NMR) spectroscopy and density functional theory (DFT) to provide detailed insights into the interactions between DH, 2,6-Me-β-CD, and HPMC. The findings provide critical insights into drug-excipient interactions, aiding the optimization of stability, solubility, and controlled release. This advances the rational design of nanotechnology-based drug delivery systems for enhanced therapeutic efficacy.
Collapse
Affiliation(s)
- Nikoletta Zoupanou
- Department of Chemistry, National and Kapodistrian University of Athens, Zografou, 15771 Athens, Greece; (N.Z.); (N.G.); (D.T.)
| | - Paraskevi Papakyriakopoulou
- Department of Pharmacy, National and Kapodistrian University of Athens, Zografou, 15771 Athens, Greece; (P.P.); (G.V.)
| | - Nikitas Georgiou
- Department of Chemistry, National and Kapodistrian University of Athens, Zografou, 15771 Athens, Greece; (N.Z.); (N.G.); (D.T.)
| | - Antigoni Cheilari
- Department of Pharmacognosy and Natural Products Chemistry, Faculty of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece;
| | - Uroš Javornik
- Slovenian NMR Centre, National Institute of Chemistry of Ljubljana, Hajdrihova 19, 1000 Ljubljana, Slovenia; (U.J.); (P.P.)
| | - Peter Podbevsek
- Slovenian NMR Centre, National Institute of Chemistry of Ljubljana, Hajdrihova 19, 1000 Ljubljana, Slovenia; (U.J.); (P.P.)
| | - Demeter Tzeli
- Department of Chemistry, National and Kapodistrian University of Athens, Zografou, 15771 Athens, Greece; (N.Z.); (N.G.); (D.T.)
| | - Georgia Valsami
- Department of Pharmacy, National and Kapodistrian University of Athens, Zografou, 15771 Athens, Greece; (P.P.); (G.V.)
| | - Thomas Mavromoustakos
- Department of Chemistry, National and Kapodistrian University of Athens, Zografou, 15771 Athens, Greece; (N.Z.); (N.G.); (D.T.)
| |
Collapse
|
8
|
Wang N, Dong J, Ouyang D. AI-directed formulation strategy design initiates rational drug development. J Control Release 2025; 378:619-636. [PMID: 39719215 DOI: 10.1016/j.jconrel.2024.12.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 11/27/2024] [Accepted: 12/18/2024] [Indexed: 12/26/2024]
Abstract
Rational drug development would be impossible without selecting the appropriate formulation route. However, pharmaceutical scientists often rely on limited personal experiences to perform trial-and-error tests on diverse formulation strategies. Such an inefficient screening manner not only wastes research investments but also threatens the safety of clinical volunteers and patients. A design-oriented paradigm for formulation strategy determination is urgently needed to initiate rational drug development. Herein, we introduce FormulationDT, the first data-driven and knowledge-guided artificial intelligence (AI) platform for rational formulation strategy design. Learning from approved drug formulations, FormulationDT devised a comprehensive formulation strategy design system containing 12 decisions for both oral and injectable administration. Utilizing PU-Decide, our specialized partially supervised learning framework designed for positive-unlabeled (PU) scenarios, FormulationDT developed precise and interpretable classification models for each decision, achieving area under the receiver operating characteristic curve (ROC_AUC) scores ranging from 0.78 to 0.98, with an average above 0.90. Incorporating extensive domain knowledge, FormulationDT is now accessible through a user-friendly web platform (http://formulationdt.computpharm.org/). Moreover, FormulationDT demonstrates its value by showcasing its application in proteolysis targeting chimeras (PROTACs) and recent drug approvals. Overall, this study created the first approved drug formulation dataset and tailored the PU-Decide framework to develop a high-performance, interpretable, and user-friendly AI formulation strategy design platform, which holds promise for driving risk reduction and efficiency gains across the life cycle of drug discovery and development.
Collapse
Affiliation(s)
- Nannan Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences (ICMS), University of Macau, Macau, China
| | - Jie Dong
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China.
| | - Defang Ouyang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences (ICMS), University of Macau, Macau, China; Department of Public Health and Medicinal Administration, Faculty of Health Sciences (FHS), University of Macau, Macau, China.
| |
Collapse
|
9
|
Bezerra M, Almeida J, de Castro M, Grootveld M, Schlindwein W. Enhancing Process Control and Quality in Amorphous Solid Dispersions Using In-Line UV-Vis Monitoring of L* as a Real-Time Response. Pharmaceutics 2025; 17:151. [PMID: 40006518 PMCID: PMC11859203 DOI: 10.3390/pharmaceutics17020151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 01/17/2025] [Accepted: 01/20/2025] [Indexed: 02/27/2025] Open
Abstract
Background: This study demonstrates the application of the sequential design of experiments (DoE) approach within the quality by design (QbD) framework to optimize extrusion processes through screening, optimization, and robustness testing. Methods: An in-line UV-Vis process analytical technology (PAT) system was successfully employed to monitor critical quality attributes (CQAs) of piroxicam amorphous solid dispersion (ASD) extrusion products, specifically lightness (L*). Results: L* measurement proved highly effective for ensuring the quality and uniformity of ASDs, offering real-time insights into their physical appearance and process stability. Small variations in L* acted as early indicators of processing issues, such as phase separation or bubble formation, enabling timely intervention. This straightforward and rapid technique supports real-time process monitoring and control, allowing automated adjustments to maintain product consistency and quality. By adopting this strategy, manufacturers can minimize variability, reduce waste, and ensure adherence to quality target product profiles (QTPPs). Conclusions: Overall, this study highlights the value of in-line UV-Vis spectroscopy as a PAT tool in hot melt extrusion, enhancing CQA assessment and advancing the efficiency and reliability of ASD manufacturing.
Collapse
Affiliation(s)
- Mariana Bezerra
- GlaxoSmithKline, David Jack Centre, Harris Lane, Ware SG12 0GX, UK
| | | | - Matheus de Castro
- Leicester School of Pharmacy, De Montfort University, Leicester LE1 9BH, UK; (M.d.C.); (M.G.)
| | - Martin Grootveld
- Leicester School of Pharmacy, De Montfort University, Leicester LE1 9BH, UK; (M.d.C.); (M.G.)
| | - Walkiria Schlindwein
- Leicester School of Pharmacy, De Montfort University, Leicester LE1 9BH, UK; (M.d.C.); (M.G.)
| |
Collapse
|
10
|
Rosiak N, Tykarska E, Miklaszewski A, Pietrzak R, Cielecka-Piontek J. Enhancing the Solubility and Dissolution of Apigenin: Solid Dispersions Approach. Int J Mol Sci 2025; 26:566. [PMID: 39859284 PMCID: PMC11766082 DOI: 10.3390/ijms26020566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 12/30/2024] [Accepted: 01/09/2025] [Indexed: 01/27/2025] Open
Abstract
Apigenin (APG), a bioactive flavonoid with promising therapeutic potential, suffers from poor water solubility, which limits its bioavailability. To address this, solid dispersions of APG were prepared using ball milling with sodium alginate (SA), Pluronic® F-68 (PLU68), Pluronic® F-127 (PLU127), PVP K30, and PVP VA64 as polymeric excipients. These dispersions were screened for apparent solubility in water and buffers with pH 1.2, 5.5, and 6.8. Based on improved solubility after 60 min, APG-PLU68 and APG-PLU127 dispersions were selected for further study. DSC and FT-IR analysis confirmed molecular interactions between APG and the polymer matrices, contributing to enhanced solubility and dissolution rates. Dissolution rate studies showed that APG-PLU127 achieved 100% solubility at pH 6.8, suggesting its potential use in environments such as the small intestine. Additionally, APG-PLU127 exhibited 84.3% solubility at pH 1.2, indicating potential for solid oral dosage forms, where APG could be absorbed in the acidic conditions of the stomach. The stability study confirmed that storage for one year under ambient conditions does not cause chemical degradation but affects the physical state and solubility of the dispersion. Antioxidant activity was assessed using the ABTS assay. Freshly obtained APG-PLU127 showed 68.1% ± 1.94% activity, whereas APG-PLU127 stored for one year under ambient conditions exhibited 66.2% ± 1.62% (significant difference, p < 0.05). The difference was related to a slight decrease in the solubility of APG in the solid dispersion (T0 = 252 ± 1 μg∙mL-1, T1 = 246 ± 1 μg∙mL-1). The findings demonstrate the superior performance of PLU127 as a carrier for enhancing the solubility, release, and antioxidant activity of APG.
Collapse
Affiliation(s)
- Natalia Rosiak
- Department of Pharmacognosy and Biomaterials, Faculty of Pharmacy, Poznan University of Medical Sciences, 3 Rokietnicka St., 60-806 Poznan, Poland;
| | - Ewa Tykarska
- Department of Chemical Technology of Drugs, Poznan University of Medical Sciences, 3 Rokietnicka St., 60-806 Poznan, Poland;
| | - Andrzej Miklaszewski
- Faculty of Materials Engineering and Technical Physics, Institute of Materials Science and Engineering, Poznan University of Technology, 60-965 Poznan, Poland;
| | - Robert Pietrzak
- Faculty of Chemistry, Adam Mickiewicz University, 8 Uniwersytetu Poznańskiego St., 61-614 Poznan, Poland;
| | - Judyta Cielecka-Piontek
- Department of Pharmacognosy and Biomaterials, Faculty of Pharmacy, Poznan University of Medical Sciences, 3 Rokietnicka St., 60-806 Poznan, Poland;
| |
Collapse
|
11
|
Islam MS, Mitra S. Enhancing the Solubility of Co-Formulated Hydrophobic Drugs by Incorporating Functionalized Nano-Structured Poly Lactic- co-glycolic Acid ( nfPLGA) During Co-Precipitation. Pharmaceutics 2025; 17:77. [PMID: 39861725 PMCID: PMC11768099 DOI: 10.3390/pharmaceutics17010077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 01/03/2025] [Accepted: 01/07/2025] [Indexed: 01/27/2025] Open
Abstract
Background/Objectives: The co-formulation of active pharmaceutical ingredients (APIs) is a growing strategy in biopharmaceutical development, particularly when it comes to improving solubility and bioavailability. This study explores a co-precipitation method to prepare co-formulated crystals of griseofulvin (GF) and dexamethasone (DXM), utilizing nanostructured, functionalized polylactic glycolic acid (nfPLGA) as a solubility enhancer. Methods: An antisolvent precipitation technique was employed to incorporate nfPLGA at a 3% concentration into the co-formulated GF and DXM, referred to as DXM-GF-nfPLGA. The dissolution performance of this formulation was compared to that of the pure drugs and the co-precipitated DXM-GF without nfPLGA. Results: Several characterization techniques, including electron microscopy (SEM), RAMAN, FTIR, TGA, and XRD, were used to analyze the nfPLGA incorporation and the co-precipitated co-formulations. The inclusion of nfPLGA significantly enhanced the dissolution and initial dissolution rate of both GF and DXM in the DXM-GF-nfPLGA formulation, achieving a maximum dissolution of 100%, which was not attained by the pure drugs or the DXM-GF formulation. The incorporation of nfPLGA also reduced the amount of time taken to reach 50% (T50) and 80% (T80) dissolution. T50 values decreased from 52 and 82 min (for pure DXM and GF) to 23 min for DXM-GF-nfPLGA, and the T80 improved to 50 min for DXM-GF-nfPLGA, significantly outpacing the pure compounds. Furthermore, incorporating nfPLGA into the crystal structures greatly accelerated the dissolution rates, with initial rates reaching 650.92 µg/min for DXM-GF-nfPLGA compared to 540.60 µg/min for DXM-GF, while pure GF and DXM showed lower rates. Conclusions: This work demonstrates that nfPLGA incorporation enhances dissolution performance by forming water channels within the API crystal via hydrogen-bonding interactions. This innovative nfPLGA incorporation method holds promise for developing hydrophobic co-formulations with faster solubility and dissolution rates.
Collapse
Affiliation(s)
| | - Somenath Mitra
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, NJ 07102, USA;
| |
Collapse
|
12
|
Almohamady HI, Mortagi Y, Gad S, Zaitone S, Alshaman R, Alattar A, Alanazi FE, Hanna PA. Spanlastic Nano-Vesicles: A Novel Approach to Improve the Dissolution, Bioavailability, and Pharmacokinetic Behavior of Famotidine. Pharmaceuticals (Basel) 2024; 17:1614. [PMID: 39770456 PMCID: PMC11678360 DOI: 10.3390/ph17121614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 11/23/2024] [Accepted: 11/26/2024] [Indexed: 01/11/2025] Open
Abstract
Background/Objectives: Drugs exhibiting poor aqueous solubility present a challenge to efficient delivery to the site of action. Spanlastics (a nano, surfactant-based drug delivery system) have emerged as a powerful tool to improve solubility, bioavailability, and delivery to the site of action. This study aimed to better understand factors affecting the physicochemical properties of spanlastics, quantify their effects, and use them to enhance the bioavailability of famotidine (FMT), a model histamine H2 receptor antagonist (BCS class IV). Methods: FMT was incorporated into nano-spanlastics drug delivery system. The ethanol injection method, Box-Behnken design, and mathematical modeling were utilized to fabricate famotidine-loaded nano-spanlastics and optimize the formula. Spanlastics were characterized for their particle size, polydispersity index, zeta potential, entrapment efficiency, drug loading, compatibility of the excipients (using DSC), in vitro drug release, and in vivo pharmacokinetics. Results: Span 60 (the non-ionic surfactant) and tween 60 (the edge activator) gave rise to spanlastics with the best characteristics. The optimal spanlastic formulation exhibited small particle size (<200 nm), appropriate polydispersity index (<0.4), and zeta potential (>-30 mV). The entrapment efficiency and drug loading of the optimum formula assured its suitability for hydrophobic drug entrapment as well as practicability for use. DSC assured the compatibility of all formulation components. The drug release manifested a biphasic release pattern, resulting in a fast onset and sustained effect. Spanlastics also showed enhanced Cmax, AUC0-24, and bioavailability. Conclusions: Spanlastics manifested improved FMT dissolution, drug release characteristics, membrane permeation, and pharmacokinetic behavior.
Collapse
Affiliation(s)
- Hend I. Almohamady
- Department of Pharmaceutics, Faculty of Pharmacy, Sinai University, Arish 45511, Egypt; (H.I.A.); (Y.M.)
| | - Yasmin Mortagi
- Department of Pharmaceutics, Faculty of Pharmacy, Sinai University, Arish 45511, Egypt; (H.I.A.); (Y.M.)
| | - Shadeed Gad
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt;
| | - Sawsan Zaitone
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, University of Tabuk, Tabuk 71491, Saudi Arabia; (R.A.); (A.A.); (F.E.A.)
| | - Reem Alshaman
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, University of Tabuk, Tabuk 71491, Saudi Arabia; (R.A.); (A.A.); (F.E.A.)
| | - Abdullah Alattar
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, University of Tabuk, Tabuk 71491, Saudi Arabia; (R.A.); (A.A.); (F.E.A.)
| | - Fawaz E. Alanazi
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, University of Tabuk, Tabuk 71491, Saudi Arabia; (R.A.); (A.A.); (F.E.A.)
| | - Pierre A. Hanna
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt;
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Misr International University, Cairo 12585, Egypt
| |
Collapse
|