1
|
Cao Y, Song L, Zhu Y, Huang R, Zhang D, Christakos G, Wu J. A comparative analysis of the microbial community structure and functional gene profile between healthy and diseased Gracilaria lemaneiformis. MARINE ENVIRONMENTAL RESEARCH 2025; 209:107167. [PMID: 40306044 DOI: 10.1016/j.marenvres.2025.107167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 01/31/2025] [Accepted: 04/19/2025] [Indexed: 05/02/2025]
Abstract
Marine macroalgae and their associated microbial communities are pivotal in shaping coastal ecosystems and facilitating biogenic elements' biochemical cycles. In this study, we implemented the high-throughput sequencing technology to sequence bacterial 16S rRNA gene to comprehensively analyze the bacterial communities of healthy and diseased macroalgae as well as the surrounding seawaters. The results revealed that Proteobacteria and Bacteroidota were the two main phylum in all samples. Alphaproteobacteria, Gammaproteobacteria and Bacteroidota were the predominant bacterial classes. This observation underscored that the composition of bacterial communities remains comparably consistent at higher taxonomic levels, regardless of variations in their health statuses. The alpha-diversity indices of seawater bacterial communities, epiphytic communities, and endophytic communities showed no significant differences. Epiphytic bacterial communities harbored a greater proportion of colonized bacteria, such as Vibrio and Pseudomonas. While endophytic bacterial communities contained a higher presence of tissue-degrading microbial assemblages, the primary bacterial communities were predominantly affiliated with Rhodobacteraceae and Flavobacteriaceae. Temperature, salinity, nitrate and nitrite concentration were the most significant properties correlated with seawater, epiphytic and endophytic bacterial communities in different health statuses revealed by Canonical correspondence analysis. A PICRUSt analysis demonstrated the metabolic functional prediction. Nitrogen and sulfate reduction genes were mainly concentrated in epiphytic bacterial communities in good health. Endophytic bacterial communities in disease had higher carbon and nitrogen fixation potentials. These results confirmed that bacteria, macroalgae, and environmental properties had an interactive relationship, all related to the momentous ecological benefits of macroalgae.
Collapse
Affiliation(s)
- Yawen Cao
- Donghai Laboratory, Zhoushan, 316021, Zhejiang, China; Ocean College, Zhejiang University, Zhoushan, 316021, Zhejiang, China
| | - Li Song
- Ocean College, Zhejiang University, Zhoushan, 316021, Zhejiang, China
| | - Yaojia Zhu
- Ocean College, Zhejiang University, Zhoushan, 316021, Zhejiang, China.
| | - Runqiu Huang
- Ocean College, Zhejiang University, Zhoushan, 316021, Zhejiang, China
| | - Dongdong Zhang
- Donghai Laboratory, Zhoushan, 316021, Zhejiang, China; Ocean College, Zhejiang University, Zhoushan, 316021, Zhejiang, China
| | - George Christakos
- Ocean College, Zhejiang University, Zhoushan, 316021, Zhejiang, China
| | - Jiaping Wu
- Ocean College, Zhejiang University, Zhoushan, 316021, Zhejiang, China.
| |
Collapse
|
2
|
Li Y, Wang B, Wang Y, He W, Wu X, Zhang X, Teng X, Liu L, Yang H. Effect of stand age on rhizosphere microbial community assembly of dominant shrubs during sandy desert vegetation restoration. FRONTIERS IN PLANT SCIENCE 2024; 15:1473503. [PMID: 39574437 PMCID: PMC11578715 DOI: 10.3389/fpls.2024.1473503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 10/21/2024] [Indexed: 11/24/2024]
Abstract
The rhizosphere microbial community helps govern biogeochemical cycling and facilitates complex plant-soil feedback. Understanding the evolutionary dynamics of microbial community structure and functional genes during vegetation succession is crucial for quantifying and understanding ecosystem processes and functions in restored sandy deserts. In this study, the rhizosphere microbial community structure of 11-66-year-old dominant shrubs in a desert revegetation area was examined using shotgun metagenomic sequencing. The interactions between the microbial community structure, functional gene abundances, soil properties, and plant characteristics of different stand ages were comprehensively investigated. The abundance of unique species first increased before subsequently decreasing with stand age, with shared species accounting for only 47.33%-59.42% of the total operational taxonomic units (OTUs). Copiotrophs such as Actinobacteria and Proteobacteria were found to dominate the rhizosphere soil microbial community, with their relative abundance accounting for 75.28%-81.41% of the total OTUs. There was a gradual shift in dominant microbial functional genes being involved in cellular processes towards those involved in environmental information processing and metabolism as stand age increased. Additionally, temporal partitioning was observed in both the microbial co-occurrence network complexity and topological parameters within the rhizosphere soil. Redundancy analysis revealed that dissolved organic carbon was the primary determinant influencing shifts in microbial community structure. Understanding the evolution of microbial community structure and function contributes to identifying potential mechanisms associating the soil microbiome with dominant sand-fixing shrubs as well as understanding the rhizosphere microbiome assembly process. These results shed light on the role of the rhizosphere microbiome in biogeochemical cycling and other ecosystem functions following revegetation of temperate sandy deserts.
Collapse
Affiliation(s)
- Yunfei Li
- Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China
- Shapotou Desert Research and Experiment Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Bingyao Wang
- Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China
| | - Yanli Wang
- College of Forestry, Gansu Agricultural University, Lanzhou, China
| | - Wenqiang He
- Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China
- Shapotou Desert Research and Experiment Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xudong Wu
- Institute of Forestry and Grassland Ecology, Ningxia Academy of Agricultural and Forestry Sciences, Yinchuan, China
| | - Xue Zhang
- Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China
| | - Xiaorong Teng
- Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China
| | - Lichao Liu
- Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China
- Shapotou Desert Research and Experiment Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China
| | - Haotian Yang
- Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China
- Shapotou Desert Research and Experiment Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China
| |
Collapse
|
3
|
Wang J, Lin X, An X, Liu S, Wei X, Zhou T, Li Q, Chen Q, Liu X. Mangrove afforestation as an ecological control of invasive Spartina alterniflora affects rhizosphere soil physicochemical properties and bacterial community in a subtropical tidal estuarine wetland. PeerJ 2024; 12:e18291. [PMID: 39421423 PMCID: PMC11485052 DOI: 10.7717/peerj.18291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 09/20/2024] [Indexed: 10/19/2024] Open
Abstract
Background The planting of mangroves is extensively used to control the invasive plant Spartina alterniflora in coastal wetlands. Different plant species release diverse sets of small organic compounds that affect rhizosphere conditions and support high levels of microbial activity. The root-associated microbial community is crucial for plant health and soil nutrient cycling, and for maintaining the stability of the wetland ecosystem. Methods High-throughput sequencing was used to assess the structure and function of the soil bacterial communities in mudflat soil and in the rhizosphere soils of S. alterniflora, mangroves, and native plants in the Oujiang estuarine wetland, China. A distance-based redundancy analysis (based on Bray-Curtis metrics) was used to identify key soil factors driving bacterial community structure. Results S. alterniflora invasion and subsequent mangrove afforestation led to the formation of distinct bacterial communities. The main soil factors driving the structure of bacterial communities were electrical conductivity (EC), available potassium (AK), available phosphorus (AP), and organic matter (OM). S. alterniflora obviously increased EC, OM, available nitrogen (AN), and NO3 --N contents, and consequently attracted copiotrophic Bacteroidates to conduct invasion in the coastal areas. Mangroves, especially Kandelia obovata, were suitable pioneer species for restoration and recruited beneficial Desulfobacterota and Bacilli to the rhizosphere. These conditions ultimately increased the contents of AP, available sulfur (AS), and AN in soil. The native plant species Carex scabrifolia and Suaeda glauca affected coastal saline soil primarily by decreasing the EC, rather than by increasing nutrient contents. The predicted functions of bacterial communities in rhizosphere soils were related to active catabolism, whereas those of the bacterial community in mudflat soil were related to synthesis and resistance to environmental factors. Conclusions Ecological restoration using K. obovata has effectively improved a degraded coastal wetland mainly through increasing phosphorus availability and promoting the succession of the microbial community.
Collapse
Affiliation(s)
- Jinwang Wang
- Wenzhou Key Laboratory of Resource Plant Innovation and Utilization, Zhejiang Institute of Subtropical Crops, Zhejiang Academy of Agricultural Sciences, Wenzhou, China
| | - Xi Lin
- Wenzhou Institute of Eco-Environmental Sciences, Wenzhou, China
| | - Xia An
- Zhejiang Xiaoshan Institute of Cotton & Bast Fiber Crops, Zhejiang Institute of Landscape Plants and Flowers, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Shuangshuang Liu
- Wenzhou Key Laboratory of Resource Plant Innovation and Utilization, Zhejiang Institute of Subtropical Crops, Zhejiang Academy of Agricultural Sciences, Wenzhou, China
| | - Xin Wei
- Wenzhou Key Laboratory of Resource Plant Innovation and Utilization, Zhejiang Institute of Subtropical Crops, Zhejiang Academy of Agricultural Sciences, Wenzhou, China
| | - Tianpei Zhou
- Yueqing Bureau of Natural Resources and Planning, Wenzhou, China
| | - Qianchen Li
- College of Life and Environmental Sciences, Wenzhou University, Wenzhou, China
| | - Qiuxia Chen
- Wenzhou Key Laboratory of Resource Plant Innovation and Utilization, Zhejiang Institute of Subtropical Crops, Zhejiang Academy of Agricultural Sciences, Wenzhou, China
| | - Xing Liu
- Wenzhou Key Laboratory of Resource Plant Innovation and Utilization, Zhejiang Institute of Subtropical Crops, Zhejiang Academy of Agricultural Sciences, Wenzhou, China
| |
Collapse
|
4
|
Hu Y, Zhang X, Chen H, Jiang Y, Zhang J. Effects of forest age and season on soil microbial communities in Chinese fir plantations. Microbiol Spectr 2024; 12:e0407523. [PMID: 38980023 PMCID: PMC11302042 DOI: 10.1128/spectrum.04075-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 06/18/2024] [Indexed: 07/10/2024] Open
Abstract
Understanding changes in the distribution patterns and diversity of soil microbial communities from the perspectives of age-related changes, seasonal variations, and the interaction between the two factors can facilitate the management of plantations. In Chinese fir plantations, we collected soils from different depths in over-mature forests, mature forests, near-mature forests, middle-aged forests, and young forests in summer, autumn, and winter in China's subtropical regions. As the forests developed, bacterial and fungal communities' diversity changed, reached a minimum value at near-mature forests, and then increased in mature forests or over-mature forests. Near-mature forests had the lowest topological properties. The Shannon index of microbial communities varied with seasonal changes (P < 0.05). Bacterial and fungal community composition at genus level was more closely related to temperature indicators (including daily average temperature, daily maximum temperature, and daily minimum temperature) (P < 0.01, 0.5554 < R2 <0.8185) than daily average precipitation (P > 0.05, 0.0321 < R2 <0.6773). Bacteria were clustered by season and fungi were clustered by forest age. We suggested that extending the tree cultivation time of plantations could promote microbial community recovery. In addition, we found some species worthy of attention, including Bacteroidetes in autumn in over-mature forests, and Firmicutes in summer in young forests.IMPORTANCEChinese fir [Cunninghamia lanceolata (Lamb.) Hook] is an important fast-growing species with the largest artificial forest area in China, with the outstanding problems of low quality in soil. Soil microorganisms play a crucial role in soil fertility by decomposing organic matter, optimizing soil structure, and releasing essential nutrients for plant growth. In order to maintain healthy soil quality and prevent nutrient depletion and land degradation, it is crucial to understand the changes of soil microbial composition and diversity. Our study determined to reveal the change of soil microbial community from stand age, season, and the interaction between the two aspects, which is helpful to understand how interannual changes in different years and seasonal changes in one year affect soil fertility restoration and sustainable forest plantation management. It is a meaningful exploration of soil microbial communities and provides new information for further research.
Collapse
Affiliation(s)
- Yuxin Hu
- State Key Laboratory of Efficient Production of Forest Resources, Key Laboratory of Tree Breeding and Cultivation of the National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
- Collaborative Innovation Center of Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Xiongqing Zhang
- State Key Laboratory of Efficient Production of Forest Resources, Key Laboratory of Tree Breeding and Cultivation of the National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
- Collaborative Innovation Center of Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Hanyue Chen
- State Key Laboratory of Efficient Production of Forest Resources, Key Laboratory of Tree Breeding and Cultivation of the National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| | - Yihang Jiang
- State Key Laboratory of Efficient Production of Forest Resources, Key Laboratory of Tree Breeding and Cultivation of the National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| | - Jianguo Zhang
- State Key Laboratory of Efficient Production of Forest Resources, Key Laboratory of Tree Breeding and Cultivation of the National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| |
Collapse
|
5
|
Liu T, Chen X, Du M, Sanders CJ, Li C, Tang J, Yang H. Replacing Spartina alterniflora with northward-afforested mangroves has the potential to acquire extra blue carbon. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 921:170952. [PMID: 38360327 DOI: 10.1016/j.scitotenv.2024.170952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/17/2024] [Accepted: 02/11/2024] [Indexed: 02/17/2024]
Abstract
Climate change provides an opportunity for the northward expansion of mangroves, and thus, the afforestation of mangroves at higher latitude areas presents an achievable way for coastal restoration, especially where invasive species S. alterniflora needs to be clipped. However, it is unclear whether replacing S. alterniflora with northward-afforested mangroves would benefit carbon sequestration. In the study, we examined the key CO2 and CH4 exchange processes in a young (3 yr) northward-afforested wetland dominated by K. obovata. We also collected soil cores from various ages (3, 15, 30, and 60 years) to analyze the carbon storage characteristics of mangrove stands using a space-for-time substitution approach. Our findings revealed that the young northward mangroves exhibited obvious seasonal variations in net ecosystem CO2 exchange (NEE) and functioned as a moderate carbon sink, with an average annual NEE of -107.9 g C m-2 yr-1. Additionally, the CH4 emissions from the northward mangroves were lower in comparison to natural mangroves, with the primary source being the soil. Furthermore, when comparing the vertical distribution of soil carbon, it became evident that both S. alterniflora and mangroves contributed to organic carbon accumulation in the upper soil layers. Our study also identified a clear correlation that the biomass and carbon stocks of mangroves increased logarithmically with age (R2 = 0.69, p < 0.001). Notably, both vegetation and soil carbon stocks (especially in the deeper layers) of the 15 yr northward mangroves, were markedly higher than those of S. alterniflora. This suggests that replacing S. alterniflora with northward-afforested mangroves is an effective long-term strategy for future coasts to enhance blue carbon sequestration.
Collapse
Affiliation(s)
- Tingting Liu
- State Key Laboratory of Estuarine and Coastal Research, Institute of Eco-Chongming, Center for Blue Carbon Science and Technology, East China Normal University, 3663 N. Zhongshan Road, Shanghai 200062, PR China
| | - Xuechu Chen
- State Key Laboratory of Estuarine and Coastal Research, Institute of Eco-Chongming, Center for Blue Carbon Science and Technology, East China Normal University, 3663 N. Zhongshan Road, Shanghai 200062, PR China; Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, 500 Dong Chuan Road, Shanghai 200241, PR China; Yangtze Delta Estuarine Wetland Ecosystem Observation and Research Station, Ministry of Education & Shanghai Science and Technology Committee, Shanghai 202162, PR China
| | - Minghui Du
- State Key Laboratory of Estuarine and Coastal Research, Institute of Eco-Chongming, Center for Blue Carbon Science and Technology, East China Normal University, 3663 N. Zhongshan Road, Shanghai 200062, PR China
| | - Christian J Sanders
- National Marine Science Centre, School of Environment, Science and Engineering, Southern Cross University, Coffs Harbour, NSW 2450, Australia
| | - Changda Li
- Marine and Fisheries Development Research Center, Dongtou District, Wenzhou 325000, PR China
| | - Jianwu Tang
- State Key Laboratory of Estuarine and Coastal Research, Institute of Eco-Chongming, Center for Blue Carbon Science and Technology, East China Normal University, 3663 N. Zhongshan Road, Shanghai 200062, PR China; Yangtze Delta Estuarine Wetland Ecosystem Observation and Research Station, Ministry of Education & Shanghai Science and Technology Committee, Shanghai 202162, PR China
| | - Hualei Yang
- State Key Laboratory of Estuarine and Coastal Research, Institute of Eco-Chongming, Center for Blue Carbon Science and Technology, East China Normal University, 3663 N. Zhongshan Road, Shanghai 200062, PR China; Yangtze Delta Estuarine Wetland Ecosystem Observation and Research Station, Ministry of Education & Shanghai Science and Technology Committee, Shanghai 202162, PR China.
| |
Collapse
|
6
|
Huang R, He J, Wang N, Christakos G, Gu J, Song L, Luo J, Agusti S, Duarte CM, Wu J. Carbon sequestration potential of transplanted mangroves and exotic saltmarsh plants in the sediments of subtropical wetlands. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 904:166185. [PMID: 37591400 DOI: 10.1016/j.scitotenv.2023.166185] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 08/07/2023] [Accepted: 08/07/2023] [Indexed: 08/19/2023]
Abstract
Coastal blue carbon ecosystems offer promising benefits for both climate change mitigation and adaptation. While there have been widespread efforts to transplant mangroves from the tropics to the subtropics and to introduce exotic saltmarsh plants like Spartina alterniflora in China, few studies have thoroughly quantified the chronological records of carbon sequestration with different organic carbon (OC) sources. To understand how variations in OC sources can affect the carbon sequestration potential of coastal wetland environment over time, we conducted a study on typical islands with two scenarios: S. alterniflora invasion and mangrove transplantation. Our study determined chronological records of carbon sequestration and storage from five sediment profiles and traced changes in the OC sources using carbon stable isotope (δ13C) and C:N ratios in response to these scenarios. The S. alterniflora invasion resulted in an 84 ± 19 % increase in the OC burial rate compared to unvegetated mudflats, while mangrove transplantation resulted in a 167 ± 74 % increase in the OC burial rate compared to unvegetated mudflats. S. alterniflora and mangroves showed greater carbon sequestration potential in areas with high supplies of suspended particulate matter, while mangroves needed to grow to a certain scale to display obvious carbon sequestration benefits. In the mangrove saltmarsh ecotone, mature mangrove habitats exhibited resistance to the S. alterniflora invasion, while mangrove transplantation in the environment invaded by S. alterniflora had a significant effect on OC contribution. Besides, plant-derived OC can be exported to the surrounding environment due to the rapid turnover of sediments. The blue carbon chronosequence-based estimation of OC sources and burial rates provides a useful reference for establishing carbon accounting policies.
Collapse
Affiliation(s)
- Runqiu Huang
- Ocean College, Zhejiang University, Zhoushan, China
| | - Junyu He
- Ocean College, Zhejiang University, Zhoushan, China; Joint Center for Blue Carbon Research, Ocean Academy, Zhejiang University, Zhoushan, China
| | - Nan Wang
- Ocean College, Zhejiang University, Zhoushan, China
| | | | - Jiali Gu
- Ocean College, Zhejiang University, Zhoushan, China
| | - Li Song
- Ocean College, Zhejiang University, Zhoushan, China
| | - Ji Luo
- Ocean College, Zhejiang University, Zhoushan, China
| | - Susana Agusti
- Red Sea Research Center (RSRC), King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Carlos M Duarte
- Red Sea Research Center (RSRC), King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Jiaping Wu
- Ocean College, Zhejiang University, Zhoushan, China; Joint Center for Blue Carbon Research, Ocean Academy, Zhejiang University, Zhoushan, China.
| |
Collapse
|
7
|
Thura K, Serrano O, Gu J, Fang Y, Htwe HZ, Zhu Y, Huang R, Agusti S, Duarte CM, Wang H, Wu J. Mangrove restoration built soil organic carbon stocks over six decades: a chronosequence study. JOURNAL OF SOILS AND SEDIMENTS 2023; 23:1193-1203. [DOI: 10.1007/s11368-022-03418-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 12/19/2022] [Indexed: 10/10/2024]
|
8
|
Li Y, Huang R, Hu L, Zhang C, Xu X, Song L, Wang Z, Pan X, Christakos G, Wu J. Microplastics distribution in different habitats of Ximen Island and the trapping effect of blue carbon habitats on microplastics. MARINE POLLUTION BULLETIN 2022; 181:113912. [PMID: 35870383 DOI: 10.1016/j.marpolbul.2022.113912] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 06/25/2022] [Accepted: 06/29/2022] [Indexed: 06/15/2023]
Abstract
Sediments are considered to be important sinks of microplastics, but the enrichment process of microplastics by blue carbon ecosystems is poorly studied. This study analyzed the spatial distribution and temporal changes, assessed the polymer types and morphological characteristics of microplastics in sediments of five ecosystems, i.e. forests, paddy fields, mangroves, saltmarshes and bare beaches on Ximen Island, Yueqing Bay, China. The trapping effect of blue carbon (mangrove and saltmarsh) sediments on microplastic was further explored. Temporal trends in microplastic abundance showed a significant increase over the last 20 years, with the enrichment of microplastics in mangrove and saltmarsh sediments being 1.7 times as high as that in bare beach, exhibiting blue carbon vegetations have strong enrichment effect on microplastics. The dominant color, shape, size, and polymer type of microplastics in sediments were transparent, fibers and fragments, <1 mm, and polyethylene, respectively. Significant differences in the abundance and characteristics of microplastics between intertidal sediments and terrestrial soils reveal that runoff input is the main source of microplastics. This study provided the evidence of blue carbon habitats as traps of microplastics.
Collapse
Affiliation(s)
- Yaxin Li
- Ocean College, Zhejiang University, Zhoushan 316021, China
| | - Runqiu Huang
- Ocean College, Zhejiang University, Zhoushan 316021, China
| | - Lingling Hu
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Chunfang Zhang
- Ocean College, Zhejiang University, Zhoushan 316021, China
| | - Xiangrong Xu
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Li Song
- Ocean College, Zhejiang University, Zhoushan 316021, China
| | - Zhiyin Wang
- Ocean College, Zhejiang University, Zhoushan 316021, China
| | - Xiangliang Pan
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China.
| | | | - Jiaping Wu
- Ocean College, Zhejiang University, Zhoushan 316021, China.
| |
Collapse
|