1
|
Rosiak N, Tykarska E, Miklaszewski A, Pietrzak R, Cielecka-Piontek J. Enhancing the Solubility and Dissolution of Apigenin: Solid Dispersions Approach. Int J Mol Sci 2025; 26:566. [PMID: 39859284 PMCID: PMC11766082 DOI: 10.3390/ijms26020566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 12/30/2024] [Accepted: 01/09/2025] [Indexed: 01/27/2025] Open
Abstract
Apigenin (APG), a bioactive flavonoid with promising therapeutic potential, suffers from poor water solubility, which limits its bioavailability. To address this, solid dispersions of APG were prepared using ball milling with sodium alginate (SA), Pluronic® F-68 (PLU68), Pluronic® F-127 (PLU127), PVP K30, and PVP VA64 as polymeric excipients. These dispersions were screened for apparent solubility in water and buffers with pH 1.2, 5.5, and 6.8. Based on improved solubility after 60 min, APG-PLU68 and APG-PLU127 dispersions were selected for further study. DSC and FT-IR analysis confirmed molecular interactions between APG and the polymer matrices, contributing to enhanced solubility and dissolution rates. Dissolution rate studies showed that APG-PLU127 achieved 100% solubility at pH 6.8, suggesting its potential use in environments such as the small intestine. Additionally, APG-PLU127 exhibited 84.3% solubility at pH 1.2, indicating potential for solid oral dosage forms, where APG could be absorbed in the acidic conditions of the stomach. The stability study confirmed that storage for one year under ambient conditions does not cause chemical degradation but affects the physical state and solubility of the dispersion. Antioxidant activity was assessed using the ABTS assay. Freshly obtained APG-PLU127 showed 68.1% ± 1.94% activity, whereas APG-PLU127 stored for one year under ambient conditions exhibited 66.2% ± 1.62% (significant difference, p < 0.05). The difference was related to a slight decrease in the solubility of APG in the solid dispersion (T0 = 252 ± 1 μg∙mL-1, T1 = 246 ± 1 μg∙mL-1). The findings demonstrate the superior performance of PLU127 as a carrier for enhancing the solubility, release, and antioxidant activity of APG.
Collapse
Affiliation(s)
- Natalia Rosiak
- Department of Pharmacognosy and Biomaterials, Faculty of Pharmacy, Poznan University of Medical Sciences, 3 Rokietnicka St., 60-806 Poznan, Poland;
| | - Ewa Tykarska
- Department of Chemical Technology of Drugs, Poznan University of Medical Sciences, 3 Rokietnicka St., 60-806 Poznan, Poland;
| | - Andrzej Miklaszewski
- Faculty of Materials Engineering and Technical Physics, Institute of Materials Science and Engineering, Poznan University of Technology, 60-965 Poznan, Poland;
| | - Robert Pietrzak
- Faculty of Chemistry, Adam Mickiewicz University, 8 Uniwersytetu Poznańskiego St., 61-614 Poznan, Poland;
| | - Judyta Cielecka-Piontek
- Department of Pharmacognosy and Biomaterials, Faculty of Pharmacy, Poznan University of Medical Sciences, 3 Rokietnicka St., 60-806 Poznan, Poland;
| |
Collapse
|
2
|
Vanshita, Rawal T, Bhati H, Bansal K. Harnessing the power of novel drug delivery systems for effective delivery of apigenin: an updated review. J Microencapsul 2025; 42:83-106. [PMID: 39670876 DOI: 10.1080/02652048.2024.2437375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 11/22/2024] [Indexed: 12/14/2024]
Abstract
Phytochemicals as dietary components are being extensively explored in order to prevent and treat a wide range of diseases. Apigenin is among the most studied flavonoids found in significant amount in fruits (oranges), vegetables (celery, parsley, onions), plant-based beverages (beer, tea, wine) and herbs (thyme, chamomile, basil, oregano) that has recently gained interest due to its promising pharmacological effects. However, the poor solubility and extended first pass metabolism of apigenin limits its clinical use. Various advantages have been demonstrated by nanocarrier-based platforms in the delivery of hydrophobic drugs like apigenin to diseased tissues. Apigenin nanoformulations have been reported to have better stability, high encapsulation efficiency, prolonged circulation time, sustained release, enhanced accumulation at targeted sites and better therapeutic efficacy. An overview of the major nanocarriers based delivery including liposomes, niosomes, solid lipid nanoparticles, micelles, dendrimers etc., is described. This review sheds insight into the therapeutic effects and advanced drug delivery strategies for the delivery of apigenin.
Collapse
Affiliation(s)
- Vanshita
- Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, India
| | - Tanu Rawal
- Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, India
| | - Hemant Bhati
- Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, India
| | - Keshav Bansal
- Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, India
| |
Collapse
|
3
|
Sato VH, Sato H, Sangfuang M, Nontakham J, Junyaprasert VB, Teeranachaideekul V, Morakul B. Enhancement of in vitro transcellular absorption and in vivo oral bioavailability of apigenin by self-nanoemulsifying drug delivery systems. Sci Rep 2024; 14:32148. [PMID: 39738511 PMCID: PMC11685950 DOI: 10.1038/s41598-024-84063-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 12/19/2024] [Indexed: 01/02/2025] Open
Abstract
This study aims to develop a self-nanoemulsifying drug delivery system (SNEDDS) to solve the limited oral bioavailability problem of apigenin, a bioactive flavonoid. Apigenin-loaded SNEDDS consisting of Gelucire 44/14, Tween 80, and PEG 400 in the mass ratios of 25:37.5:37.5 and 30:35:35 were prepared, and designated as GTP2575 and GTP3070, respectively. The physicochemical stability at 30 and 40 ºC for 6 months was evaluated and a good stability was found. The in vitro transport of apigenin across Caco-2 monolayers from the SNEDDS and the in vivo pharmacokinetics in rats were investigated and compared with apigenin intact form. The in vitro permeation results demonstrated an increased transcellular permeability compared to the apigenin coarse powder (p < 0.05), while there was comparable permeation of apigenin in GTP2575 and GTP3070 formulations, with the permeability constants (Papp) being 2.97 × 10-5 and 3.13 × 10-5, respectively (p > 0.05). The pharmacokinetic analysis in rats revealed that the pharmacokinetic parameters, such as Cmax, AUC0-24, and AUC0-∞, were significantly higher with apigenin-loaded SNEDDS than with apigenin coarse powder (p < 0.05). Apigenin's oral relative bioavailability increased by 3.8 and 3.3 times for GTP2575 and GTP3070, respectively, due to SNEDDS's effect on solubilization and transcellular permeability. The in vivo acute oral toxicity according to OECD 425 was evaluated and revealed low toxicity with an LD50 exceeding 2,000 mg/kg in all apigenin's formulations. These findings suggest that apigenin-loaded SNEDDS may represent a promising strategy for improving the oral delivery of apigenin.
Collapse
Affiliation(s)
| | - Hitoshi Sato
- Division of Pharmacokinetics and Pharmacodynamics, Department of Pharmacology, Toxicology and Therapeutics, School of Pharmacy, Showa University, Tokyo, 142-855, Japan
| | - Manaw Sangfuang
- Department of Pharmacology, Faculty of Pharmacy, Mahidol University, Bangkok, 10400, Thailand
| | - Jannarin Nontakham
- Clinical Research Section, Division of Research and Academic Support, National Cancer Institute, Bangkok, 10400, Thailand
| | | | - Veerawat Teeranachaideekul
- Department of Pharmacy, Faculty of Pharmacy, Mahidol University, 447 Sri-Ayuthaya Road, Rajathevi, Bangkok, 10400, Thailand
| | - Boontida Morakul
- Department of Pharmacy, Faculty of Pharmacy, Mahidol University, 447 Sri-Ayuthaya Road, Rajathevi, Bangkok, 10400, Thailand.
| |
Collapse
|
4
|
Morakul B, Teeranachaideekul V, Limwikrant W, Junyaprasert VB. Dissolution and antioxidant potential of apigenin self nanoemulsifying drug delivery system (SNEDDS) for oral delivery. Sci Rep 2024; 14:8851. [PMID: 38632321 PMCID: PMC11024192 DOI: 10.1038/s41598-024-59617-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 04/12/2024] [Indexed: 04/19/2024] Open
Abstract
Self-nanoemulsifying drug delivery systems (SNEDDS) have been used to improve the oral bioavailability of various drugs. In the current study, apigenin was developed as SNEDDS to solve its dissolution problem and enhance oral bioavailability and antioxidant potential. SNEDDS were prepared by mixing Gelucire 44/14, Tween 80, and PEG 400 under controlled conditions. The droplet of diluted SNEDDS demonstrated a spherical shape with a size of less than 100 nm and a neutral charge. The very fast self-emulsification was obtained within 32 s, and the transmittance values exceeded 99%. The highest drug loading was 90.10 ± 0.24% of the initial load with the highest %encapsulation efficiency of 84.20 ± 0.03%. FT-IR and DSC spectra showed no interaction between components. The dissolution in buffer pH 1.2, 4.5, and 6.8 showed significantly higher dissolved apigenin than the apigenin coarse powder. The dissolution profiles were fitted to the Korsmeyer-Peppas kinetics. The cellular antioxidant activities in Caco-2 cells were approximately 52.25-54.64% compared to no treatment and were higher than the apigenin coarse powder (12.70%). Our work highlights the potential of SNEDDS to enhance the dissolution and permeability of apigenin and promote antioxidant efficacy, which has a strong chance of being developed as a bioactive compound for nutraceuticals.
Collapse
Affiliation(s)
- Boontida Morakul
- Department of Pharmacy, Faculty of Pharmacy, Mahidol University, 447 Sri-Ayuthaya Road, Rajathevi, Bangkok, 10400, Thailand.
| | - Veerawat Teeranachaideekul
- Department of Pharmacy, Faculty of Pharmacy, Mahidol University, 447 Sri-Ayuthaya Road, Rajathevi, Bangkok, 10400, Thailand
| | - Waree Limwikrant
- Department of Manufacturing Pharmacy, Faculty of Pharmacy, Mahidol University, Bangkok, 10400, Thailand
| | | |
Collapse
|
5
|
Rosiak N, Tykarska E, Cielecka-Piontek J. Mechanochemical Approach to Obtaining a Multicomponent Fisetin Delivery System Improving Its Solubility and Biological Activity. Int J Mol Sci 2024; 25:3648. [PMID: 38612460 PMCID: PMC11011862 DOI: 10.3390/ijms25073648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 03/18/2024] [Accepted: 03/20/2024] [Indexed: 04/14/2024] Open
Abstract
In this study, binary amorphous solid dispersions (ASDs, fisetin-Eudragit®) and ternary amorphous solid inclusions (ASIs, fisetin-Eudragit®-HP-β-cyclodextrin) of fisetin (FIS) were prepared by the mechanochemical method without solvent. The amorphous nature of FIS in ASDs and ASIs was confirmed using XRPD (X-ray powder diffraction). DSC (Differential scanning calorimetry) confirmed full miscibility of multicomponent delivery systems. FT-IR (Fourier-transform infrared analysis) confirmed interactions that stabilize FIS's amorphous state and identified the functional groups involved. The study culminated in evaluating the impact of amorphization on water solubility and conducting in vitro antioxidant assays: 2,2-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid)-ABTS, 2,2-diphenyl-1-picrylhydrazyl-DPPH, Cupric Reducing Antioxidant Capacity-CUPRAC, and Ferric Reducing Antioxidant Power-FRAP and in vitro neuroprotective assays: inhibition of acetylcholinesterase-AChE and butyrylcholinesterase-BChE. In addition, molecular docking allowed for the determination of possible bonds and interactions between FIS and the mentioned above enzymes. The best preparation turned out to be ASI_30_EPO (ASD fisetin-Eudragit® containing 30% FIS in combination with HP-β-cyclodextrin), which showed an improvement in apparent solubility (126.5 ± 0.1 µg∙mL-1) and antioxidant properties (ABTS: IC50 = 10.25 µg∙mL-1, DPPH: IC50 = 27.69 µg∙mL-1, CUPRAC: IC0.5 = 9.52 µg∙mL-1, FRAP: IC0.5 = 8.56 µg∙mL-1) and neuroprotective properties (inhibition AChE: 39.91%, and BChE: 42.62%).
Collapse
Affiliation(s)
- Natalia Rosiak
- Department of Pharmacognosy and Biomaterials, Faculty of Pharmacy, Poznan University of Medical Sciences, 3 Rokietnicka St., 60-806 Poznan, Poland;
| | - Ewa Tykarska
- Department of Chemical Technology of Drugs, Poznan University of Medical Sciences, 3 Rokietnicka St., 60-806 Poznan, Poland;
| | - Judyta Cielecka-Piontek
- Department of Pharmacognosy and Biomaterials, Faculty of Pharmacy, Poznan University of Medical Sciences, 3 Rokietnicka St., 60-806 Poznan, Poland;
| |
Collapse
|
6
|
Rosiak N, Tykarska E, Cielecka-Piontek J. Enhanced Antioxidant and Neuroprotective Properties of Pterostilbene (Resveratrol Derivative) in Amorphous Solid Dispersions. Int J Mol Sci 2024; 25:2774. [PMID: 38474022 DOI: 10.3390/ijms25052774] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 02/23/2024] [Accepted: 02/25/2024] [Indexed: 03/14/2024] Open
Abstract
In this study, amorphous solid dispersions (ASDs) of pterostilbene (PTR) with polyvinylpyrrolidone polymers (PVP K30 and VA64) were prepared through milling, affirming the amorphous dispersion of PTR via X-ray powder diffraction (XRPD) and differential scanning calorimetry (DSC). Subsequent analysis of DSC thermograms, augmented using mathematical equations such as the Gordon-Taylor and Couchman-Karasz equations, facilitated the determination of predicted values for glass transition (Tg), PTR's miscibility with PVP, and the strength of PTR's interaction with the polymers. Fourier-transform infrared (FTIR) analysis validated interactions maintaining PTR's amorphous state and identified involved functional groups, namely, the 4'-OH and/or -CH groups of PTR and the C=O group of PVP. The study culminated in evaluating the impact of amorphization on water solubility, the release profile in pH 6.8, and in vitro permeability (PAMPA-GIT and BBB methods). In addition, it was determined how improving water solubility affects the increase in antioxidant (ABTS, DPPH, CUPRAC, and FRAP assays) and neuroprotective (inhibition of cholinesterases: AChE and BChE) properties. The apparent solubility of the pure PTR was ~4.0 µg·mL-1 and showed no activity in the considered assays. For obtained ASDs (PTR-PVP30/PTR-PVPVA64, respectively) improvements in apparent solubility (410.8 and 383.2 µg·mL-1), release profile, permeability, antioxidant properties (ABTS: IC50 = 52.37/52.99 μg·mL-1, DPPH: IC50 = 163.43/173.96 μg·mL-1, CUPRAC: IC0.5 = 122.27/129.59 μg·mL-1, FRAP: IC0.5 = 95.69/98.57 μg·mL-1), and neuroprotective effects (AChE: 39.1%/36.2%, BChE: 76.9%/73.2%) were confirmed.
Collapse
Affiliation(s)
- Natalia Rosiak
- Department of Pharmacognosy and Biomaterials, Faculty of Pharmacy, Poznan University of Medical Sciences, 3 Rokietnicka St., 60-806 Poznan, Poland
| | - Ewa Tykarska
- Department of Chemical Technology of Drugs, Poznan University of Medical Sciences, 3 Rokietnicka St., 60-806 Poznan, Poland
| | - Judyta Cielecka-Piontek
- Department of Pharmacognosy and Biomaterials, Faculty of Pharmacy, Poznan University of Medical Sciences, 3 Rokietnicka St., 60-806 Poznan, Poland
| |
Collapse
|
7
|
Zhang Y, Liu F, Cao Y, Xu H, Xie Y, Xiao X, Agyekumwaa Addo K, Peng XF. Preparation and characterization of a solid dispersion of Hexahydrocolupulone and its application in the preservation of fresh apple juice. Food Chem 2023; 424:136367. [PMID: 37207607 DOI: 10.1016/j.foodchem.2023.136367] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 05/09/2023] [Accepted: 05/10/2023] [Indexed: 05/21/2023]
Abstract
Hops extracts and their derivatives have many important biological activities, among them, excellent antibacterial and antioxidant properties make them a promising food preservative. However, poor water solubility limits their application in the food industry. This work aimed to improve the solubility of Hexahydrocolupulone (HHCL) by preparing solid dispersion (SD) and investigating the application of the obtained products (HHCL-SD) in actual food systems. HHCL-SD was prepared by solvent evaporation with PVPK30 as a carrier. The solubility of HHCL was dramatically increased to 24.72 mg/mL(25 ℃)by preparing HHCL-SD, much higher than that of raw HHCL (0.002 mg/mL). The structure of HHCL-SD and the interaction between HHCL and PVPK30 were analyzed. HHCL-SD was confirmed to have excellent antibacterial and antioxidant activities. Furthermore, the addition of HHCL-SD proved to be beneficial for the sensory, nutritional quality, and microbiological safety of fresh apple juice, hence prolonging its shelf-life.
Collapse
Affiliation(s)
- Yan Zhang
- School of Food Science and Engineering, South China University of Technology, Guangzhou City, Guangdong Province 510640, China; School of Chinese Ethnic Medicine, Guizhou Minzu University, Guizhou City, Guiyang Province 550025, China
| | - Fengsong Liu
- School of Food Science and Engineering, South China University of Technology, Guangzhou City, Guangdong Province 510640, China
| | - Yifang Cao
- School of Food Science and Engineering, South China University of Technology, Guangzhou City, Guangdong Province 510640, China
| | - Hao Xu
- School of Food Science and Engineering, South China University of Technology, Guangzhou City, Guangdong Province 510640, China
| | - Yijia Xie
- School of Food Science and Engineering, South China University of Technology, Guangzhou City, Guangdong Province 510640, China
| | - Xinglong Xiao
- School of Food Science and Engineering, South China University of Technology, Guangzhou City, Guangdong Province 510640, China.
| | - Keren Agyekumwaa Addo
- School of Food Science and Engineering, South China University of Technology, Guangzhou City, Guangdong Province 510640, China
| | - Xian-Feng Peng
- Guangzhou Insighter Biotechnology Co. Ltd, Guangzhou City, Guangdong Province 510640, China.
| |
Collapse
|
8
|
Jiang S, Li Z, Yang X, Li M, Wang C, Wang Z, Wu Q. Sustainable and green synthesis of porous organic polymer for solid-phase extraction of four chlorophenols in water and honey. Food Chem 2023; 404:134652. [DOI: 10.1016/j.foodchem.2022.134652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 10/11/2022] [Accepted: 10/14/2022] [Indexed: 11/06/2022]
|
9
|
Hatanaka Y, Uchiyama H, Kadota K, Tozuka Y. Designing amorphous formulations of polyphenols with naringin by spray-drying for enhanced solubility and permeability. ADV POWDER TECHNOL 2022. [DOI: 10.1016/j.apt.2022.103627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
|
10
|
Current Trends on Solid Dispersions: Past, Present, and Future. Adv Pharmacol Pharm Sci 2022; 2022:5916013. [PMID: 36317015 PMCID: PMC9617737 DOI: 10.1155/2022/5916013] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/10/2022] [Accepted: 09/21/2022] [Indexed: 11/07/2022] Open
Abstract
Solid dispersions have achieved significant interest as an effective means of enhancing the dissolution rate and thus the bioavailability of a range of weakly water-soluble drugs. Solid dispersions of weakly water-soluble drugs with water-soluble carriers have lowered the frequency of these problems and improved dissolution. Solid dispersion is a solubilization technology emphasizing mainly on, drug-polymer two-component systems in which drug dispersion and its stabilization is the key to formulation development. Therefore, this technology is recognized as an exceptionally useful means of improving the dissolution properties of poorly water-soluble drugs and in the latest years, a big deal of understanding has been accumulated about solid dispersion, however, their commercial application is limited. In this review article, emphasis is placed on solubility, BCS classification, and carriers. Moreover, this article presents the diverse preparation techniques for solid dispersion and gathers some of the recent technological transfers. The different types of solid dispersions based on the carrier used and molecular arrangement were underlined. Additionally, it summarizes the mechanisms, the methods of preparing solid dispersions, and the marketed drugs that are available using solid dispersion approaches.
Collapse
|
11
|
Fabrication of apigenin nanoparticles using antisolvent crystallization technology: A comparison of supercritical antisolvent, ultrasonic-assisted liquid antisolvent, and high-pressure homogenization technologies. Int J Pharm 2022; 624:121981. [DOI: 10.1016/j.ijpharm.2022.121981] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 06/20/2022] [Accepted: 06/30/2022] [Indexed: 01/06/2023]
|
12
|
Adel M, Zahmatkeshan M, Akbarzadeh A, Rabiee N, Ahmadi S, Keyhanvar P, Rezayat SM, Seifalian AM. Chemotherapeutic effects of Apigenin in breast cancer: Preclinical evidence and molecular mechanisms; enhanced bioavailability by nanoparticles. BIOTECHNOLOGY REPORTS 2022; 34:e00730. [PMID: 35686000 PMCID: PMC9171451 DOI: 10.1016/j.btre.2022.e00730] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 04/04/2022] [Accepted: 04/10/2022] [Indexed: 12/18/2022]
|
13
|
Matsui T. Polyphenols-absorption and occurrence in the body system. FOOD SCIENCE AND TECHNOLOGY RESEARCH 2022. [DOI: 10.3136/fstr.fstr-d-21-00264] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Toshiro Matsui
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Graduated School of Kyushu University
| |
Collapse
|
14
|
Kassem FA, Abdelaziz AE, El Maghraby GM. Ethanol-assisted kneading of apigenin with arginine for enhanced dissolution rate of apigenin: development of rapidly disintegrating tablets. Pharm Dev Technol 2021; 26:693-700. [PMID: 33944661 DOI: 10.1080/10837450.2021.1922441] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Apigenin is a natural flavonoid which is claimed to have many pharmacological activities ranging from simple anti-inflammatory to anticancer action. However, poor dissolution slowed the advancement of this drug through the development pipelines. The objective of this work was to probe ethanol-aided kneading of apigenin with arginine as a new strategy for enhanced dissolution rate. The work was extended to develop rapidly disintegrating tablets of apigenin. Apigenin was mixed with increasing molar ratios of arginine before ethanol-aided kneading. The resulting products were examined using Fourier transform infrared spectroscopy, differential scanning calorimetry, and X-ray diffraction in addition to probing the dissolution characteristics of apigenin. The analytical techniques highlighted the existence of new crystalline species with a possibility of salt formation. The recorded alterations in the crystalline properties were associated with a significant enhancement in the dissolution rate of apigenin. The presence of arginine did not have any negative effect of the cytotoxic power of apigenin. Optimum formulation was successfully prepared as rapidly disintegrating tablets which showed fast liberation of apigenin. The study introduced arginine as a potential excipient for enhanced dissolution of apigenin after ethanol-assisted kneading.
Collapse
Affiliation(s)
- Fatma A Kassem
- Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, Egypt
| | | | | |
Collapse
|
15
|
Alshehri S, Imam SS, Hussain A, Altamimi MA, Alruwaili NK, Alotaibi F, Alanazi A, Shakeel F. Potential of solid dispersions to enhance solubility, bioavailability, and therapeutic efficacy of poorly water-soluble drugs: newer formulation techniques, current marketed scenario and patents. Drug Deliv 2020; 27:1625-1643. [PMID: 33207947 PMCID: PMC7737680 DOI: 10.1080/10717544.2020.1846638] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 10/30/2020] [Accepted: 11/01/2020] [Indexed: 12/29/2022] Open
Abstract
In the last few decades, solid dispersion (SD) technology had been studied as an approach to produce an amorphous carrier to enhance the solubility, dissolution rate, and bioavailability of poorly water-soluble drugs. The use of suitable carrier and methodology in the preparation of SDs play a significant role in the biological behavior of the SDs. SDs have been prepared using a variety of pharmaceutically acceptable polymers utilizing various novel technologies. In the recent years, much attention has been paid toward the use of novel carriers and methodologies in exploring novel types of SDs to enhance therapeutic efficacy and bioavailability. The use of novel carriers and methodologies would be very beneficial for formulation scientists to develop some SDs-based formulations for their commercial use and clinical applications. In the present review, current literature of novel methodologies for SD preparation to enhance the dissolution rate, solubility, therapeutic efficacy, and bioavailability of poorly water-soluble drugs has been summarized and analyzed. Further, the current status of SDs, patent status, and future prospects have also been discussed.
Collapse
Affiliation(s)
- Sultan Alshehri
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
- College of Pharmacy, Almaarefa University, Riyadh, Saudi Arabia
| | - Syed Sarim Imam
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Afzal Hussain
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Mohammad A. Altamimi
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Nabil K. Alruwaili
- Department of Pharmaceutics, College of Pharmacy, Jouf University, Sakaka, Saudi Arabia
| | - Fahad Alotaibi
- General Directorate Health Affairs, Ministry of Health, Riyadh, Saudi Arabia
| | - Abdullah Alanazi
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Faiyaz Shakeel
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
16
|
Tomar D, Singh PK, Hoque S, Modani S, Sriram A, Kumar R, Madan J, Khatri D, Dua K. Amorphous systems for delivery of nutraceuticals: challenges opportunities. Crit Rev Food Sci Nutr 2020; 62:1204-1221. [PMID: 33103462 DOI: 10.1080/10408398.2020.1836607] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Amorphous solid products have recently gained a lot of attention as key solutions to improve the solubility and bioavailability of poorly soluble nutraceuticals. A pure amorphous drug is a high-energy form; physically/chemically unstable and so easily gets recrystallized into the less soluble crystalline form limiting solubility and bioavailability issues. Amorphous solid dispersion and co-amorphous are new formulation approach that stabilized unstable amorphous form through different mechanisms such as preventing mobility, high glass transition temperature and molecular interaction. Nutraceuticals have been received the utmost importance due to their health benefits. However, most of these compounds have been associated with poor oral bioavailability due to poor solubility, high lipophilicity, high melting point, poor permeability, degradability and rapid metabolism in the gastrointestinal tract (GIT) which limits its health benefits. This review provides us a systematic application of amorphous systems to the delivery of poorly soluble nutraceuticals, with the aim of overcoming their pharmacokinetic limitations and improved pharmacological potential. In particular, it describes the challenges associated with delivery of oral nutraceuticals, various methods involved in the preparation and characterization of amorphous systems and permeability enhancement of nutraceuticals are in detail.
Collapse
Affiliation(s)
- Devendrasingh Tomar
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Pankaj K Singh
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Sajidul Hoque
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Sheela Modani
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Anitha Sriram
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Rahul Kumar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Jitender Madan
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Dharmendra Khatri
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health (GSH), The University of Technology Sydney, Ultimo, Australia
| |
Collapse
|
17
|
Kazi M, Alhajri A, Alshehri SM, Elzayat EM, Al Meanazel OT, Shakeel F, Noman O, Altamimi MA, Alanazi FK. Enhancing Oral Bioavailability of Apigenin Using a Bioactive Self-Nanoemulsifying Drug Delivery System (Bio-SNEDDS): In Vitro, In Vivo and Stability Evaluations. Pharmaceutics 2020; 12:749. [PMID: 32785007 PMCID: PMC7465069 DOI: 10.3390/pharmaceutics12080749] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 08/05/2020] [Accepted: 08/05/2020] [Indexed: 12/29/2022] Open
Abstract
Apigenin (APG) is a very well-known flavonoid for its anti-inflammatory and anticancer properties. The purpose of this study is to improve the solubility and bioavailability of APG using a stable bioactive self-nanoemulsifying drug delivery system (Bio-SNEDDS). APG was incorporated in an oil phase comprising coconut oil fatty acid, Imwitor 988, Transcutol P, and HCO30 to form a Bio-SNEDDS. This preparation was characterized for morphology, particle size, and transmission electron microscopy (TEM). The APG performance was investigated in terms of loading, precipitation, release and stability tests from the optimal Bio-SNEDDS. An antimicrobial test was performed to investigate the activity of the Bio-SNEDDS against the selected strains. Bioavailability of the Bio-SNEDDS was evaluated using Wister rats against the commercial oral product and the pure drug. The results demonstrated the formation of an efficient nanosized (57 nm) Bio-SNEDDS with a drug loading of 12.50 mg/gm which is around 500-fold higher than free APG. TEM analysis revealed the formation of spherical and homogeneous nanodroplets of less than 60 nm. The dissolution rate was faster than the commercial product and was able to maintain 90% APG in gastro intestinal solution for more than 4 h. A stability study demonstrated that the Bio-SNEDDS is stable at a harsh condition. The in vivo pharmacokinetics parameters of the Bio-SNEDDS formulation in comparison to the pure drug showed a significant increase in maximum concentration (Cmax) and area under the curve (AUC (0-t)) of 105.05% and 91.32%, respectively. Moreover, the antimicrobial study revealed moderate inhibition in the bacterial growth rate. The APG-Bio-SNEDDS could serve as potential carrier aimed at improving the clinical application of APG.
Collapse
Affiliation(s)
- Mohsin Kazi
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (A.A.); (S.M.A.); (F.S.); (M.A.A.); (F.K.A.)
- Kayyali Chair for Pharmaceutical Industries, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (E.M.E.); (O.T.A.M.)
| | - Abdullah Alhajri
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (A.A.); (S.M.A.); (F.S.); (M.A.A.); (F.K.A.)
| | - Sultan M. Alshehri
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (A.A.); (S.M.A.); (F.S.); (M.A.A.); (F.K.A.)
- College of Pharmacy, Almaarefa University, Riyadh 11597, Saudi Arabia
| | - Ehab M. Elzayat
- Kayyali Chair for Pharmaceutical Industries, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (E.M.E.); (O.T.A.M.)
| | - Osaid T. Al Meanazel
- Kayyali Chair for Pharmaceutical Industries, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (E.M.E.); (O.T.A.M.)
| | - Faiyaz Shakeel
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (A.A.); (S.M.A.); (F.S.); (M.A.A.); (F.K.A.)
- Kayyali Chair for Pharmaceutical Industries, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (E.M.E.); (O.T.A.M.)
| | - Omar Noman
- Medicinal Aromatic, and Poisonous Plants Research Center, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Mohammad A. Altamimi
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (A.A.); (S.M.A.); (F.S.); (M.A.A.); (F.K.A.)
| | - Fars K. Alanazi
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (A.A.); (S.M.A.); (F.S.); (M.A.A.); (F.K.A.)
- Kayyali Chair for Pharmaceutical Industries, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (E.M.E.); (O.T.A.M.)
| |
Collapse
|
18
|
Alshora DH, Alsaif S, Ibrahim MA, Ezzeldin E, Almeanazel OT, Abou El Ela AES, Ashri LY. Co-stabilization of pioglitazone HCL nanoparticles prepared by planetary ball milling: in-vitro and in-vivo evaluation. Pharm Dev Technol 2020; 25:845-854. [PMID: 32174213 DOI: 10.1080/10837450.2020.1744163] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Pioglitazone (PGZ) is an oral antidiabetic agent that increases cell resistance to insulin, thereby decreasing blood glucose levels. PGZ is a class II drug. Because of its pH-dependent solubility, it precipitates at the intestinal pH, resulting in an erratic and incomplete absorption following oral administration, which causes fluctuations in its plasma concentration. A nanoparticle drug delivery system offers a solution to enhance the dissolution rate of this poorly water-soluble drug. PGZ nanoparticles were formulated by the wet milling technique using a planetary ball mill. The effects of the steric stabilizer (Pluronic F-127, PL F-127), electrostatic stabilizer (sodium deoxycholate, SDC), and number of milling cycles were optimized using a Box-Behnken factorial design. The results showed that the ratio of PL F-127: SDC significantly affected the zeta potential and the dissolution efficiency (DE%) of PGZ. The optimized PGZ nanoparticle formulation enhanced the dissolution to reach 100% after 5 min. The in-vivo results showed significant enhancement in Cmax (1.3-fold) compared to that of the raw powder, and both AUC0-24 and AUC0-∞ were significantly (p < 0.05) enhanced. In conclusion, PGZ nanoparticle formulation had enhanced dissolution rate in the alkaline media, which improved its drug bioavailability relative to that of the untreated drug.
Collapse
Affiliation(s)
- Doaa H Alshora
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Shaikha Alsaif
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Mohamed A Ibrahim
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia.,Department of Pharmaceutics and Industrial Pharmacy, College of Pharmacy, Al-Azhar University, Assiut, Egypt
| | - Essam Ezzeldin
- Department of Pharmaceutical Chemistry and Drug Bioavailability Laboratory, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia.,Drug Bioavailability Center, National Organization for Drug Control and Research, (NODCAR), Cairo, Egypt
| | - Osaid T Almeanazel
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Amal El Sayeh Abou El Ela
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia.,Department of Pharmaceutics, College of Pharmacy, Assiut University, Assiut, Egypt
| | - Lubna Y Ashri
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
19
|
Lu J, Meng Z, Cheng B, Liu M, Tao S, Guan S. Apigenin reduces the excessive accumulation of lipids induced by palmitic acid via the AMPK signaling pathway in HepG2 cells. Exp Ther Med 2019; 18:2965-2971. [PMID: 31572539 PMCID: PMC6755459 DOI: 10.3892/etm.2019.7905] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 05/23/2019] [Indexed: 12/24/2022] Open
Abstract
In recent years, increasing attention has been paid to diseases caused by excessive accumulation of lipids in the liver with therapeutic agents derived from natural products offering an alternative treatment to conventional therapies. Among these therapeutic agents, apigenin, a natural flavonoid, has been proven to exert various beneficial biological effects. In the present study, the antiadipogenic effects of apigenin in HepG2 cells was investigated. It was demonstrated that the treatment of cells with different concentrations of apigenin for 24 h significantly decreased the palmitic acid-induced increases in total cholesterol (TC) and triglyceride (TG) levels as well as intracellular lipid accumulation. In addition, apigenin increased the phosphorylated-AMP-activated protein kinase (AMPK) levels but decreased the expression levels of 3-hydroxy-3-methylglutaryl CoA reductase, sterol regulatory element-binding protein (SREBP)-1, fatty acid synthase, and SREBP-2 in a concentration-dependent manner. The present findings suggested that apigenin might improve lipid metabolism by activating the AMPK/SREBP pathway to reduce lipid accumulation in the liver.
Collapse
Affiliation(s)
- Jing Lu
- Department of Food Quality and Safety, College of Food Science and Engineering, Jilin University, Changchun, Jilin 130062, P.R. China
| | - Zhuoqun Meng
- Department of Food Quality and Safety, College of Food Science and Engineering, Jilin University, Changchun, Jilin 130062, P.R. China
| | - Bijun Cheng
- Department of Food Quality and Safety, College of Food Science and Engineering, Jilin University, Changchun, Jilin 130062, P.R. China
| | - Meitong Liu
- Department of Food Quality and Safety, College of Food Science and Engineering, Jilin University, Changchun, Jilin 130062, P.R. China
| | - Siyu Tao
- Department of Pharmacology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Shuang Guan
- Department of Food Quality and Safety, College of Food Science and Engineering, Jilin University, Changchun, Jilin 130062, P.R. China
| |
Collapse
|
20
|
Zhang X, Zhang H, Xia X, Pu N, Yu Z, Nabih M, Zhu Y, Zhang S, Jiang L. Preparation and physicochemical characterization of soy isoflavone (SIF) nanoparticles by a liquid antisolvent precipitation method. ADV POWDER TECHNOL 2019. [DOI: 10.1016/j.apt.2019.04.030] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
21
|
Altamimi MA, Elzayat EM, Qamar W, Alshehri SM, Sherif AY, Haq N, Shakeel F. Evaluation of the bioavailability of hydrocortisone when prepared as solid dispersion. Saudi Pharm J 2019; 27:629-636. [PMID: 31297016 PMCID: PMC6598222 DOI: 10.1016/j.jsps.2019.03.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Accepted: 03/06/2019] [Indexed: 01/05/2023] Open
Abstract
This study was conducted to formulate, characterize, and investigate the bioavailability of hydrocortisone (HCT) when prepared as solid dispersions. HCT was mixed in an organic solvent with polyethylene glycol 4000 (PEG 4000) and Kolliphor® P 407. Spray drying technique was employed to form a solid dispersion formulation at a specific ratio. Physical and chemical characterization of the formed particles were achieved using differential scanning calorimetry, scanning electron microscopy, Fourier transform infrared spectroscopy, and powder X-ray diffractometry. Furthermore, comparative in vitro and in vivo studies were conducted between the formulated particles against neat HCT. The formulated solid dispersion showed elongated particles with leaf-like structure. Formation of new chemical bonds in the formed particle was suggested due to the change in the vibrational wave numbers and the significant improvement in the bioavailability of the dispersed particles proved the importance of this technique.
Collapse
Affiliation(s)
- Mohammad A. Altamimi
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
- Central Laboratory, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Ehab M. Elzayat
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Wajhul Qamar
- Central Laboratory, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Sultan M. Alshehri
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Abdelrahman Y. Sherif
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Nazrul Haq
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Faiyaz Shakeel
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
22
|
Elzayat EM, Shakeel F, Alshehri S, Ibrahim MA, Altamimi MA, Kazi M, Alanazi FK, Haq N. UHPLC assisted simultaneous separation of apigenin and prednisolone and its application in the pharmacokinetics of apigenin. J Chromatogr B Analyt Technol Biomed Life Sci 2019; 1117:58-65. [PMID: 30999274 DOI: 10.1016/j.jchromb.2019.04.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 03/18/2019] [Accepted: 04/02/2019] [Indexed: 12/12/2022]
Abstract
A new ultra-high performance liquid chromatography-mass spectrometry-mass spectrometry (UHPLC-MS/MS) system has been formulated for the resolution of closely related drugs apigenin (API, a bioflavinoid) and prednisolone (PRD) from their mixture. This developed method comprised of a "BEH™ C18 column (50 mm × 2.1 mm, 1.7 μm)" using acetonitrile and 0.1% formic acid (35:65 v/v) at a supply rate of 0.25 mL·min-1 as eluent. It was found that selected eluent provided short run time (≤2.5 min) as well as better peak symmetry. Satisfactory values of chromatographic parameters such as resolution (Rs = 2.5), capacity factor (k; 13.6 and 23.4 for API and PRD respectively, selectivity (α = 1.72) and number of theoretical plates (N; 3789 and 42,435 for API and PRD respectively) indicate the efficiency of the developed method. The obtained separation was then exploited for the detection and measurement of API in rat plasma sample by means of PRD as an "internal standard" (IS). The eluted compounds in plasma were identified by tandem mass spectrometry by means of tandem quadrupole (TQ) detector ("Waters Corp., Milford, MA") fortified with an "electrospray ionisation (ESI)" source functioning in positive ionization mode. The determination of API in plasma was accomplished by means of "multiple reactions monitoring (MRM)" mode. Assortment of "ionization pairs" (m/z) was displayed in the following manner: API: 270.99 → 152.9 ("cone voltage" 57 V, "collision energy" 34 V), PRD: 403.172 → 385.224 ("cone voltage" 42 V, "collision energy" 13 V). The calibration curves followed linearity in concentration range of 05-1000 ng mL-1 with limit of detection "LOD" and limit of quantification "LOQ" of 7.30 and 22.77 ng mL-1, respectively. The developed method was validated taking into consideration various test conditions and satisfactory values of various parameters such as linearity (r2 ± SD = 0.9995 ± 0.0005), interday accuracy (88-120%), interday precision % RSD = 3.30-13.65% whereas intraday accuracy (91-118%) intraday precision % RSD = 1.18-5.83) indicated its validity. The validation outcomes fulfilled the standards of united states food and drug administration "USFDA" in addition Scientific Working Group for Forensic Toxicology "SWGTOX" guiding principles and were not beyond the tolerable constraint. The process developed in plasma was efficaciously harnessed in the pharmacokinetic investigation of various formulations of API after oral administration in rats.
Collapse
Affiliation(s)
- Ehab M Elzayat
- Kayyali Chair for Pharmaceutical Industries, Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, P.O. Box: 2457, Saudi Arabia
| | - Faiyaz Shakeel
- Kayyali Chair for Pharmaceutical Industries, Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, P.O. Box: 2457, Saudi Arabia
| | - Sultan Alshehri
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, P.O. Box: 2457, Saudi Arabia
| | - Mohamed A Ibrahim
- Kayyali Chair for Pharmaceutical Industries, Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, P.O. Box: 2457, Saudi Arabia
| | - Mohammad A Altamimi
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, P.O. Box: 2457, Saudi Arabia
| | - Mohsin Kazi
- Kayyali Chair for Pharmaceutical Industries, Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, P.O. Box: 2457, Saudi Arabia
| | - Fars Kaed Alanazi
- Kayyali Chair for Pharmaceutical Industries, Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, P.O. Box: 2457, Saudi Arabia
| | - Nazrul Haq
- Kayyali Chair for Pharmaceutical Industries, Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, P.O. Box: 2457, Saudi Arabia.
| |
Collapse
|
23
|
Molecular Mechanisms and Bioavailability of Polyphenols in Prostate Cancer. Int J Mol Sci 2019; 20:ijms20051062. [PMID: 30823649 PMCID: PMC6429226 DOI: 10.3390/ijms20051062] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Revised: 02/20/2019] [Accepted: 02/25/2019] [Indexed: 02/06/2023] Open
Abstract
Prostate cancer is the one of the most frequently diagnosed cancers among men over the age of 50. Several lines of evidence support the observation that polyphenols have preventive and therapeutic effects in prostate cancer. Moreover, prostate cancer is ideal for chemoprevention due to its long latency. We propose here an equilibrated lifestyle with a diet rich in polyphenols as prophylactic attempts to slow down the progression of localized prostate cancer or prevent the occurrence of the disease. In this review, we will first summarize the molecular mechanisms of polyphenols in prostate cancer with a focus on the antioxidant and pro-oxidant effects, androgen receptors (AR), key molecules involved in AR signaling and their transactivation pathways, cell cycle, apoptosis, angiogenesis, metastasis, genetic aspects, and epigenetic mechanisms. The relevance of the molecular mechanisms is discussed in light of current bioavailability data regarding the activity of polyphenols in prostate cancer. We also highlight strategies for improving the bioavailability of polyphenols. We hope that this review will lead to further research regarding the bioavailability and the role of polyphenols in prostate cancer prevention and treatment.
Collapse
|
24
|
Alshehri SM, Shakeel F, Ibrahim MA, Elzayat EM, Altamimi M, Mohsin K, Almeanazel OT, Alkholief M, Alshetaili A, Alsulays B, Alanazi FK, Alsarra IA. Dissolution and bioavailability improvement of bioactive apigenin using solid dispersions prepared by different techniques. Saudi Pharm J 2019; 27:264-273. [PMID: 30766439 PMCID: PMC6362180 DOI: 10.1016/j.jsps.2018.11.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Accepted: 11/13/2018] [Indexed: 10/31/2022] Open
Abstract
Apigenin (APG) is a poorly soluble bioactive compound/nutraceutical which shows poor bioavailability upon oral administration. Hence, the objective of this research work was to develop APG solid dispersions (SDs) using different techniques with the expectation to obtain improvement in its in vitro dissolution rate and in vivo bioavailability upon oral administration. Different SDs of APG were prepared by microwave, melted and kneaded technology using pluronic-F127 (PL) as a carrier. Prepared SDs were characterized using "thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), Fourier transform infra-red (FTIR) spectrometer, powder X-ray diffraction (PXRD) and scanning electron microscopy (SEM)". After characterization, prepared SDs of APG were studied for in vitro drug release/dissolution profile and in vivo pharmacokinetic studies. The results of TGA, DSC, FTIR, PXRD and SEM indicated successful formation of APG SDs. In vitro dissolution experiments suggested significant release of APG from all SDs (67.39-84.13%) in comparison with control (32.74%). Optimized SD of APG from each technology was subjected to in vivo pharmacokinetic study in rats. The results indicated significant improvement in oral absorption of APG from SD prepared using microwave and melted technology in comparison with pure drug and commercial capsule. The enhancement in oral bioavailability of APG from microwave SD (319.19%) was 3.19 fold as compared with marketed capsule (100.00%). Significant enhancement in the dissolution rate and oral absorption of APG from SD suggested that developed SD systems can be successfully used for oral drug delivery system of APG.
Collapse
Affiliation(s)
- Sultan M. Alshehri
- Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Faiyaz Shakeel
- Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Mohamed A. Ibrahim
- Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Ehab M. Elzayat
- Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Mohammad Altamimi
- Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Kazi Mohsin
- Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Osaid T. Almeanazel
- Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Musaed Alkholief
- Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Abdullah Alshetaili
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Bader Alsulays
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Fars K. Alanazi
- Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Ibrahim A. Alsarra
- Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| |
Collapse
|
25
|
Guler GO, Zengin G, Karadag F, Mollica A, Picot CMN, Mahomoodally MF. HPLC-DAD profiles and pharmacological insights of Onobrychis argyrea subsp isaurica extracts. Comput Biol Chem 2018; 76:256-263. [DOI: 10.1016/j.compbiolchem.2018.07.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 07/25/2018] [Accepted: 07/26/2018] [Indexed: 12/29/2022]
|