1
|
Gu L, Sun X, Pan J, Liu D, Huang L, Yu Y, Yu B, Cong H. AIE-active PVA/berberine antibacterial hydrogel for wound healing, visual monitoring pH and dehydration. Biomaterials 2025; 323:123432. [PMID: 40440976 DOI: 10.1016/j.biomaterials.2025.123432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2025] [Revised: 04/22/2025] [Accepted: 05/20/2025] [Indexed: 06/11/2025]
Abstract
The antibacterial hydrogels have attracted a significant amount of interest for preventing bacterial infection in wound healing. However, irreversible antibiotic resistance and lagging detection of wound infection are still current research pain points for hydrogel wound dressings. This study successfully prepared and characterized a novel aggregation-induced PVA/SA/BBR hydrogel. BBR confers significant antibacterial potential to PVA/SA/BBR hydrogels avoiding the use of antibiotics. The results indicate that PVA/SA/BBR hydrogels displayed antibacterial activity against S. aureus, enhanced wound healing process, negligible cytotoxicity, and low hemolytic activity (<5 %). Molecular docking analysis indicate that BBR could inhibit the activity of FabH of E. coli and S. aureus, with a respective binding energy of -9.0185 and -8.4037 kcal/mol. Moreover, the real-time in situ monitoring and quantifying of wound pH levels could be realized by RGB signals collected and transformed from the visible-fluorescent images. PVA/SA/BBR hydrogels also provided significant fluorescent signals visible to the naked eye due to the AIE effect of BBR when the hydrogel severely loses water. All of these signals suggested anti-infective therapy and hydrogel replacement. Therefore, PVA/SA/BBR hydrogels as efficient non-antibiotic-dependent wound dressings with significant therapeutic effect on skin wounds provide potential applications in wound healing, flexible wearable sensing and drug delivery.
Collapse
Affiliation(s)
- Liqiang Gu
- School of Mechanical Engineering, School of Materials Science and Engineering, Shandong University of Technology, Zibo, 255000, China
| | - Xintao Sun
- School of Mechanical Engineering, School of Materials Science and Engineering, Shandong University of Technology, Zibo, 255000, China
| | - Jian Pan
- School of Mechanical Engineering, School of Materials Science and Engineering, Shandong University of Technology, Zibo, 255000, China
| | - Dongming Liu
- School of Mechanical Engineering, School of Materials Science and Engineering, Shandong University of Technology, Zibo, 255000, China
| | - Lilan Huang
- School of Mechanical Engineering, School of Materials Science and Engineering, Shandong University of Technology, Zibo, 255000, China
| | - Yaru Yu
- School of Mechanical Engineering, School of Materials Science and Engineering, Shandong University of Technology, Zibo, 255000, China.
| | - Bing Yu
- Institute of Biomedical Materials and Engineering, College of Materials Science and Engineering, College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071, China.
| | - Hailin Cong
- School of Mechanical Engineering, School of Materials Science and Engineering, Shandong University of Technology, Zibo, 255000, China; College of Chemistry, Chemical Engineering and Materials Science, Zaozhuang University, Zaozhuang , 277160, China.
| |
Collapse
|
2
|
Sun L, Lan J, Li Z, Zeng R, Shen Y, Zhang T, Ding Y. Transforming Cancer Treatment with Nanotechnology: The Role of Berberine as a Star Natural Compound. Int J Nanomedicine 2024; 19:8621-8640. [PMID: 39188860 PMCID: PMC11346485 DOI: 10.2147/ijn.s469350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 07/16/2024] [Indexed: 08/28/2024] Open
Abstract
Berberine (BBR), recognized as an oncotherapeutic phytochemical, exhibits its anti-cancer properties via multiple molecular pathways. However, its clinical application is hindered by suboptimal tumor accumulation, rapid systemic elimination, and diminished bioactive concentration owing to extensive metabolic degradation. To circumvent these limitations, the strategic employment of nanocarriers and other drugs in combination with BBR is emerging as a focus to potentiate its anti-cancer efficacy. This review introduced the expansive spectrum of BBR's anti-cancer activities, BBR and other drugs co-loaded nanocarriers for anti-cancer treatments, and evaluated the synergistic augmentation of these amalgamated modalities. The aim is to provide an overview of BBR for cancer treatment based on nano-delivery. Berberine (BBR), recognized as an oncotherapeutic phytochemical, exhibits its anti-cancer properties via multiple molecular pathways. However, its clinical application is hindered by suboptimal tumor accumulation, rapid systemic elimination, and diminished bioactive concentration owing to extensive metabolic degradation. To circumvent these limitations, the strategic employment of nanocarriers and other drugs in combination with BBR is emerging as a focus to potentiate its anti-cancer efficacy. Nano-delivery systems increase drug concentration at the tumor site by improving pharmacological activity and tissue distribution, enhancing drug bioavailability. Organic nanocarriers have advantages for berberine delivery including biocompatibility, encapsulation, and controlled release of the drug. While the advantages of inorganic nanocarriers for berberine delivery mainly lie in their efficient loading ability of the drug and their slow release ability of the drug. This review introduced the expansive spectrum of BBR's anti-cancer activities, BBR and other drugs co-loaded nanocarriers for anti-cancer treatments, and evaluated the synergistic augmentation of these amalgamated modalities. The aim is to provide an overview of BBR for cancer treatment based on nano-delivery.
Collapse
Affiliation(s)
- Liyan Sun
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People’s Republic of China
| | - Jinshuai Lan
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People’s Republic of China
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People’s Republic of China
| | - Zhe Li
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People’s Republic of China
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People’s Republic of China
| | - Ruifeng Zeng
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People’s Republic of China
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People’s Republic of China
| | - Yi Shen
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People’s Republic of China
| | - Tong Zhang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People’s Republic of China
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People’s Republic of China
| | - Yue Ding
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People’s Republic of China
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People’s Republic of China
- National Innovation Platform for Medical Industry-Education Integration, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People’s Republic of China
| |
Collapse
|
3
|
Silva OA, Rossin ARS, Lima AMDO, Valente AD, Garcia FP, Nakamura CV, Follmann HDM, Silva R, Martins AF. Synthesis of Keratin Nanoparticles Extracted from Human Hair through Hydrolysis with Concentrated Sulfuric Acid: Characterization and Cytotoxicity. MATERIALS (BASEL, SWITZERLAND) 2024; 17:3759. [PMID: 39124423 PMCID: PMC11313240 DOI: 10.3390/ma17153759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 07/23/2024] [Accepted: 07/27/2024] [Indexed: 08/12/2024]
Abstract
Human hair, composed primarily of keratin, represents a sustainable waste material suitable for various applications. Synthesizing keratin nanoparticles (KNPs) from human hair for biomedical uses is particularly attractive due to their biocompatibility. In this study, keratin was extracted from human hair using concentrated sulfuric acid as the hydrolysis agent for the first time. This process yielded KNPs in both the supernatant (KNPs-S) and precipitate (KNPs-P) phases. Characterization involved scanning electron microscopy (SEM), Fourier-transform infrared spectroscopy (FTIR), Zeta potential analysis, X-ray diffraction (XRD), and thermogravimetric analysis (TG). KNPs-S and KNPs-P exhibited average diameters of 72 ± 5 nm and 27 ± 5 nm, respectively. The hydrolysis process induced a structural rearrangement favoring β-sheet structures over α-helices in the KNPs. These nanoparticles demonstrated negative Zeta potentials across the pH spectrum. KNPs-S showed higher cytotoxicity (CC50 = 176.67 µg/mL) and hemolytic activity, likely due to their smaller size compared to KNPs-P (CC50 = 246.21 µg/mL), particularly at concentrations of 500 and 1000 µg/mL. In contrast, KNPs-P did not exhibit hemolytic activity within the tested concentration range of 32.5 to 1000 µg/mL. Both KNPs demonstrated cytocompatibility with fibroblast cells in a dose-dependent manner. Compared to other methods reported in the literature and despite requiring careful washing and neutralization steps, sulfuric acid hydrolysis proved effective, rapid, and feasible for producing cytocompatible KNPs (biomaterials) in single-step synthesis.
Collapse
Affiliation(s)
- Otavio A. Silva
- Department of Chemistry, State University of Maringa, Maringa 87020-900, PR, Brazil; (O.A.S.); (A.R.S.R.); (A.M.d.O.L.); (H.D.M.F.); (R.S.)
| | - Ariane R. S. Rossin
- Department of Chemistry, State University of Maringa, Maringa 87020-900, PR, Brazil; (O.A.S.); (A.R.S.R.); (A.M.d.O.L.); (H.D.M.F.); (R.S.)
- Postgraduate Program in Chemistry, State University of West Paraná, Toledo 85903-000, PR, Brazil
| | - Antônia M. de Oliveira Lima
- Department of Chemistry, State University of Maringa, Maringa 87020-900, PR, Brazil; (O.A.S.); (A.R.S.R.); (A.M.d.O.L.); (H.D.M.F.); (R.S.)
- Research Laboratory, Federal Institute of Maranhão-Imperatriz, Imperatriz 65900-000, MA, Brazil
| | - Andressa D. Valente
- Department of Basic Health Sciences, State University of Maringa, Maringa 87020-900, PR, Brazil; (A.D.V.); (F.P.G.); (C.V.N.)
| | - Francielle P. Garcia
- Department of Basic Health Sciences, State University of Maringa, Maringa 87020-900, PR, Brazil; (A.D.V.); (F.P.G.); (C.V.N.)
| | - Celso V. Nakamura
- Department of Basic Health Sciences, State University of Maringa, Maringa 87020-900, PR, Brazil; (A.D.V.); (F.P.G.); (C.V.N.)
| | - Heveline D. M. Follmann
- Department of Chemistry, State University of Maringa, Maringa 87020-900, PR, Brazil; (O.A.S.); (A.R.S.R.); (A.M.d.O.L.); (H.D.M.F.); (R.S.)
| | - Rafael Silva
- Department of Chemistry, State University of Maringa, Maringa 87020-900, PR, Brazil; (O.A.S.); (A.R.S.R.); (A.M.d.O.L.); (H.D.M.F.); (R.S.)
| | - Alessandro F. Martins
- Department of Chemistry, State University of Maringa, Maringa 87020-900, PR, Brazil; (O.A.S.); (A.R.S.R.); (A.M.d.O.L.); (H.D.M.F.); (R.S.)
- Laboratory of Materials, Macromolecules, and Composites, Federal University of Technology-Paraná, Apucarana 86812-460, PR, Brazil
- Department of Chemistry, Pittsburg State University, Pittsburg, KS 66762, USA
| |
Collapse
|
4
|
Silva OA, Pellá MG, Sabino RM, Popat KC, Kipper MJ, Rubira AF, Follmann HDM, Silva R, Martins AF. Carboxymethylcellulose hydrogels crosslinked with keratin nanoparticles for efficient prednisolone delivery. Int J Biol Macromol 2023; 241:124497. [PMID: 37080405 DOI: 10.1016/j.ijbiomac.2023.124497] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 04/04/2023] [Accepted: 04/13/2023] [Indexed: 04/22/2023]
Abstract
Carboxymethylcellulose (CMC) and keratin nanoparticle (KNP) hydrogels were obtained, characterized, and applied as drug delivery systems (DDSs) for the first time. Lyophilized CMC/KNP mixtures containing 10, 25, and 50 wt% of KNPs were kept at 170 °C for 90 min to crosslink CMC chains through a solid-state reaction with the KNPs. The hydrogels were characterized by infrared spectroscopy, thermal analyses, X-ray diffraction, mechanical measurements, and scanning electron microscopy. The infrared spectra indicated the formation of ester and amide linkages between crosslinked CMC and KNPs. The elastic modulus of the hydrogel containing 10 wt% KNPs was 2-fold higher than that of the hydrogel containing 50 wt% KNPs. The mechanical properties influenced the hydrogel stability and water uptake. The anti-inflammatory prednisolone (PRED) drug was incorporated into the hydrogels, and the release mechanism was investigated. The hydrogels supported PRED release by drug desorption for approximately 360 h. A sustained release mechanism was achieved. The CMC/KNP and CMC/KNP/PRED hydrogels were cytocompatible toward mammalian cells. The CMC/KNP/PRED set imparted the highest cell viability after 7 days of incubation. This study showed a straightforward procedure to create DDSs (chemically crosslinked) based on polysaccharides and proteins for efficient PRED delivery.
Collapse
Affiliation(s)
- Otavio A Silva
- Group of Polymers and Composite Materials, Department of Chemistry, State University of Maringá (UEM), Maringá, PR, Brazil
| | - Michelly G Pellá
- Group of Polymers and Composite Materials, Department of Chemistry, State University of Maringá (UEM), Maringá, PR, Brazil
| | - Roberta M Sabino
- School of Advanced Materials Discovery, Colorado State University (CSU), Fort Collins, CO, USA; Institute for Medical Engineering and Science, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
| | - Ketul C Popat
- School of Advanced Materials Discovery, Colorado State University (CSU), Fort Collins, CO, USA; Department of Mechanical Engineering, Colorado State University (CSU), Fort Collins, CO, USA
| | - Matt J Kipper
- School of Advanced Materials Discovery, Colorado State University (CSU), Fort Collins, CO, USA; Department of Chemical and Biological Engineering, Colorado State University (CSU), Fort Collins, CO, USA
| | - Adley F Rubira
- Group of Polymers and Composite Materials, Department of Chemistry, State University of Maringá (UEM), Maringá, PR, Brazil
| | - Heveline D M Follmann
- Group of Polymers and Composite Materials, Department of Chemistry, State University of Maringá (UEM), Maringá, PR, Brazil
| | - Rafael Silva
- Group of Polymers and Composite Materials, Department of Chemistry, State University of Maringá (UEM), Maringá, PR, Brazil
| | - Alessandro F Martins
- Group of Polymers and Composite Materials, Department of Chemistry, State University of Maringá (UEM), Maringá, PR, Brazil; Laboratory of Materials, Macromolecules, and Composites, Federal University of Technology-Paraná (UTFPR), Apucarana, PR, Brazil; Department of Chemical and Biological Engineering, Colorado State University (CSU), Fort Collins, CO, USA.
| |
Collapse
|
5
|
Preparation Methods and Functional Characteristics of Regenerated Keratin-Based Biofilms. Polymers (Basel) 2022; 14:polym14214723. [DOI: 10.3390/polym14214723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 10/29/2022] [Accepted: 11/02/2022] [Indexed: 11/06/2022] Open
Abstract
The recycling, development, and application of keratin-containing waste (e.g., hair, wool, feather, and so on) provide an important means to address related environmental pollution and energy shortage issues. The extraction of keratin and the development of keratin-based functional materials are key to solving keratin-containing waste pollution. Keratin-based biofilms are gaining substantial interest due to their excellent characteristics, such as good biocompatibility, high biodegradability, appropriate adsorption, and rich renewable sources, among others. At present, keratin-based biofilms are a good option for various applications, and the development of keratin-based biofilms from keratin-containing waste is considered crucial for sustainable development. In this paper, in order to achieve clean production while maintaining the functional characteristics of natural keratin as much as possible, four important keratin extraction methods—thermal hydrolysis, ultrasonic technology, eco-friendly solvent system, and microbial decomposition—are described, and the characteristics of these four extraction methods are analysed. Next, methods for the preparation of keratin-based biofilms are introduced, including solvent casting, electrospinning, template self-assembly, freeze-drying, and soft lithography methods. Then, the functional properties and application prospects of keratin-based biofilms are discussed. Finally, future research directions related to keratin-based biofilms are proposed. Overall, it can be concluded that the high-value conversion of keratin-containing waste into regenerated keratin-based biofilms has great importance for sustainable development and is highly suggested due to their great potential for use in biomedical materials, optoelectronic devices, and metal ion detection applications. It is hoped that this paper can provide some basic information for the development and application of keratin-based biofilms.
Collapse
|
6
|
Vitus V, Ibrahim F, Wan Kamarul Zaman WS. Valorization of Human Hair and Its Derivatives in Tissue Engineering: A Review. Tissue Eng Part C Methods 2022; 28:529-544. [PMID: 35350873 DOI: 10.1089/ten.tec.2021.022333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Human hair is a potential biomaterial for biomedical applications. Improper disposal of human hair may pose various adverse effects on the environment and human health. Therefore, proper management of human hair waste is pivotal. Human hair fiber and its derivatives offer various advantages as biomaterials such as biocompatibility, biodegradability, low toxicity, radical scavenging, electroconductivity, and intrinsic biological activity. Therefore, the favorable characteristics of human hair have rendered its usage in tissue engineering (TE) applications including skin, cardiac, nerve, bone, ocular, and periodontal. Moreover, the strategies by utilizing human hair as a biomaterial for TE applications may reduce the accumulation of human hair. Thus, it also improves human hair waste management while promoting natural, environmental-friendly, and nontoxic materials. Furthermore, promoting sustainable materials production will benefit human health and well-being. Hence, this article reviews and discusses human hair characteristics as sustainable biomaterials and their recent application in TE applications. Impact Statement This review article highlights the sustainability aspects of human hair as raw biomaterials and various elements of human hair that could potentially be used in tissue engineering (TE) applications. Furthermore, this article discusses numerous benefits of human hair, highlighting its value as biomaterials in bioscaffold development for TE applications. Moreover, this article reviews the role and effect of human hair in various TE applications, including skin, cardiac, nerve, bone, ocular, and periodontal.
Collapse
Affiliation(s)
- Vieralynda Vitus
- Department of Biomedical Engineering, Faculty of Engineering, Universiti Malaya, Kuala Lumpur, Malaysia.,Department of Biomedical Engineering, Faculty of Engineering, Centre for Innovation in Medical Engineering (CIME), Universiti Malaya, Kuala Lumpur, Malaysia
| | - Fatimah Ibrahim
- Department of Biomedical Engineering, Faculty of Engineering, Universiti Malaya, Kuala Lumpur, Malaysia.,Department of Biomedical Engineering, Faculty of Engineering, Centre for Innovation in Medical Engineering (CIME), Universiti Malaya, Kuala Lumpur, Malaysia.,Centre for Printable Electronics, Institute for Advanced Studies (IAS), Universiti Malaya, Kuala Lumpur, Malaysia
| | - Wan Safwani Wan Kamarul Zaman
- Department of Biomedical Engineering, Faculty of Engineering, Universiti Malaya, Kuala Lumpur, Malaysia.,Department of Biomedical Engineering, Faculty of Engineering, Centre for Innovation in Medical Engineering (CIME), Universiti Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
7
|
Expatiating the Pharmacological and Nanotechnological Aspects of the Alkaloidal Drug Berberine: Current and Future Trends. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27123705. [PMID: 35744831 PMCID: PMC9229453 DOI: 10.3390/molecules27123705] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 06/03/2022] [Accepted: 06/07/2022] [Indexed: 12/12/2022]
Abstract
Traditionally, herbal compounds have been the focus of scientific interest for the last several centuries, and continuous research into their medicinal potential is underway. Berberine (BBR) is an isoquinoline alkaloid extracted from plants that possess a broad array of medicinal properties, including anti-diarrheal, anti-fibrotic, antidiabetic, anti-inflammatory, anti-obesity, antihyperlipidemic, antihypertensive, antiarrhythmic, antidepressant, and anxiolytic effects, and is frequently utilized as a traditional Chinese medicine. BBR promotes metabolisms of glucose and lipids by activating adenosine monophosphate-activated protein kinase, stimulating glycolysis and inhibiting functions of mitochondria; all of these ameliorate type 2 diabetes mellitus. BBR has also been shown to have benefits in congestive heart failure, hypercholesterolemia, atherosclerosis, non-alcoholic fatty liver disease, Alzheimer’s disease, and polycystic ovary syndrome. BBR has been investigated as an interesting pharmacophore with the potential to contribute significantly to the research and development of novel therapeutic medicines for a variety of disorders. Despite its enormous therapeutic promise, the clinical application of this alkaloid was severely limited because of its unpleasant pharmacokinetic characteristics. Poor bioavailability, limited absorption, and poor water solubility are some of the obstacles that restricted its use. Nanotechnology has been suggested as a possible solution to these problems. The present review aims at recent updates on important therapeutic activities of BBR and different types of nanocarriers used for the delivery of BBR in different diseases.
Collapse
|