1
|
Albarano L, De Rosa I, Santaniello I, Montuori M, Serafini S, Toscanesi M, Trifuoggi M, Lofrano G, Guida M, Libralato G. Synergistic, antagonistic, and additive effects of naphthalene, phenanthrene, fluoranthene and benzo(k)fluoranthene on Artemia franciscana nauplii and adult. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 335:122286. [PMID: 37524240 DOI: 10.1016/j.envpol.2023.122286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 07/25/2023] [Accepted: 07/28/2023] [Indexed: 08/02/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are widespread across the globe and can be highly toxic for the marine environment. This research investigated the short-term (48 h of exposure) effects of PAHs mixtures on the nauplii and adult of crustacean Artemia franciscana considering the impact in term of toxicity and changes in gene expression. Results showed that all combinations caused additive or synergic effects with the exception of naphthalene + phenanthrene (NAP + PHE; Combination Index (CI) = 22.3), while naphthalene + benzo(k)fluoranthene (NAP + BkF; CI = 7.8) mixture evidenced an antagonistic effect. Real-time qPCR showed that all mixtures impacted the expression level of the five known genes involved in Artemia stress response. The effects of PAHs at environmental concentrations on both adult and nauplii suggested the need for further investigations about the impact of such contaminants on the marine biota considering that crustaceans can accumulate PAHs at concentrations comparable to those assessed in the present study.
Collapse
Affiliation(s)
- Luisa Albarano
- Department of Biology, University of Naples Federico II, Complesso Universitario di Monte Sant'Angelo, Via Vicinale Cupa Cintia 26, 80126, Napoli, Italy.
| | - Ilaria De Rosa
- Department of Biology, University of Naples Federico II, Complesso Universitario di Monte Sant'Angelo, Via Vicinale Cupa Cintia 26, 80126, Napoli, Italy
| | - Ilaria Santaniello
- Department of Biology, University of Naples Federico II, Complesso Universitario di Monte Sant'Angelo, Via Vicinale Cupa Cintia 26, 80126, Napoli, Italy
| | - Maria Montuori
- Department of Biology, University of Naples Federico II, Complesso Universitario di Monte Sant'Angelo, Via Vicinale Cupa Cintia 26, 80126, Napoli, Italy
| | - Sara Serafini
- Department of Biology, University of Naples Federico II, Complesso Universitario di Monte Sant'Angelo, Via Vicinale Cupa Cintia 26, 80126, Napoli, Italy
| | - Maria Toscanesi
- Dipartiment of Chemical Sciences, University of Naples Federico II, Complesso Universitario di Monte Sant'Angelo, Via Vicinale Cupa Cintia 26, 80126, Napoli, Italy
| | - Marco Trifuoggi
- Dipartiment of Chemical Sciences, University of Naples Federico II, Complesso Universitario di Monte Sant'Angelo, Via Vicinale Cupa Cintia 26, 80126, Napoli, Italy
| | - Giusy Lofrano
- Department of Movement, Health and Human Sciences, University of Rome Foro Italico, Piazza Lauro De Bosis, 15, 00135, Rome, Italy
| | - Marco Guida
- Department of Biology, University of Naples Federico II, Complesso Universitario di Monte Sant'Angelo, Via Vicinale Cupa Cintia 26, 80126, Napoli, Italy; NBFC, National Biodiversity Future Center, Palermo, 90133, Italy
| | - Giovanni Libralato
- Department of Biology, University of Naples Federico II, Complesso Universitario di Monte Sant'Angelo, Via Vicinale Cupa Cintia 26, 80126, Napoli, Italy
| |
Collapse
|
2
|
Kolarević S, Kračun-Kolarević M, Marić JJ, Djordjević J, Vuković-Gačić B, Joksimović D, Martinović R, Bajt O, Ramšak A. Single and combined potential of polystyrene microparticles and fluoranthene in the induction of DNA damage in haemocytes of Mediterranean mussel (Mytilus galloprovincialis). Mutagenesis 2023; 38:3-12. [PMID: 36082791 DOI: 10.1093/mutage/geac017] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 08/30/2022] [Indexed: 02/07/2023] Open
Abstract
In this study, the possible 'vector effect' within the exposure of Mediterranean mussels (Mytilus galloprovincialis) to polystyrene microplastics with adsorbed fluoranthene was investigated by applying the multibiomarker approach. The major focus was placed on genotoxicological endpoints as to our knowledge there are no literature data on the genotoxicity of polystyrene microparticles alone or with adsorbed fluoranthene in the selected experimental organisms. DNA damage was assessed in haemocytes by comet assay and micronucleus test. For the assessment of neurotoxicity, acetylcholinesterase activity was measured in gills. Glutathione S-transferase was assessed in gills and hepatopancreas since these enzymes are induced for biotransformation and excretion of lipophilic compounds such as hydrocarbons. Finally, differences in physiological response within the exposure to polystyrene particles, fluoranthene, or particles with adsorbed fluoranthene were assessed by the variation of heart rate patterns studied by the noninvasive laser fibre-optic method. The uniform response of individual biomarkers within the exposure groups was not recorded. There was no clear pattern in variation of acetylcholinesterase or glutathione S-transferase activity which could be attributed to the treatment. Exposure to polystyrene increased DNA damage which was detected by the comet assay but was not confirmed by micronucleus formation. Data of genotoxicity assays indicated differential responses among the groups exposed to fluoranthene alone and fluoranthene adsorbed to polystyrene. Change in the heart rate patterns within the studied groups supports the concept of the Trojan horse effect within the exposure to polystyrene particles with adsorbed fluoranthene.
Collapse
Affiliation(s)
- Stoimir Kolarević
- University of Belgrade, Institute for Biological Research "Siniša Stanković", National Institute of Republic of Serbia, Bulevar despota Stefana 142, 11000 Belgrade, Serbia
| | - Margareta Kračun-Kolarević
- University of Belgrade, Institute for Biological Research "Siniša Stanković", National Institute of Republic of Serbia, Bulevar despota Stefana 142, 11000 Belgrade, Serbia
| | - Jovana Jovanović Marić
- University of Belgrade, Institute for Biological Research "Siniša Stanković", National Institute of Republic of Serbia, Bulevar despota Stefana 142, 11000 Belgrade, Serbia
| | - Jelena Djordjević
- University of Belgrade, Institute for Multidisciplinary Research, Kneza Višeslava 1, 11000 Belgrade, Serbia
| | - Branka Vuković-Gačić
- University of Belgrade, Faculty of Biology, Chair of Microbiology, Center for Genotoxicology and Ecogenotoxicology, Studentski trg 16, 11000 Belgrade, Serbia
| | - Danijela Joksimović
- University of Montenegro, Institute of Marine Biology, Dobrota bb, 85330 Kotor, Montenegro
| | - Rajko Martinović
- University of Montenegro, Institute of Marine Biology, Dobrota bb, 85330 Kotor, Montenegro
| | - Oliver Bajt
- National Institute of Biology, Marine Biology Station, Fornače 41, 6330 Piran, Slovenia.,University of Ljubljana, Faculty of Maritime Studies and Transport, Pot pomorščakov 4, 6320 Portorož, Slovenia
| | - Andreja Ramšak
- National Institute of Biology, Marine Biology Station, Fornače 41, 6330 Piran, Slovenia
| |
Collapse
|
3
|
Derby AP, Huff Hartz KE, Fuller NW, Landrum PF, Reeve JD, Poynton HC, Connon RE, Lydy MJ. Effects of temperature and salinity on bioconcentration and toxicokinetics of permethrin in pyrethroid-resistant Hyalella azteca. CHEMOSPHERE 2022; 299:134393. [PMID: 35337826 DOI: 10.1016/j.chemosphere.2022.134393] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/24/2022] [Accepted: 03/19/2022] [Indexed: 06/14/2023]
Abstract
Recent studies demonstrated pyrethroid resistance associated with voltage-gated sodium channel mutations in populations of the epibenthic amphipod, Hyalella azteca. Resistant populations were able to tolerate and bioconcentrate pyrethroids at concentrations significantly higher than toxic levels for non-resistant populations. In conjunction with elevated bioconcentration potential, environmental alteration particularly as a result of global climate change is anticipated to significantly alter abiotic parameters including temperature and salinity. These changes are expected to influence uptake and biotransformation of contaminants. Thus, the aims of the current study were a) to examine the bioconcentration potential of permethrin in two pyrethroid-resistant clades of H. azteca and b) assess the influence of temperature and salinity changes on toxicokinetic parameters. Two pyrethroid-resistant clades of H. azteca were exposed to 14C-permethrin at three salinities (0.2, 1.0 and 6.0 practical salinity units (PSU)) and temperatures (18, 23 and 28 °C). Tests were conducted for up to 36 h and uptake, elimination and biotransformation rates were calculated. Both populations demonstrated bioconcentration factors (BCFs) between five and seven times greater than published data for non-resistant H. azteca, with significant differences between clades. Calculated BCF values were comparable to field populations of resistant H. azteca, emphasizing the potential for elevated pyrethroid bioconcentration in the natural environment and increased exposure for predators consuming pyrethroid-resistant aquatic invertebrates. Alterations to temperature and salinity had no statistically significant effect on uptake or parent compound half-life in either population, though biotransformation was elevated at higher temperatures in both populations. Salinity had a variable effect between the two populations, with lower BCF values at 1.0 PSU in clade D H. azteca and greater BCFs at 6.0 PSU in clade C H. azteca. This is the first study to demonstrate the potential for future climate scenarios to influence toxicokinetics in pyrethroid-resistant aquatic organisms.
Collapse
Affiliation(s)
- Andrew P Derby
- Center for Fisheries, Aquaculture and Aquatic Sciences and Department of Zoology, Southern Illinois University, Carbondale, IL, 62901, USA
| | - Kara E Huff Hartz
- Center for Fisheries, Aquaculture and Aquatic Sciences and Department of Zoology, Southern Illinois University, Carbondale, IL, 62901, USA
| | - Neil W Fuller
- Center for Fisheries, Aquaculture and Aquatic Sciences and Department of Zoology, Southern Illinois University, Carbondale, IL, 62901, USA
| | - Peter F Landrum
- Center for Fisheries, Aquaculture and Aquatic Sciences and Department of Zoology, Southern Illinois University, Carbondale, IL, 62901, USA
| | - John D Reeve
- Department of Zoology, Southern Illinois University, Carbondale, IL, 62901, USA
| | - Helen C Poynton
- School for the Environment; University of Massachusetts; Boston, Massachusetts, 02125, USA
| | - Richard E Connon
- School of Veterinary Medicine, University of California, Davis, Davis, CA, 95616, USA
| | - Michael J Lydy
- Center for Fisheries, Aquaculture and Aquatic Sciences and Department of Zoology, Southern Illinois University, Carbondale, IL, 62901, USA.
| |
Collapse
|
4
|
Hanslik L, Sommer C, Huppertsberg S, Dittmar S, Knepper TP, Braunbeck T. Microplastic-associated trophic transfer of benzo(k)fluoranthene in a limnic food web: Effects in two freshwater invertebrates (Daphnia magna, Chironomus riparius) and zebrafish (Danio rerio). Comp Biochem Physiol C Toxicol Pharmacol 2020; 237:108849. [PMID: 32768657 DOI: 10.1016/j.cbpc.2020.108849] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 06/25/2020] [Accepted: 07/10/2020] [Indexed: 12/22/2022]
Abstract
The continuously growing plastic production and incomplete recycling processes open manifold entry routes for microplastic particles (MPs) into the environment. Since knowledge on trophic transfer of contaminants sorbed to MPs is still insufficient for freshwater systems, the transfer of the model pollutant benzo(k)fluoranthene (BkF) sorbed to polymethyl methacrylate (PMMA) particles in a limnic food web was investigated: Two freshwater invertebrates (Daphnia magna and Chironomus riparius larvae) were selected and either left untreated, exposed to pristine PMMA, PMMA-associated BkF, or exposed to dissolved BkF (BkFaq). As second-level consumers, zebrafish (Danio rerio) were fed twice daily with pre-treated invertebrates over two days. Induction of hepatic cytochrome P450 by BkF was determined as 7-ethoxy-O-resorufin deethylase (EROD) activity. Both invertebrate species readily ingested PMMA particles, tracked via fluorescence microscopy and accumulated BkFaq, measured via GC-MS. Fluorescence signals in gastrointestinal tracts of zebrafish were quantified with confocal laser scanning microscopy (CLSM). The fluorescence signal in gastrointestinal tracts of zebrafish was not altered, whereas, EROD activity was significantly induced when zebrafish were fed with Chironomus riparius, pre-exposed to BkFaq. Trophic exposure scenarios with BkF sorbed to PMMA did not result in any alterations of investigated endpoints in both invertebrate species and zebrafish compared to controls. Given that BkF amounts were in the low ng-range, as detected by GC-MS, the transport of MP-sorbed BkF to zebrafish was less effective than direct exposure to waterborne BkFaq, and the potential threat of trophic transfer of substances such as BkF in limnic food webs may have been overestimated.
Collapse
Affiliation(s)
- Lisa Hanslik
- Aquatic Ecology and Toxicology Group, Centre for Organismal Studies, University of Heidelberg, Im Neuenheimer Feld 504, D-69120 Heidelberg, Germany.
| | - Carmen Sommer
- Aquatic Ecology and Toxicology Group, Centre for Organismal Studies, University of Heidelberg, Im Neuenheimer Feld 504, D-69120 Heidelberg, Germany
| | - Sven Huppertsberg
- Hochschule Fresenius GmbH, University of Applied Sciences Fresenius, Limburger Str. 2, D-65510 Idstein, Germany
| | - Stefan Dittmar
- Chair of Water Quality Control, Technical University of Berlin, Str. des 17. Juni 135, D-10623 Berlin, Germany
| | - Thomas P Knepper
- Hochschule Fresenius GmbH, University of Applied Sciences Fresenius, Limburger Str. 2, D-65510 Idstein, Germany
| | - Thomas Braunbeck
- Aquatic Ecology and Toxicology Group, Centre for Organismal Studies, University of Heidelberg, Im Neuenheimer Feld 504, D-69120 Heidelberg, Germany.
| |
Collapse
|
5
|
Gajski G, Žegura B, Ladeira C, Pourrut B, Del Bo’ C, Novak M, Sramkova M, Milić M, Gutzkow KB, Costa S, Dusinska M, Brunborg G, Collins A. The comet assay in animal models: From bugs to whales – (Part 1 Invertebrates). MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2019; 779:82-113. [DOI: 10.1016/j.mrrev.2019.02.003] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 02/07/2019] [Accepted: 02/09/2019] [Indexed: 01/09/2023]
|
6
|
Singh N, Bhagat J, Ingole BS. Genotoxicity of two heavy metal compounds: lead nitrate and cobalt chloride in Polychaete Perinereis cultrifera. ENVIRONMENTAL MONITORING AND ASSESSMENT 2017; 189:308. [PMID: 28577271 DOI: 10.1007/s10661-017-5993-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Accepted: 05/09/2017] [Indexed: 06/07/2023]
Abstract
The present study explores the in vivo and in vitro genotoxic effects of lead nitrate, [Pb(NO3)2] a recognized environmental pollutant and cobalt chloride (CoCl2), an emerging environmental pollutant in polychaete Perinereis cultrifera using comet assay. Despite widespread occurrence and extensive industrial applications, no previous published reports on genotoxicity of these compounds are available in polychaete as detected by comet assay. Polychaetes were exposed in vivo to Pb(NO3)2 (0, 100, 500, and 1000 μg/l) and CoCl2 (0, 100, 300, and 500 μg/l) for 5 days. At 100 μg/l Pb(NO3)2 concentration, tail DNA (TDNA) values in coelomocytes were increase by 1.16, 1.43, and 1.55-fold after day 1, day 3, and day 5, whereas, OTM showed 1.12, 2.33, and 2.10-fold increase in in vivo. Pb(NO3)2 showed a concentration and time-dependent genotoxicity whereas CoCl2 showed a concentration-dependent genotoxicity in in vivo. A concentration-dependent increase in DNA damage was observed in in vitro studies for Pb(NO3)2 and CoCl2. DNA damage at 500 μg/L showed almost threefold increase in TDNA and approximately fourfold increase in OTM as compared to control in in vitro. Our studies suggest that Pb(NO3)2 and CoCl2 have potential to cause genotoxic damage, with Pb(NO3)2 being more genotoxic in polychaete and should be used more carefully in industrial and other activities. Graphical abstract.
Collapse
Affiliation(s)
- Nisha Singh
- Biological Oceanographic Division, CSIR-National Institute of Oceanography, Dona Paula, Goa, 403004, India
| | - Jacky Bhagat
- Biological Oceanographic Division, CSIR-National Institute of Oceanography, Dona Paula, Goa, 403004, India.
| | - Baban S Ingole
- Biological Oceanographic Division, CSIR-National Institute of Oceanography, Dona Paula, Goa, 403004, India
| |
Collapse
|
7
|
Yebra-Pimentel I, Fernández-González R, Martínez-Carballo E, Simal-Gándara J. A Critical Review about the Health Risk Assessment of PAHs and Their Metabolites in Foods. Crit Rev Food Sci Nutr 2016; 55:1383-405. [PMID: 24915328 DOI: 10.1080/10408398.2012.697497] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are a family of toxicants that are ubiquitous in the environment. These contaminants generate considerable interest, because some of them are highly carcinogenic in laboratory animals and have been implicated in breast, lung, and colon cancers in humans. Dietary intake of PAHs constitutes a major source of exposure in humans. Factors affecting the accumulation of PAHs in the diet, their absorption following ingestion, and strategies to assess risk from exposure to these hydrocarbons following ingestion have received very little attention. This review, therefore, focuses on concentrations of PAHs in widely consumed dietary ingredients along with gastrointestinal absorption rates in humans. Metabolism and bioavailability of PAHs in animal models and the processes, which influence the disposition of these chemicals, are discussed. Finally, based on intake, disposition, and tumorigenesis data, the exposure risk to PAHs from diet is presented. This information is expected to provide a framework for refinements in risk assessment of PAHs.
Collapse
Affiliation(s)
- Iria Yebra-Pimentel
- a Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Faculty of Food Science and Technology , University of Vigo , Ourense Campus, E-32004 Ourense , Spain
| | | | | | | |
Collapse
|
8
|
Malmquist LMV, Selck H, Jørgensen KB, Christensen JH. Polycyclic Aromatic Acids Are Primary Metabolites of Alkyl-PAHs-A Case Study with Nereis diversicolor. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2015; 49:5713-5721. [PMID: 25827176 DOI: 10.1021/acs.est.5b01453] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Although concentrations of alkylated polycyclic aromatic hydrocarbons (alkyl-PAHs) in oil-contaminated sediments are higher than those of unsubstituted PAHs, only little attention has been given to metabolism and ecotoxicity of alkyl-PAHs. In this study we demonstrated that metabolism of alkyl-PAHs primarily forms polycyclic aromatic acids (PAAs). We generalize this to other alkyl-PAHs, based on literature and the present study of the metabolism of 1-methylphenanthrene, 3,6-dimethylphenanthrene, and 1-, 2-, 3-, and 6-methylchrysene related to their unsubstituted parent PAHs. Also, we observed that body burdens and production of PAAs was related to the position of the methyl group, showing the same isomer specific preferences as for microbial degradation of alkyl-PAHs. We detected a high production of PAAs, and larger metabolism of alkyl-PAHs than their unsubstituted parent PAHs. We therefore propose that carboxylic acid metabolites of alkyl-PAHs have the potential of constituting a new class of contaminants in marine waters that needs attention in relation to ecological risk assessments.
Collapse
Affiliation(s)
- Linus M V Malmquist
- †Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg, Denmark
- ‡Department of Environmental, Social and Spatial Change, Roskilde University, Universitetsvej 1, P.O. Box 260, DK-4000 Roskilde, Denmark
| | - Henriette Selck
- ‡Department of Environmental, Social and Spatial Change, Roskilde University, Universitetsvej 1, P.O. Box 260, DK-4000 Roskilde, Denmark
| | - Kåre B Jørgensen
- §Faculty of Science and Technology, University of Stavanger, 4036 Stavanger, Norway
| | - Jan H Christensen
- †Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg, Denmark
| |
Collapse
|
9
|
Rocha AJDS, Santos TCA, Gomes V, Bícego MC, Barbosa ACRDA, Passos MJDACR, Hasue FM, Van Ngan P. Assessment of trophic transfer of benzo(a)pyrene genotoxicity from the post-larval pink shrimp F. brasiliensis to the juvenile Florida pompano T. carolinus. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2012; 34:969-976. [PMID: 22974793 DOI: 10.1016/j.etap.2012.07.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2012] [Revised: 07/13/2012] [Accepted: 07/25/2012] [Indexed: 06/01/2023]
Abstract
In the present study, the polycyclic aromatic hydrocarbon (PAH) genotoxicity was investigated in a one-step predator-prey relationship with the trophic-related marine species. Florida pompanos were fed for 5 and 10 days with pink shrimp post larvae previously exposed to benzo(a)pyrene (BaP) concentrations. Parent BaP body burden was measured in samples of Farfantepenaeus brasiliensis. BaP metabolites were determined in bile samples of Trachinotus carolinus and DNA damage was assessed through the comet and erythrocyte nuclear abnormalities (ENAs) assays in fish erythrocytes. BaP body burden increased significantly with the PAH concentration in pink shrimp PLs as well as the fish bile BaP metabolites. Both, comet and ENAs assays indicated significant increase on erythrocyte DNA damage of Florida pompanos fed with BaP-exposed pink shrimp on both feeding periods. The trophic route of BaP genotoxicity is discussed as well as the PAH biotransformation as the inducing mechanism for the DNA damages observed.
Collapse
Affiliation(s)
- Arthur José da Silva Rocha
- Laboratory of Marine Life Ecophysiology, Department of Oceanographic Biology, Institute of Oceanography, Universidade de São Paulo, Praça do Oceanográfico, 191 Cidade Universitária, São Paulo, SP, CEP 05508-900, Brazil.
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Al-Subiai SN, Arlt VM, Frickers PE, Readman JW, Stolpe B, Lead JR, Moody AJ, Jha AN. Merging nano-genotoxicology with eco-genotoxicology: an integrated approach to determine interactive genotoxic and sub-lethal toxic effects of C(60) fullerenes and fluoranthene in marine mussels, Mytilus sp. Mutat Res 2012; 745:92-103. [PMID: 22230430 DOI: 10.1016/j.mrgentox.2011.12.019] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2011] [Accepted: 12/21/2011] [Indexed: 11/25/2022]
Abstract
Whilst there is growing concern over the potential detrimental impact of engineered nanoparticles (ENPs) on the natural environment, little is known about their interactions with other contaminants. In the present study, marine mussels (Mytilus sp.) were exposed for 3 days to C(60) fullerenes (C(60); 0.10-1 mg l(-1)) and a model polycyclic aromatic hydrocarbon (PAH), fluoranthene (32-100 μg l(-1)), either alone or in combination. The first two experiments were conducted by exposing the organisms to different concentrations of C(60) and fluoranthene alone, in order to determine the effects on total glutathione levels (as a measure of generic oxidative stress), genotoxicity (DNA strand breaks using Comet assay in haemocytes), DNA adduct analyses (using (32)P-postlabelling method) in different organs, histopathological changes in different tissues (i.e. adductor muscle, digestive gland and gills) and physiological effects (feeding or clearance rate). Subsequently, in the third experiment, a combined exposure of C(60) plus fluoranthene (0.10 mg l(-1) and 32 μg l(-1), respectively) was carried out to evaluate all endpoints mentioned above. Both fluoranthene and C(60) on their own caused concentration-dependent increases in DNA strand breaks as determined by the Comet assay. Formation of DNA adducts however could not be detected for any exposure conditions. Combined exposure to C(60) and fluoranthene additively enhanced the levels of DNA strand breaks along with a 2-fold increase in the total glutathione content. In addition, significant accumulation of C(60) was observed in all organs, with highest levels in digestive gland (24.90 ± 4.91μg C(60) g(-1) ww). Interestingly, clear signs of abnormalities in adductor muscle, digestive gland and gills were observed by histopathology. Clearance rates indicated significant differences compared to the control with exposure to C(60), and C(60)/fluoranthene combined treatments, but not after fluoranthene exposure alone. This study demonstrated that at the selected concentrations, both C(60) and fluoranthene evoke toxic responses and genetic damage. The combined exposure produced enhanced damage with additive rather than synergistic effects.
Collapse
Affiliation(s)
- Sherain N Al-Subiai
- School of Biomedical & Biological Sciences, Plymouth University, Plymouth, PL4 8AA, UK
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Carrasco Navarro V, Leppänen MT, Honkanen JO, Kukkonen JVK. Trophic transfer of pyrene metabolites and nonextractable fraction from Oligochaete (Lumbriculus variegatus) to juvenile brown trout (Salmo trutta). CHEMOSPHERE 2012; 88:55-61. [PMID: 22475154 DOI: 10.1016/j.chemosphere.2012.02.060] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2011] [Revised: 02/13/2012] [Accepted: 02/14/2012] [Indexed: 05/31/2023]
Abstract
The trophic transfer of pyrene metabolites was evaluated by a 2-month exposure of the freshwater annelid Lumbriculus variegatus (Oligochaeta) to pyrene, followed by feeding to juvenile brown trout (Salmo trutta). The results obtained by scintillation counting (SC) proved that the pyrene metabolites produced by L. variegatus were transferred to juvenile S. trutta through diet. More detailed analyses by LC-FLD (liquid chromatography with fluorescence detection) showed that an unknown pyrene metabolite originating from L. variegatus was present in fish liver. This metabolite, although yet not properly identified, may be the glucose conjugate of 1-hydroxy-pyrene. This metabolite was not present in chromatograms of fish that were fed pyrene-spiked food pellets. In addition, the strongly bound tissue residue of L. variegatus, which was nonextractable neither by organic solvents nor by the proteolytic enzyme Proteinase K, was most likely not available for the fish through diet. Altogether, the present study shows that the metabolites of pyrene produced at low levels of the food chain may be potentially available for upper levels through diet, raising a concern about their potential toxicity to predators and supporting their inclusion in the risk assessment of PAHs.
Collapse
Affiliation(s)
- V Carrasco Navarro
- Department of Biology, University of Eastern Finland, Joensuu Campus, FI-80101 Joensuu, Finland.
| | | | | | | |
Collapse
|
12
|
Catalano B, Moltedo G, Martuccio G, Gastaldi L, Virno-Lamberti C, Lauria A, Ausili A. Can Hediste diversicolor (Nereidae, Polychaete) be considered a good candidate in evaluating PAH contamination? A multimarker approach. CHEMOSPHERE 2012; 86:875-882. [PMID: 22119417 DOI: 10.1016/j.chemosphere.2011.10.040] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2011] [Revised: 10/18/2011] [Accepted: 10/24/2011] [Indexed: 05/31/2023]
Abstract
The aim of this study was to develop a preliminary characterization of the biological responses of Hediste diversicolor to polycyclic aromatic hydrocarbons (PAHs) under controlled laboratory conditions. In order to test the effects of PAH exposure, a battery of biomarkers was applied to the polychaetes by exposing them to sublethal concentrations of benzo[a]pyrene (0.1 and 0.5 mg L(-1)) for 10d under laboratory conditions. The battery of biomarkers tested included oxidative stress biomarkers (glutathione content, enzymatic activities of catalase, glutathione S-transferases, glutathione reductase, glutathione peroxidases), total oxyradical scavenging capacity (TOSC) toward peroxyl and hydroxyl radicals and activity of acyl CoA oxidase (AOX) as a marker of peroxisome proliferation measured in the entire body; lipofuscin and neutral lipid accumulations and levels of Ca(2+)-ATPase activity analyzed in the intestinal epithelium; lysosomal membrane stability and genotoxic effects measured as DNA strand breaks and frequency of micronuclei in coelomocytes. Chemical analyses were also carried out to verify the polychaete's benzo[a]pyrene (B[a]P) bioaccumulation levels after the exposure period. The results obtained indicate that B[a]P caused significant changes in most of the parameters measured in H. diversicolor. Biological responses to the organic compound were particularly significant for the biomarkers measured in the intestinal epithelium and in coelomocytes, emphasizing that these tissues were more affected during our experimental conditions. Considering the key trophic role of this benthic species in estuarine and coastal ecosystems, this study confirmed that H. diversicolor is an appropriate bioindicator of organic contamination.
Collapse
Affiliation(s)
- B Catalano
- ISPRA, Italian National Institute for Environmental Protection and Research, Via di Casalotti 300, 00166 Rome, Italy.
| | | | | | | | | | | | | |
Collapse
|
13
|
Tolerance and the Trophic Transfer of Contaminants. ACTA ACUST UNITED AC 2011. [DOI: 10.1201/b10519-16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
14
|
McElroy AE, Barron MG, Beckvar N, Driscoll SBK, Meador JP, Parkerton TF, Preuss TG, Steevens JA. A review of the tissue residue approach for organic and organometallic compounds in aquatic organisms. INTEGRATED ENVIRONMENTAL ASSESSMENT AND MANAGEMENT 2011; 7:50-74. [PMID: 21184569 DOI: 10.1002/ieam.132] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2010] [Revised: 03/24/2010] [Accepted: 08/02/2010] [Indexed: 05/24/2023]
Abstract
This paper reviews the tissue residue approach (TRA) for toxicity assessment as it applies to organic chemicals and some organometallic compounds (Sn, Hg, and Pb) in aquatic organisms. Specific emphasis was placed on evaluating key factors that influence interpretation of critical body residue (CBR) toxicity metrics including data quality issues, lipid dynamics, choice of endpoints, processes that alter toxicokinetics and toxicodynamics, phototoxicity, species- and life stage-specific sensitivities, and biotransformation. The vast majority of data available on TRA is derived from laboratory studies of acute lethal responses to organic toxicants exhibiting baseline toxicity. Application of the TRA to various baseline toxicants as well as substances with specific modes of action via receptor-mediated processes, such as chlorinated aromatic hydrocarbons, pesticides, and organometallics is discussed, as is application of TRA concepts in field assessments of tissue residues. In contrast to media-based toxicity relationships, CBR values tend to be less variable and less influenced by factors that control bioavailability and bioaccumulation, and TRA can be used to infer mechanisms of toxic action, evaluate the toxicity of mixtures, and interpret field data on bioaccumulated toxicants. If residue-effects data are not available, body residues can be estimated, as has been done using the target lipid model for baseline toxicants, to derive critical values for risk assessment. One of the primary unresolved issues complicating TRA for organic chemicals is biotransformation. Further work on the influence of biotransformation, a better understanding of contaminant lipid interactions, and an explicit understanding of the time dependency of CBRs and receptor-mediated toxicity are all required to advance this field. Additional residue-effects data on sublethal endpoints, early life stages, and a wider range of legacy and emergent contaminants will be needed to improve the ability to use TRA for organic and organometallic compounds.
Collapse
Affiliation(s)
- Anne E McElroy
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, New York 11794-5000, USA.
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Beach DG, Quilliam MA, Rouleau C, Croll RP, Hellou J. Bioaccumulation and biotransformation of pyrene and 1-hydroxypyrene by the marine whelk Buccinum undatum. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2010; 29:779-788. [PMID: 20821506 DOI: 10.1002/etc.112] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
The fates of a phenolic contaminant and its hydrocarbon precursor have rarely been compared, especially in an invertebrate species. Two groups of Buccinum undatum were exposed to equimolar amounts of pyrene and 1-hydroxypyrene over 15 d through their diets. Tissue extracts from the muscle and visceral mass were analyzed by liquid chromatography with fluorescence and mass spectrometry detection. Nine biotransformation products were detected in animals from both exposures. These included 1-hydroxypyrene, pyrene-1-sulfate, pyrene-1-glucuronide, pyrene glucose sulfate, two isomers each of pyrenediol sulfate and pyrenediol disulfate, and one isomer of pyrenediol glucuronide sulfate. These compounds represent a more complex metabolic pathway for pyrene than is typically reported. Diconjugated metabolites were as important in animals exposed to pyrene as in those exposed to 1-hydroxypyrene. Biotransformation products represented >90% of the material detected in the animals and highlight the importance of analyzing metabolites when assessing exposure. A mean of only 2 to 3% of the body burden was present in muscle compared with the visceral mass of both groups. The analytical methods were sufficiently sensitive to detect biotransformation products both in laboratory control whelks and in those sampled offshore. The tissue distribution of [(14)C]pyrene was also studied by autoradiography. Radioactivity was present primarily in the digestive and excretory system of the whelks and not in the gonads or muscle tissue.
Collapse
Affiliation(s)
- Daniel G Beach
- Department of Chemistry, Dalhousie University, Halifax, Nova Scotia, B3H 4R2 Canada
| | | | | | | | | |
Collapse
|
16
|
Aouadene A, Di Giorgio C, Sarrazin L, Moreau X, De Jong L, Garcia F, Thiery A, Botta A, De Méo M. Evaluation of the genotoxicity of river sediments from industrialized and unaffected areas using a battery of short-term bioassays. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2008; 49:283-99. [PMID: 18366096 DOI: 10.1002/em.20384] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The present investigation evaluated the capacity of the Salmonella mutagenicity test, the comet assay, and the micronucleus assay to detect and characterize the genotoxic profile of river sediments. Three stations were selected on an urban river (Bouches du Rhône, France) exposed to various sources of industrial and urban pollution (StA, StB, and StC) and one station on its tributary (StD). One station in a nonurban river was included (REF). The concentrations of 16 polycyclic aromatic hydrocarbons (PAHs) were determined by HPLC, and the genotoxicity of the sediments was monitored by the Salmonella mutagenicity test (TA98 + S9, YG1041 +/- S9), the comet assay, and the micronucleus assay on CHO cells. Chemical analysis showed that the total PAH concentrations ranged from 23 microg kg(-1) dw (REF) to 1285 microg kg(-1) dw (StD). All the sediments were mutagenic in the Salmonella mutagenicity test. The mutagenicity was probably induced by the presence of nitroarenes (StA, StB, StC, and StD) and aromatic amines (REF) as deduced from the mutagenicity profiles of strains YG1041 +/- S9 and TA98 + S9. The comet assay revealed direct DNA lesions in REF, StA, and StB sediments and metabolization-dependent DNA damage in StC and StD. The micronucleus assay showed an absence of clastogenicity for StA +/- S9 and StC-S9, and a significant clastogenicity +/- S9 for the three other stations. The genotoxicity ranking determined by the comet assay + S9 matched the ranking of total and carcinogenic PAH concentrations, and this assay was found to be the most sensitive.
Collapse
Affiliation(s)
- Assia Aouadene
- Laboratoire de Biogénotoxicologie et Mutagenèse Environnementale, Université de la Méditerranée, Facultés de Médecine et Pharmacie, Marseille, France
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Multifactorial optimization approach for the determination of polycyclic aromatic hydrocarbons in river sediments by gas chromatography-quadrupole ion trap selected ion storage mass spectrometry. J Chromatogr A 2008; 1192:273-81. [PMID: 18406414 DOI: 10.1016/j.chroma.2008.03.067] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2007] [Revised: 03/19/2008] [Accepted: 03/25/2008] [Indexed: 11/20/2022]
Abstract
A procedure for the determination of very low polycyclic aromatic hydrocarbons (PAHs) concentrations in sediment samples has been developed by gas chromatography-quadrupole ion trap mass spectrometry (GC-QIT MS) after extraction with dichloromethane and purification by using silica gel cleanup. Identification and quantification of analytes were based on the selected ion storage (SIS) strategy using deuterated PAHs as internal standards. In order to search out the main factors affecting the SIS mass spectrometry efficiency, four MS parameters, including target total ion count (TTIC), waveform amplitude (WA), transfer line (XLT) and ion trap temperatures (ITT) were subjected to a complete multifactorial design. The most relevant parameters obtained (TTIC and WA) were optimized by a rotatable and orthogonal composite design. Optimum values for these parameters were selected for the development of the method involving PAH determination in sediment samples. The optimized method exhibited a range of 111-760% higher signal-to-noise (S/N) ratios for PAHs in comparison with the method operated by the default conditions, demonstrating that the multifactorial optimization contributed to substantially improve the sensitivity of the GC-QIT MS determination. The accuracy of the method was verified by analyzing NWRI EC-3 certified reference material (Lake Ontario sediment). The selectivity, sensitivity (limits of quantification were in the range of 0.02-11.0 ng g(-1)), accuracy (recoveries >or=77%) and precision (RSD<or=30%) obtained were quite adequate for the determination of very low target PAHs in sediment samples. The established method was then applied to determine 16 PAHs in river sediments from the Metropolitan Region of Curitiba, Brazil. Two selected sediment samples were analyzed, one from the Canguiri River (a slightly urbanized area), and the other from the Iguaçu River (a heavily urbanized area), illustrating the capabilities of the method to detect PAHs at the threshold concentrations necessary to classify the sediments as well as the status of contamination.
Collapse
|
18
|
Jørgensen A, Giessing AMB, Rasmussen LJ, Andersen O. Biotransformation of polycyclic aromatic hydrocarbons in marine polychaetes. MARINE ENVIRONMENTAL RESEARCH 2008; 65:171-186. [PMID: 18023473 DOI: 10.1016/j.marenvres.2007.10.001] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2007] [Revised: 09/21/2007] [Accepted: 10/10/2007] [Indexed: 05/25/2023]
Abstract
Deposit-feeding polychaetes constitute the dominant macrofauna in marine environments that tend to be depositional centers for organic matter and contaminants. Polychaetes are known to accumulate polycyclic aromatic hydrocarbons (PAHs) from both particulate and dissolved phases but less is known about the mechanisms underlying elimination of accumulated PAHs. An important pathway of elimination is through biotransformation which results in increased aqueous solubility of the otherwise hydrophobic PAHs. Biotransformation in marine polychaetes proceeds in a two phased process similar to those well studied in vertebrates, phase I enzymes belonging to the Cytochrome P450 (CYP) enzyme family, along with a few phase II enzymes have been identified in marine polychaetes. In this review we aim at highlighting advances in the mechanistic understanding of PAH biotransformation in marine polychaetes by including data obtained using analytical chemistry and molecular techniques. In marine polychaetes induction of CYP enzyme activity after exposure to PAHs and the mechanism behind this is currently not well established. Conflicting results regarding the inducibility of CYP enzymes from polychaetes have led to the suggestion that induction in polychaetes is mediated through a different mechanistic pathway, which is corroborated by the apparent lack of an AhR homologous in marine polychaetes. Also, none of the currently identified CYP genes from marine polychaetes are isoforms of those regulated by the AhR in vertebrates. Relatively few studies of phase II enzymes in marine polychaetes are currently available and most of these studies have not measured the activity of specific phase II enzymes and identified phase II metabolites but used an extraction technique only allowing determination of the overall amount of phase II metabolites. Studies in insects and various marine invertebrates suggest that in invertebrates, enzymes in the important phase II enzyme family, UDP-glucuronosyl transferases primarily use glucoside as co-substrate as opposed to the vertebrate cosubstrate glucuronic acid. Recent studies in marine polychaetes have however identified glucuronidation of PAHs indicating no mechanistic difference in co-substrate preference among UDP-glucuronosyl transferases between vertebrates and marine polychaetes but it might suggest a mechanistic difference between marine polychaetes and insects.
Collapse
Affiliation(s)
- Anne Jørgensen
- Department of Science, Systems and Models, Roskilde University, Universitetsvej 1, DK-4000 Roskilde, Denmark.
| | | | | | | |
Collapse
|