1
|
Lammel T, Thit A, Cui X, Mouneyrac C, Baun A, Valsami-Jones E, Sturve J, Selck H. Dietary uptake and effects of copper in Sticklebacks at environmentally relevant exposures utilizing stable isotope-labeled 65CuCl 2 and 65CuO NPs. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 757:143779. [PMID: 33279190 DOI: 10.1016/j.scitotenv.2020.143779] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 11/04/2020] [Accepted: 11/06/2020] [Indexed: 06/12/2023]
Abstract
Copper oxide nanoparticles (CuO NPs) accumulating in sediment can be taken up by invertebrates that serve as prey for fish. Thus, it is likely that the latter are exposed to CuO NPs via the gut. However, to this day it is unknown if CuO NPs can be taken up via the gastrointestinal tract and if and in which tissues/organs they accumulate. To address this knowledge gap, we synthesized CuO NPs enriched in the stable isotope 65Cu and incorporated them at low concentration (5 μg 65Cu g-1 ww food) into a practical diet prepared from worm homogenate, which was then fed to Three-spined Stickleback (Gasterosteus aculeatus) for 16 days. For comparison, fish were exposed to a diet spiked with a 65CuCl2 solution. Background Cu and newly taken up 65Cu in fish tissues/organs including gill, stomach, intestine, liver, spleen, gonad and carcass and feces were quantified by ICP-MS. In addition, expression levels of genes encoding for proteins related to Cu uptake, detoxification and toxicity (ctr-1, gcl, gr, gpx, sod-1, cat, mta and zo-1) were measured in selected tissues using RT-qPCR. The obtained results showed that feces of fish fed 65CuO NP-spiked diet contained important amounts of 65Cu. Furthermore, there was no significant accumulation of 65Cu in any of the analyzed internal organs, though 65Cu levels were slightly elevated in liver. No significant modulation in gene expression was measured in fish exposed to 65CuO NP-spiked diet, except for metallothionein, which was significantly upregulated in intestinal tissue compared to control fish. Altogether, our results suggests that dietary absorption efficiency of CuO NPs, their uptake across the gastrointestinal barrier into the organism, and effects on Cu-related genes is limited at low, environmentally relevant exposure doses (0.2 μg 65Cu -1 fish ww day-1).
Collapse
Affiliation(s)
- Tobias Lammel
- Department of Science and Environment, Roskilde University, Denmark; Department of Biological and Environmental Sciences, University of Gothenburg, Sweden.
| | - Amalie Thit
- Department of Science and Environment, Roskilde University, Denmark
| | - Xianjin Cui
- School of Geography, Earth and Environmental Sciences, University of Birmingham, United Kingdom
| | | | - Anders Baun
- Department of Environmental Engineering, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
| | - Eugenia Valsami-Jones
- School of Geography, Earth and Environmental Sciences, University of Birmingham, United Kingdom
| | - Joachim Sturve
- Department of Biological and Environmental Sciences, University of Gothenburg, Sweden
| | - Henriette Selck
- Department of Science and Environment, Roskilde University, Denmark
| |
Collapse
|
2
|
Fitzgerald JA, Trznadel M, Katsiadaki I, Santos EM. Hypoxia modifies the response to flutamide and linuron in male three-spined stickleback (Gasterosteus aculeatus). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 263:114326. [PMID: 32247919 DOI: 10.1016/j.envpol.2020.114326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 02/11/2020] [Accepted: 03/03/2020] [Indexed: 06/11/2023]
Abstract
Hypoxia is a major stressor in aquatic environments and it is frequently linked with excess nutrients resulting from sewage effluent discharges and agricultural runoff, which often also contain complex mixtures of chemicals. Despite this, interactions between hypoxia and chemical toxicity are poorly understood. We exposed male three-spined stickleback during the onset of sexual maturation to a model anti-androgen (flutamide; 250 μg/L) and a pesticide with anti-androgenic activity (linuron; 250 μg/L), under either 97% or 56% air saturation (AS). We assessed the effects of each chemical, alone and in combination with reduced oxygen concentration, by measuring the transcription of spiggin in the kidney, as a marker of androgen signalling, and 11 genes in the liver involved in some of the molecular pathways hypothesised to be affected by the exposures. Spiggin transcription was strongly inhibited by flutamide under both AS conditions. In contrast, for linuron, a strong inhibition of spiggin was observed under 97% AS, but this effect was supressed under reduced air saturation, likely due to interactions between the hypoxia inducible factor and the aryl hydrocarbon receptor (AhR) pathways. In the liver, hypoxia inducible factor 1α was induced following exposure to both flutamide and linuron, however this was independent of the level of air saturation. This work illustrates the potential for interactions between hypoxia and pollutants with endocrine or AhR agonist activity to occur, with implications for risk assessment and management.
Collapse
Affiliation(s)
- Jennifer A Fitzgerald
- Biosciences, College of Life & Environmental Sciences, Geoffrey Pope Building, University of Exeter, Exeter, EX4 4QD, UK; Centre for Environment, Fisheries and Aquaculture Science, Barrack Road, The Nothe, Weymouth, Dorset, DT4 8UB, UK
| | - Maciej Trznadel
- Biosciences, College of Life & Environmental Sciences, Geoffrey Pope Building, University of Exeter, Exeter, EX4 4QD, UK
| | - Ioanna Katsiadaki
- Centre for Environment, Fisheries and Aquaculture Science, Barrack Road, The Nothe, Weymouth, Dorset, DT4 8UB, UK
| | - Eduarda M Santos
- Biosciences, College of Life & Environmental Sciences, Geoffrey Pope Building, University of Exeter, Exeter, EX4 4QD, UK; Sustainable Aquaculture Futures, University of Exeter, Exeter, EX4 4QD, UK.
| |
Collapse
|
3
|
Ankley GT, Coady KK, Gross M, Holbech H, Levine SL, Maack G, Williams M. A critical review of the environmental occurrence and potential effects in aquatic vertebrates of the potent androgen receptor agonist 17β-trenbolone. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2018; 37:2064-2078. [PMID: 29701261 PMCID: PMC6129983 DOI: 10.1002/etc.4163] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 04/14/2018] [Accepted: 04/25/2018] [Indexed: 05/25/2023]
Abstract
Trenbolone acetate is widely used in some parts of the world for its desirable anabolic effects on livestock. Several metabolites of the acetate, including 17β-trenbolone, have been detected at low nanograms per liter concentrations in surface waters associated with animal feedlots. The 17β-trenbolone isomer can affect androgen receptor signaling pathways in various vertebrate species at comparatively low concentrations/doses. The present article provides a comprehensive review and synthesis of the existing literature concerning exposure to and biological effects of 17β-trenbolone, with an emphasis on potential risks to aquatic animals. In vitro studies indicate that, although 17β-trenbolone can activate several nuclear hormone receptors, its highest affinity is for the androgen receptor in all vertebrate taxa examined, including fish. Exposure of fish to nanograms per liter water concentrations of 17β-trenbolone can cause changes in endocrine function in the short term, and adverse apical effects in longer exposures during development and reproduction. Impacts on endocrine function typically are indicative of inappropriate androgen receptor signaling, such as changes in sex steroid metabolism, impacts on gonadal stage, and masculinization of females. Exposure of fish to 17β-trenbolone during sexual differentiation in early development can greatly skew sex ratios, whereas adult exposures can adversely impact fertility and fecundity. To fully assess ecosystem-level risks, additional research is warranted to address uncertainties as to the degree/breadth of environmental exposures and potential population-level effects of 17β-trenbolone in sensitive species. Environ Toxicol Chem 2018;37:2064-2078. Published 2018 Wiley Periodicals Inc. on behalf of SETAC. This article is a US government work and, as such, is in the public domain in the United States of America.
Collapse
Affiliation(s)
- Gerald T. Ankley
- US Environmental Protection Agency, Office or Research and Development, Duluth, MN, USA
| | - Katherine K. Coady
- The Dow Chemical Company, Toxicology and Environmental Research and Consulting, Midland, MI, USA
| | | | - Henrik Holbech
- Department of Biology, University of Southern Denmark, Odense M, Denmark
| | | | - Gerd Maack
- German Environment Agency (UBA), Dessau-Roβlau, Germany
| | | |
Collapse
|
4
|
Hou LP, Shu H, Lin LL, Xu SY, Wu YX, Rong XJ, Hu JJ, Song LY, Liang YQ, Chen HX, Ying GG, Tian CE. Modulation of transcription of genes related to the hypothalamic-pituitary-gonadal and the hypothalamic-pituitary-adrenal axes in zebrafish (Danio rerio) embryos/larvae by androstenedione. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 156:403-408. [PMID: 29587208 DOI: 10.1016/j.ecoenv.2018.03.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2017] [Revised: 03/01/2018] [Accepted: 03/01/2018] [Indexed: 06/08/2023]
Abstract
This study aimed to determine the effects of Androstenodione (AED) on the transcriptional expression of genes involved in the hypothalamic-pituitary-gonadal (HPG) and the hypothalamic-pituitary-adrenal (HPA) axes in the zebrafish embryos/larvae. Zebrafish embryos were exposed to 0, 4.0, 45.0, 487.0, and 980.0 ng/L of AED from the day of fertilization to 144 h post fertilization (hpf), during which the transcriptional profiles of key genes related to the HPG and HPA axes were examined daily using quantitative real-time PCR. The AED exposure significantly up-regulated several receptor signaling pathways and the key genes involved in various steps of the steroidogenic pathways were also affected. In addition, the AED exposure could significantly modulate the transcriptional profiles of the other target genes related to hypothalamic and pituitary hormones. The findings of this study suggest that AED, at environmentally relevant concentrations, affects the adrenal endocrine systems and the reproduction of zebrafish by interrupting the HPG and HPA axes.
Collapse
Affiliation(s)
- Li-Ping Hou
- School of Life Sciences, Guangzhou University, Guangzhou 510655, PR China
| | - Hu Shu
- School of Life Sciences, Guangzhou University, Guangzhou 510655, PR China.
| | - Le-le Lin
- School of Life Sciences, Guangzhou University, Guangzhou 510655, PR China
| | - Si-Yuan Xu
- School of Life Sciences, Guangzhou University, Guangzhou 510655, PR China
| | - Yan-Xia Wu
- School of Life Sciences, Guangzhou University, Guangzhou 510655, PR China
| | - Xiu-Jun Rong
- School of Life Sciences, Guangzhou University, Guangzhou 510655, PR China
| | - Jun-Jie Hu
- School of Life Sciences, Guangzhou University, Guangzhou 510655, PR China
| | - Li-Ying Song
- School of Life Sciences, Guangzhou University, Guangzhou 510655, PR China
| | - Yan-Qiu Liang
- Faculty of Chemistry and Environmental Science, Guangdong Ocean University, Zhanjian 524088, PR China
| | - Hong-Xing Chen
- The Environmental Research Institute, Key Laboratory of Environmental Theoretical Chemistry, South China Normal University, Guangzhou 510006, PR China
| | - Guang-Guo Ying
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, PR China; The Environmental Research Institute, Key Laboratory of Environmental Theoretical Chemistry, South China Normal University, Guangzhou 510006, PR China
| | - Chang-En Tian
- School of Life Sciences, Guangzhou University, Guangzhou 510655, PR China.
| |
Collapse
|
5
|
Näslund J, Fick J, Asker N, Ekman E, Larsson DGJ, Norrgren L. Diclofenac affects kidney histology in the three-spined stickleback (Gasterosteus aculeatus) at low μg/L concentrations. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2017; 189:87-96. [PMID: 28601012 DOI: 10.1016/j.aquatox.2017.05.017] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 05/23/2017] [Accepted: 05/28/2017] [Indexed: 06/07/2023]
Abstract
Diclofenac, a commonly used non-steroidal anti-inflammatory drug, is considered for regulation under the European water framework directive. This is because effects on fish have been reported at concentrations around those regularly found in treated sewage effluents (∼1μg/L). However, a recent publication reports no effects on fish at 320μg/L. In this study, three-spined sticklebacks (Gasterosteus aculeatus) were exposed to 0, 4.6, 22, 82 and 271μg/L diclofenac in flow-through systems for 28days using triplicate aquaria per concentration. At the highest concentration, significant mortalities were observed already after 21days (no mortalities found up to 22μg/L). Histological analysis revealed a significant increase in the proportion of renal hematopoietic tissue (renal hematopoietic hyperplasia) after 28days at the lowest concentration and at all higher concentrations, following a clear dose-response pattern. Skin ulcerations of the jaw were noted by macroscopic observations, primarily at the two highest concentrations. No histological changes were observed in the liver. There was an increase in the relative hepatic mRNA levels of c7 (complement component 7), a gene involved in the innate immune system, at 22μg/L and at all higher concentrations, again following a clear dose-response. The bioconcentration factor was stable across concentrations, but lower than reported for rainbow trout, suggesting lower internal exposure to the drug in the stickleback. In conclusion, this study demonstrates that diclofenac causes histological changes in the three-spined stickleback at low μg/L concentrations, which cause concern for fish populations exposed to treated sewage effluents.
Collapse
Affiliation(s)
- Johanna Näslund
- Section of Pathology, Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, Uppsala, Sweden.
| | - Jerker Fick
- Department of Chemistry, Umeå University, Umeå, Sweden
| | - Noomi Asker
- Department of Biological and Environmental Sciences, University of Gothenburg, Göteborg, Sweden
| | - Elisabet Ekman
- Section of Pathology, Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - D G Joakim Larsson
- Department of Infectious Diseases, Institute of Biomedicine, The Sahlgrenska Academy at the University of Gothenburg, Göteborg, Sweden
| | - Leif Norrgren
- Section of Pathology, Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, Uppsala, Sweden
| |
Collapse
|
6
|
Marlatt VL, Martyniuk CJ. Biological responses to phenylurea herbicides in fish and amphibians: New directions for characterizing mechanisms of toxicity. Comp Biochem Physiol C Toxicol Pharmacol 2017; 194:9-21. [PMID: 28109972 DOI: 10.1016/j.cbpc.2017.01.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Revised: 01/11/2017] [Accepted: 01/13/2017] [Indexed: 12/19/2022]
Abstract
Urea-based herbicides are applied in agriculture to control broadleaf and grassy weeds, acting to either inhibit photosynthesis at photosystem II (phenylureas) or to inhibit acetolactate synthase acetohydroxyacid synthase (sulfonylureas). While there are different chemical formulas for urea-based herbicides, the phenylureas are a widely used class in North America and have been detected in aquatic environments due to agricultural run-off. Here, we summarize the current state of the literature, synthesizing data on phenylureas and their biological effects in two non-target animals, fish and amphibians, with a primary focus on diuron and linuron. In fish, although the acutely lethal effects of diuron in early life stages appear to be >1mg/L, recent studies measuring sub-lethal behavioural and developmental endpoints suggest that diuron causes adverse effects at lower concentrations (i.e. <0.1mg/L). Considerably less toxicity data exist for amphibians, and this is a knowledge gap in the literature. In terms of sub-lethal effects and mode of action (MOA), linuron is well documented to have anti-androgenic effects in vertebrates, including fish. However, there are other MOAs that are not adequately assessed in toxicology studies. In order to identify additional potential MOAs, we conducted in silico analyses for linuron and diuron that were based upon transcriptome studies and chemical structure-function relationships (i.e. ToxCast™, Prediction of Activity Spectra of Substances). Based upon these analyses, we suggest that steroid biosynthesis, cholesterol metabolism and pregnane X receptor activation are common targets, and offer some new endpoints for future investigations of phenylurea herbicides in non-target animals.
Collapse
Affiliation(s)
- Vicki L Marlatt
- Department of Biological Sciences, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia, Canada.
| | - Christopher J Martyniuk
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, UF Genetics Institute, College of Veterinary Medicine, University of Florida, Gainesville, FL 326111, USA; Canadian Rivers Institute, Canada
| |
Collapse
|
7
|
Kumar G, Denslow ND. Gene Expression Profiling in Fish Toxicology: A Review. REVIEWS OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2017; 241:1-38. [PMID: 27464848 DOI: 10.1007/398_2016_10] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
In this review, we present an overview of transcriptomic responses to chemical exposures in a variety of fish species. We have discussed the use of several molecular approaches such as northern blotting, differential display reverse transcription-polymerase chain reaction (DDRT-PCR), suppression subtractive hybridization (SSH), real time quantitative PCR (RT-qPCR), microarrays, and next-generation sequencing (NGS) for measuring gene expression. These techniques have been mainly used to measure the toxic effects of single compounds or simple mixtures in laboratory conditions. In addition, only few studies have been conducted to examine the biological significance of differentially expressed gene sets following chemical exposure. Therefore, future studies should focus more under field conditions using a multidisciplinary approach (genomics, proteomics and metabolomics) to understand the synergetic effects of multiple environmental stressors and to determine the functional significance of differentially expressed genes. Nevertheless, recent developments in NGS technologies and decreasing costs of sequencing holds the promise to uncover the complexity of anthropogenic impacts and biological effects in wild fish populations.
Collapse
Affiliation(s)
- Girish Kumar
- Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, University of South Bohemia in Ceske Budejovice, Zátiší 728/II, 389 25, Vodňany, Czech Republic.
| | - Nancy D Denslow
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, University of Florida, Gainesville, FL, 32611, USA
| |
Collapse
|
8
|
Rivero-Wendt CLG, Oliveira R, Monteiro MS, Domingues I, Soares AMVM, Grisolia CK. Steroid androgen 17α-methyltestosterone induces malformations and biochemical alterations in zebrafish embryos. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2016; 44:107-113. [PMID: 27137108 DOI: 10.1016/j.etap.2016.04.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Revised: 04/20/2016] [Accepted: 04/23/2016] [Indexed: 06/05/2023]
Abstract
The synthetic androgen 17α-methyltestosterone is widely used in fish aquaculture for sex reversion of female individuals. Little is known about the amount of MT residues reaching the aquatic environment and further impacts in non-target organisms, including fish early-life stages. Thus, in this work, zebrafish embryos were exposed to two forms of 17α-methyltestosterone: the pure compound (MT) and a formulation commonly used in Brazil (cMT). For MT, a 96h-LC50 of 10.09mg/l was calculated. MT also affected embryo development inducing tail malformations, edemas, abnormal development of the head, and hatching delay. At biochemical level MT inhibited vitellogenin (VTG) and inhibited cholinesterase and lactate dehydrogenase. cMT elicited similar patterns of toxicity as the pure compound (MT). Effects reported in this study suggest a potential environmental risk of MT, especially since the VTG effects occurred at environmental relevant concentrations (0.004mg/l).
Collapse
Affiliation(s)
- Carla Letícia Gediel Rivero-Wendt
- Departament of Biology, University Anhanguera-Uniderp, Campus Agrárias, R. Alexandre Herculano, 1400, Taquaral Bosque, CEP 79035-470 Campo Grande, MS, Brazil; Department of Genetics and Morphology, Institute of Biological Sciences, University of Brasília, Asa Norte, CEP 70910-900 Brasília, DF, Brazil.
| | - Rhaul Oliveira
- Department of Genetics and Morphology, Institute of Biological Sciences, University of Brasília, Asa Norte, CEP 70910-900 Brasília, DF, Brazil.
| | - Marta Sofia Monteiro
- Department of Biology & CESAM, University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal.
| | - Inês Domingues
- Department of Biology & CESAM, University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal.
| | - Amadeu Mortágua Velho Maia Soares
- Department of Biology & CESAM, University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal; Programa de Pós-Graduação em Produção Vegetal, Universidade Federal do Tocantins, Campus de Gurupi. Rua Badejós, Zona Rural, Cx. Postal 66, CEP 77402-970 Gurupi, TO, Brazil.
| | - Cesar Koppe Grisolia
- Department of Genetics and Morphology, Institute of Biological Sciences, University of Brasília, Asa Norte, CEP 70910-900 Brasília, DF, Brazil.
| |
Collapse
|
9
|
Population-specific renal proteomes of marine and freshwater three-spined sticklebacks. J Proteomics 2016; 135:112-131. [DOI: 10.1016/j.jprot.2015.10.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2015] [Revised: 09/16/2015] [Accepted: 10/02/2015] [Indexed: 12/20/2022]
|
10
|
Muldoon BM, Hogan NS. Biomarker responses to estrogen and androgen exposure in the brook stickleback (Culaea inconstans): A new bioindicator species for endocrine disrupting compounds. Comp Biochem Physiol C Toxicol Pharmacol 2016; 180:1-10. [PMID: 26545489 DOI: 10.1016/j.cbpc.2015.10.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Revised: 10/01/2015] [Accepted: 10/01/2015] [Indexed: 10/22/2022]
Abstract
Small-bodied freshwater fish are commonly used in regulatory testing for endocrine disrupting compounds (EDCs) but most lack a sensitive and quantifiable androgen-specific biomarker. Brook stickleback (Culaea inconstans) are a North American freshwater fish whose males produce an androgen-regulated glycoprotein in the kidney called spiggin. Although spiggin induction in females has been used as an androgen-specific biomarker of exposure in other stickleback species it has not been characterized in brook stickleback. Therefore, our objective was to develop a bioassay using brook stickleback to measure estrogenic and androgenic responses and establish the sensitivity of traditional and novel biomarkers of exposure. We first developed and optimized a qPCR assay to measure spiggin and vitellogenin transcript levels in kidney and liver tissue, respectively. Basal levels were differentially expressed in mature wild-caught male and female brook stickleback. To determine their sensitivity to EDCs, fish were exposed to nominal concentrations of 1, 10 and 100ng/L of 17α-methyltestosterone (MT) or 17α-ethinylestradiol (EE2) for 21days (sampled at 7 and 21days) under semi-static renewal conditions. MT and EE2 exposure induced spiggin and vitellogenin transcripts in female kidneys and male livers, respectively. Exposure to EE2 also increased hepatosomatic index in both sexes and decreased gonadosomatic index in females. Histopathological alterations were observed in the kidney of EE2-exposed fish and an increase in kidney epithelium cell height occurred in MT-exposed females. Given the sensitivity of these endpoints, the brook stickleback is a promising new freshwater fish model for EDC evaluation and a potential bioindicator for EDCs in North American freshwater environments.
Collapse
Affiliation(s)
- Breda M Muldoon
- Toxicology Graduate Program, University of Saskatchewan, Saskatoon, SK S7N 5B3, Canada; Department of Animal and Poultry Science, University of Saskatchewan, Saskatoon, SK S7N 5A8, Canada
| | - Natacha S Hogan
- Toxicology Centre, University of Saskatchewan, Saskatoon, SK S7N 5B3, Canada; Department of Animal and Poultry Science, University of Saskatchewan, Saskatoon, SK S7N 5A8, Canada.
| |
Collapse
|
11
|
PAITZ RYANTHOMAS, MOMMER BRETTCHRISTIAN, SUHR ELISSA, BELL ALISONMARIE. Changes in the concentrations of four maternal steroids during embryonic development in the threespined stickleback (Gasterosteus aculeatus). JOURNAL OF EXPERIMENTAL ZOOLOGY. PART A, ECOLOGICAL GENETICS AND PHYSIOLOGY 2015; 323:422-9. [PMID: 26036752 PMCID: PMC5977982 DOI: 10.1002/jez.1937] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Revised: 03/12/2015] [Accepted: 04/09/2015] [Indexed: 11/07/2022]
Abstract
Embryonic exposure to steroids often leads to long-term phenotypic effects. It has been hypothesized that mothers may be able to create a steroid environment that adjusts the phenotypes of offspring to current environmental conditions. Complicating this hypothesis is the potential for developing embryos to modulate their early endocrine environment. This study utilized the threespined stickleback (Gasterosteus aculeatus) to characterize the early endocrine environment within eggs by measuring four steroids (progesterone, testosterone, estradiol, and cortisol) of maternal origin. We then examined how the concentrations of these four steroids changed over the first 12 days post fertilization (dpf). Progesterone, testosterone, estradiol, and cortisol of maternal origin could be detected within unfertilized eggs and levels of all four steroids declined in the first 3 days following fertilization. While levels of progesterone, testosterone, and estradiol remained low after the initial decline, levels of cortisol rose again by 8 dpf. These results demonstrate that G. aculeatus embryos begin development in the presence of a number of maternal steroids but levels begin to change quickly following fertilization. This suggests that embryonic processes change the early endocrine environment and hence influence the ability of maternal steroids to affect development. With these findings, G. aculeatus becomes an intriguing system in which to study how selection may act on both maternal and embryonic processes to shape the evolutionary consequence of steroid-mediated maternal effects.
Collapse
Affiliation(s)
- RYAN THOMAS PAITZ
- School of Integrative Biology, Carl R. Woese Institute for Genomic Biology, University of Illinois, Urbana, Illinois
- School of Biological Sciences, Illinois State University, Normal, Illinois
| | - BRETT CHRISTIAN MOMMER
- School of Integrative Biology, Carl R. Woese Institute for Genomic Biology, University of Illinois, Urbana, Illinois
- GIGA Neurosciences, University of Liege, Li ege, Belgium
| | - ELISSA SUHR
- School of Integrative Biology, Carl R. Woese Institute for Genomic Biology, University of Illinois, Urbana, Illinois
| | - ALISON MARIE BELL
- School of Integrative Biology, Carl R. Woese Institute for Genomic Biology, University of Illinois, Urbana, Illinois
| |
Collapse
|
12
|
Liang YQ, Huang GY, Ying GG, Liu SS, Jiang YX, Liu S, Peng FJ. The effects of progesterone on transcriptional expression profiles of genes associated with hypothalamic-pituitary-gonadal and hypothalamic-pituitary-adrenal axes during the early development of zebrafish (Danio rerio). CHEMOSPHERE 2015; 128:199-206. [PMID: 25706437 DOI: 10.1016/j.chemosphere.2015.01.062] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2014] [Revised: 01/30/2015] [Accepted: 01/30/2015] [Indexed: 06/04/2023]
Abstract
Progesterone (P4) has been reported in surface water, and it may have adverse effects on aquatic organisms. This study provided the transcriptional effects of P4 during the early development of zebrafish. Zebrafish embryos were exposed for 144 h post fertilization (hpf) to 0, 6, 45 and 90 ng L(-1) P4, and transcriptional expression profiles of the hypothalamic-pituitary-gonadal (HPG) and hypothalamic-pituitary-adrenal (HPA) axes were assessed every day. For the receptor signaling pathways, P4 significantly induced the transcript of Pgr gene above 45 ng L(-1) at 72 and 144 hpf, but inhibited its transcript above 6 ng L(-1) at 96 and 120 hpf. A significant up-regulation of Vtg1 mRNA was observed at 6 ng L(-1) P4 or higher at 24, 96 and 144 hpf. For the steroidogenic pathways, the transcriptional expression of Cyp11a1 and Hsd17b3 mRNAs was mediated by 6 ng L(-1) P4 or higher according to different exposure time points. In addition, P4 resulted in a significant induction of Cyp19a1a and Cyp11b mRNA expression while it caused a significant inhibition of Hsd11b2 mRNA expression above 6 ng L(-1). For the other target genes related to hypothalamic and pituitary hormones, P4 mainly modulated the transcripts of Gnrh2, Fshb and Lhb genes at 6 ng L(-1) or higher. The overall results from the present study indicate that P4 at environmentally relevant concentrations could cause the potential effects on zebrafish reproductive and adrenal endocrine systems by interfering with the HPG and HPA axes.
Collapse
Affiliation(s)
- Yan-Qiu Liang
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Guo-Yong Huang
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Guang-Guo Ying
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China.
| | - Shuang-Shuang Liu
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Yu-Xia Jiang
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Shan Liu
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; Key Laboratory of Marine Bio-Resources Sustainable Utilization, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Feng-Jiao Peng
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| |
Collapse
|
13
|
Svensson J, Fick J, Brandt I, Brunström B. Environmental concentrations of an androgenic progestin disrupts the seasonal breeding cycle in male three-spined stickleback (Gasterosteus aculeatus). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2014; 147:84-91. [PMID: 24378470 DOI: 10.1016/j.aquatox.2013.12.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Revised: 12/02/2013] [Accepted: 12/10/2013] [Indexed: 06/03/2023]
Abstract
Synthetic steroid hormones from contraceptive pharmaceuticals have become global aquatic contaminants. Progestins, the synthetic analogs to progesterone, are receiving increasing attention as contaminants and have been shown to impair reproduction in fish and amphibians at low ng L(-1) concentrations. Certain progestins, such as levonorgestrel have androgenic properties and seem to be several orders of magnitude more potent in terms of reproductive impairment in fish than non-androgenic progestins and progestagens. We recently reported that levonorgestrel has strong androgenic effects in female three-spined sticklebacks (Gasterosteus aculeatus), including induction of the normally male-specific glue protein spiggin and suppression of vitellogenesis. In light of this we investigated if exposure to levonorgestrel could disrupt the highly androgen-dependent seasonal reproductive cycle in male sticklebacks. Male sticklebacks that were in the final stage of a breeding period were exposed to various concentrations of levonorgestrel for six weeks in winter conditions in terms of light and temperature, after which reproductive status was evaluated from gross morphology, histology and key gene transcript levels. During the experimental period the controls had transitioned from full breeding condition into the non-breeding state, including regression of secondary sex characteristics, cessation of spiggin production in the kidney, and resumption of spermatogenesis in the testes. This is ascribed to the natural drop in plasma androgen levels after breeding. However, in the groups concurrently exposed to levonorgestrel, transition to the non-breeding condition was dose-dependently inhibited. Our results show that levonorgestrel can disrupt the seasonal breeding cycle in male sticklebacks. The fitness costs of such an effect could be detrimental to natural stickleback populations. Some effects occurred at a levonorgestrel concentration of 6.5 ng L(-1), well within the range of levonorgestrel levels in surface waters and may therefore occur in progestin-contaminated waters. Furthermore, the effects by levonorgestrel in the present study were likely mediated mainly by its androgenic activity, and the low concentration at which they occurred makes levonorgestrel one of the most potent androgenic contaminants known.
Collapse
Affiliation(s)
- Johan Svensson
- Department of Environmental Toxicology, Uppsala University, Norbyvägen 18A, SE-75 236 Uppsala, Sweden.
| | - Jerker Fick
- Department of Chemistry, Umeå University, Linnaeus väg 6, SE-90 187 Umeå, Sweden
| | - Ingvar Brandt
- Department of Environmental Toxicology, Uppsala University, Norbyvägen 18A, SE-75 236 Uppsala, Sweden
| | - Björn Brunström
- Department of Environmental Toxicology, Uppsala University, Norbyvägen 18A, SE-75 236 Uppsala, Sweden
| |
Collapse
|
14
|
Svensson J, Fick J, Brandt I, Brunström B. The synthetic progestin levonorgestrel is a potent androgen in the three-spined stickleback (Gasterosteus aculeatus). ENVIRONMENTAL SCIENCE & TECHNOLOGY 2013; 47:2043-2051. [PMID: 23362984 DOI: 10.1021/es304305k] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The use of progestins has resulted in contamination of aquatic environments and some progestins have in experimental studies been shown to impair reproduction in fish and amphibians at low ng L(-1) concentrations. The mechanisms underlying their reproductive toxicity are largely unknown. Some progestins, such as levonorgestrel (LNG), exert androgenic effects in mammals by activating the androgen receptor (AR). Male three-spined stickleback (Gasterosteus aculeatus) kidneys produce spiggin, a gluelike glycoprotein used in nest building, and its production is directly governed by androgens. Spiggin is normally absent in females but its production in female kidneys can be induced by AR agonists. Spiggin serves as the best known biomarker for androgens in fish. We exposed adult female sticklebacks to LNG at 5.5, 40, and 358 ng L(-1) for 21 days. Androgenic effects were found at LNG concentrations ≥40 ng L(-1) including induction of spiggin transcription, kidney hypertrophy, and suppressed liver vitellogenin transcription. These are the first in vivo quantitative data showing that LNG is a potent androgen in fish supporting the contention that androgenic effects of certain progestins contribute to their reproductive toxicity.
Collapse
Affiliation(s)
- Johan Svensson
- Department of Environmental Toxicology, Uppsala University, Norbyvägen 18A, SE-75 236 Uppsala, Sweden.
| | | | | | | |
Collapse
|
15
|
Hogan NS, Gallant MJ, van den Heuvel MR. Exposure to the pesticide linuron affects androgen-dependent gene expression in the three-spined stickleback (Gasterosteus aculeatus). ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2012; 31:1391-1395. [PMID: 22514014 DOI: 10.1002/etc.1815] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2011] [Revised: 01/12/2012] [Accepted: 02/20/2012] [Indexed: 05/31/2023]
Abstract
Previous research demonstrated that exposure to exogenous androgens and effluents with androgenic activity can induce spiggin mRNA production in the kidney of the three-spined stickleback (Gasterosteus aculeatus). In the present study, we determine whether a short-term exposure to a known antiandrogenic pesticide, linuron (LN), suppresses spiggin mRNA in male stickleback and in androgenized female stickleback. Primers were designed from previously characterized sequences for each androgen receptor (AR) isoform in stickleback, arα and arβ, to assess whether these receptors are differentially regulated by androgen or antiandrogen exposure. Fish were exposed for 72 h to one of four treatments: control, LN (250 µg/L), 17α-methyltestosterone (MT, 500 ng/L), and an LN-MT mixture at those same concentrations. There was no effect of LN on spiggin and arβ mRNA levels in male kidney, while levels of arα were significantly increased twofold. Exposure to LN significantly inhibited MT-induced spiggin RNA production in female kidney with no effect on expression of arα and arβ. The present study is the first to demonstrate the antiandrogenic effect of LN at the transcript level and to examine androgenic/antiandrogenic responsiveness of the two ARs in the stickleback. From the present study, it was determined that measurement of spiggin RNA is a reliable and sensitive screening tool for the detection of both androgenic and antiandrogenic compounds.
Collapse
Affiliation(s)
- Natacha S Hogan
- Canadian Rivers Institute, Department of Biology, University of Prince Edward Island, Charlottetown, Prince Edward Island, Canada.
| | | | | |
Collapse
|
16
|
Hoffmann E, Walstad A, Karlsson J, Olsson PE, Borg B. Androgen receptor-beta mRNA levels in different tissues in breeding and post-breeding male and female sticklebacks, Gasterosteus aculeatus. Reprod Biol Endocrinol 2012; 10:23. [PMID: 22455382 PMCID: PMC3358246 DOI: 10.1186/1477-7827-10-23] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2011] [Accepted: 03/28/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Androgens induce male characters by activating androgen receptors (AR). Previous quantitative studies on AR in fishes have been limited to few tissues and/or a single season/reproductive state. The aim of this investigation was to study the possible role of AR-beta expression levels in the control of male traits in the three-spined stickleback. To that end, AR-beta expression levels in major tissues in breeding and post-breeding male and female sticklebacks were examined. METHODS AR-beta mRNA levels were quantified in ten tissues; eye, liver, axial muscle, heart, brain, intestine, ovary, testis, kidney and pectoral muscle in six breeding and post-breeding males and females using reverse transcription quantitative PCR. RESULTS Breeding in contrast to post-breeding males built nests and showed secondary sexual characters (e.g. kidney hypertrophy) and elevated androgen levels. Post-breeding females had lower ovarian weights and testosterone levels than breeding females. AR-beta was expressed in all studied tissues in both sexes and reproductive states with the highest expression in the gonads and in the kidneys. The kidney is an androgen target organ in sticklebacks, from which breeding males produce the protein spiggin, which is used in nest-building. There was also high AR-beta expression in the intestine, an organ that appears to take over hyperosmo-regulation in fresh water when the kidney hypertrophies in mature males and largely loses this function. The only tissue that showed effects of sex or reproductive state on AR-beta mRNA levels was the kidneys, where post-breeding males displayed higher AR-beta mRNA levels than breeding males. CONCLUSION The results indicate that changes in AR-beta mRNA levels play no or little role in changes in androgen dependent traits in the male stickleback.
Collapse
Affiliation(s)
- Erik Hoffmann
- Department of Zoology, Stockholm University, S-106 91 Stockholm, Sweden
| | - Anders Walstad
- School of Science and Technology, Örebro Life Science Center, Örebro University, SE-701 82 Örebro, Sweden
| | - Johnny Karlsson
- School of Science and Technology, Örebro Life Science Center, Örebro University, SE-701 82 Örebro, Sweden
| | - Per-Erik Olsson
- School of Science and Technology, Örebro Life Science Center, Örebro University, SE-701 82 Örebro, Sweden
| | - Bertil Borg
- Department of Zoology, Stockholm University, S-106 91 Stockholm, Sweden
| |
Collapse
|
17
|
Katsiadaki I, Williams TD, Ball JS, Bean TP, Sanders MB, Wu H, Santos EM, Brown MM, Baker P, Ortega F, Falciani F, Craft JA, Tyler CR, Viant MR, Chipman JK. Hepatic transcriptomic and metabolomic responses in the Stickleback (Gasterosteus aculeatus) exposed to ethinyl-estradiol. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2010; 97:174-187. [PMID: 19665239 DOI: 10.1016/j.aquatox.2009.07.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2009] [Revised: 07/09/2009] [Accepted: 07/10/2009] [Indexed: 05/28/2023]
Abstract
An established three-spined stickleback (Gasterosteus aculeatus) cDNA array was expanded to 14,496 probes with the addition of hepatic clones derived from subtractive and normalized libraries from control males and males exposed to model toxicants. Microarrays and one-dimensional (1)H nuclear magnetic resonance (NMR) spectroscopy, together with individual protein and gene biomarkers were employed to investigate the hepatic responses of the stickleback to ethinyl-estradiol (EE(2)) exposure. Male fish were exposed via the water to EE(2), including environmentally relevant concentrations (0.1-100ng/l) for 4 days, and hepatic transcript and metabolite profiles, kidney spiggin protein and serum vitellogenin concentrations were determined in comparison to controls. EE(2) exposure did not significantly affect spiggin concentration but significantly induced serum vitellogenin protein at the threshold concentration of 32ng/l. (1)H NMR coupled with robust univariate testing revealed only limited changes, but these did support the predicted modulation of the amino acid profile by transcriptomics. Transcriptional induction was found for hepatic vitellogenins and choriogenins as expected, together with a range of other EE(2)-responsive genes. Choriogenins showed the more sensitive responses with statistically significant induction at 10ng/l. Real-time polymerase chain reaction (PCR) confirmed transcriptional induction of these genes. Phosvitinless vitellogenin C transcripts were highly expressed and represent a major form of the egg yolk precursors, and this is in contrast to other fish species where it is a minor component of vitellogenic transcripts. Differences in inducibility between the vitellogenins and choriogenins appear to be in accordance with the sequential formation of chorion and yolk during oogenesis in fish.
Collapse
Affiliation(s)
- Ioanna Katsiadaki
- Centre for Environment, Fisheries and Aquaculture Science, Cefas Weymouth Laboratory, Weymouth, Dorset, UK.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|