1
|
Li X, Zhou M, Shi F, Meng B, Liu J, Mi Y, Dong C, Su H, Liu X, Wang F, Wei Y. Influence of arbuscular mycorrhizal fungi on mercury accumulation in rice (Oryza sativa L.): From enriched isotope tracing perspective. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 255:114776. [PMID: 36931088 DOI: 10.1016/j.ecoenv.2023.114776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 03/10/2023] [Accepted: 03/12/2023] [Indexed: 06/18/2023]
Abstract
The microorganisms that co-exist between soil and rice systems in heavy metal-contaminated soil environments play important roles in the heavy metal pollution states of rice, as well as in the growth of the rice itself. In this study, in order to further examine the effects of soil microorganisms on the mercury (Hg) uptake of rice plants and determine potential soil phytoremediation agents, an enriched 199Hg isotope was spiked in a series of pot experiments to trace the absorption and migration of Hg and rice growth in the presence of arbuscular mycorrhizal fungi (AMF). It was observed that the AMF inoculations significantly reduced the Hg concentration in the rice. The Hg concentration in rice in the AMF inoculation group was between 52.82% and 96.42% lower than that in the AMF non-inoculation group. It was also interesting to note that the presence of AMF tended to cause Hg (especially methyl-Hg (Me199Hg)) to migrate and accumulate in the non-edible parts of the rice, such as the stems and leaves. Under the experimental conditions selected in this study, the proportion of Me199Hg in rice grains decreased from 9.91% to 27.88%. For example, when the exogenous Hg concentration was 0.1 mg/kg, the accumulated methyl-Hg content in the grains of the rice in the AMF inoculation group accounted for only 20.19% of the Me199Hg content in the rice plants, which was significantly lower than that observed in the AMF non-inoculated group (48.07%). AMF also inhibited the absorption of Hg by rice plants, and the decrease in the Hg concentration levels in rice resulted in significant improvements in growth indices, including biomass and micro-indexes, such as antioxidant enzyme activities. The improvements occurred mainly because the AMF formed symbiotic structures with the roots of rice plants, which fixed Hg in the soil. AMF also reduce the bioavailability of Hg by secreting a series of substances and changing the physicochemical properties of the rhizosphere soil. These findings suggest the possibility of using typical co-existing microorganisms for the remediation of soil heavy metal contamination and provide valuable insights into reducing human Hg exposure through rice consumption.
Collapse
Affiliation(s)
- Xinru Li
- College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China; State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China
| | - Min Zhou
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China; College of Environment, Hohai University, Nanjing 210098, PR China
| | - Feng Shi
- National Center for Science & Technology Evaluation, Beijing 100081, PR China
| | - Bo Meng
- Institute of Geochemistry Chinese Academy of Sciences, Chinese Academy of Sciences, Guiyang 550081, PR China
| | - Jiang Liu
- Institute of Geochemistry Chinese Academy of Sciences, Chinese Academy of Sciences, Guiyang 550081, PR China
| | - Yidong Mi
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China; College of Environment, Hohai University, Nanjing 210098, PR China
| | - Cuimin Dong
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China
| | - Hailei Su
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China
| | - Xuesong Liu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China
| | - Fanfan Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China.
| | - Yuan Wei
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China.
| |
Collapse
|
2
|
Puty B, Bittencourt LO, Plaça JR, de Oliveira EHC, Lima RR. Astrocyte-Like Cells Transcriptome Changes After Exposure to a Low and Non-cytotoxic MeHg Concentration. Biol Trace Elem Res 2023; 201:1151-1162. [PMID: 35378667 DOI: 10.1007/s12011-022-03225-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 03/29/2022] [Indexed: 02/07/2023]
Abstract
The central nervous system is the main target of MeHg toxicity and glial cells are the first line of defense; however, their true role remains unclear. This study aimed to identify the global map of human glial-like (U87) cells transcriptome after exposure to a non-toxic and non-lethal MeHg concentration and to investigate the related molecular changes. U87 cells were exposed upon 0.1, 0.5, and 1 µM MeHg for 4 and 24 h. Although no changes were observed in the percentage of viable cells, the metabolic viability was significantly decreased after exposure to 1 µM MeHg for 24 h; thus, the non-toxic concentration of 0.1 µM MeHg was chosen to perform microarray analysis. Significant changes in U87 cells transcriptome were observed only after 24 h. The expression of 392 genes was down regulated while 431 genes were up-regulated. Gene ontology showed alterations in biological processes (75%), cellular components (21%), and molecular functions (4%). The main pathways showed by KEGG and Reactome were cell cycle regulation and Rho GTPase signaling. The complex mechanism of U87 cells response against MeHg exposure indicates that even a low and non-toxic concentration is able to alter the gene expression profile.
Collapse
Affiliation(s)
- Bruna Puty
- Laboratory of Functional and Structural Biology, Institute of Biological Science, Federal University of Pará, Belém, Brazil
- Laboratory of Tissue Culture and Cytogenetics, Environmental Section, Evandro Chagas Institute, Ananindeua, Brazil
| | - Leonardo Oliveira Bittencourt
- Laboratory of Functional and Structural Biology, Institute of Biological Science, Federal University of Pará, Belém, Brazil
| | - Jéssica Rodrigues Plaça
- National Institute of Science and Technology in Stem Cell and Cell Therapy (INCT/CNPq) and Center for Cell-Based Therapy, CEPID/FAPESP, Ribeirão Preto, Brazil
| | | | - Rafael Rodrigues Lima
- Laboratory of Functional and Structural Biology, Institute of Biological Science, Federal University of Pará, Belém, Brazil.
| |
Collapse
|
3
|
Monroy-Licht A, Méndez-Cuadro D, Olivero-Verbel J. Elemental mercury accumulation in Eichhornia crassipes (Mart.) Solms-Laubach. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:9898-9913. [PMID: 36064851 DOI: 10.1007/s11356-022-22521-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 08/09/2022] [Indexed: 06/15/2023]
Abstract
The aquatic macrophyte Eichhornia crassipes has great potential for the control of Hg pollution in the environment. The aim of this study was to investigate the capability of E. crassipes to accumulate elemental mercury (Hg0). The plants were exposed for 30 days to 5, 10, 20, 40, and 80 mg of Hg0 in a 1-L Hoagland medium with the Hg0 settled at the bottom of the flask. The roots of the plants did not touch the mercury during the treatment. After exposure, the total Hg (T-Hg) concentrations in the roots, leaves, and stems were measured using a direct mercury (Hg) analyzer. The highest concentrations were found at 80 mg Hg0 treatment in the roots, leaves, and stems, in that order. The translocation factor indicated a poor capability of Hg to translocate from the roots to the shoots. The relative growth and the root-length inhibition measurements showed that the differences between Hg0 treatments were not significant. In addition, the treatments negatively affected the chlorophyll concentration. The carotenoid content was found to be significantly different at 20 and 40 mg of Hg0 in 1 L. Regarding the carbonyl index in root proteins, significant differences compared to control were found at the highest Hg treatment. Based on these results, it was shown that E. crassipes is able to take up elemental Hg from Hoagland medium. However, the Hg0 treatments did not show a strong stress-response activation mechanism in the evaluated plant tissues.
Collapse
Affiliation(s)
- Andrea Monroy-Licht
- Environmental and Computational Chemistry Group, School of Pharmaceutical Sciences, University of Cartagena, Zaragocilla Campus, 130014, Cartagena, Colombia
- Chemistry and Biology Group, Chemistry and Biology Department, Universidad del Norte, 081007, Barranquilla, Colombia
| | - Darío Méndez-Cuadro
- Analytical Chemistry and Biomedicine Group, Department of Biology, School of Exact and Natural Sciences, University of Cartagena, 130015, Cartagena de Indias, Colombia
| | - Jesus Olivero-Verbel
- Environmental and Computational Chemistry Group, School of Pharmaceutical Sciences, University of Cartagena, Zaragocilla Campus, 130014, Cartagena, Colombia.
| |
Collapse
|
4
|
Tian Q, Wang J, Cui L, Zeng W, Qiu G, Hu Q, Peng A, Zhang D, Shen L. Longitudinal physiological and transcriptomic analyses reveal the short term and long term response of Synechocystis sp. PCC6803 to cadmium stress. CHEMOSPHERE 2022; 303:134727. [PMID: 35513082 DOI: 10.1016/j.chemosphere.2022.134727] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 04/21/2022] [Accepted: 04/22/2022] [Indexed: 06/14/2023]
Abstract
Due to the bioaccumulation and non-biodegradability of cadmium, Cd can pose a serious threat to ecosystem even at low concentration. Microalgae is widely distributed photosynthetic organisms in nature, which is a promising heavy metal remover and an effective industrial sewage cleaner. However, there are few detailed reports on the short-term and long-term molecular mechanisms of microalgae under Cd stress. In this study, the adsorption behavior (growth curve, Cd removal efficiency, scanning electron microscope, Fourier transform infrared spectroscopy, and dynamic change of extracellular polymeric substances), cytotoxicity (photosynthetic pigment, MDA, GSH, H2O2, O2-) and stress response mechanism of microalgae were discussed under EC50. RNA-seq detected 1413 DEGs in 4 treatment groups. These genes were related to ribosome, nitrogen metabolism, sulfur transporter, and photosynthesis, and which been proved to be Cd-responsive DEGs. WGCNA (weighted gene co-expression network analysis) revealed two main gene expression patterns, short-term stress (381 genes) and long-term stress (364 genes). The enrichment analysis of DEGs showed that the expression of genes involved in N metabolism, sulfur transporter, and aminoacyl-tRNA biosynthesis were significantly up-regulated. This provided raw material for the synthesis of the important component (cysteine) of metal chelate protein, resistant metalloprotein and transporter (ABC transporter) in the initial stage, which was also the short-term response mechanism. Cd adsorption of the first 15 min was primary dependent on membrane transporter and beforehand accumulated EPS. Simultaneously, the up-regulated glutathione S-transferase (GSTs) family proteins played a role in the initial resistance to exogenous Cd. The damaged photosynthetic system was repaired at the later stage, the expressions of glycolysis and gluconeogenesis were up-regulated, to meet the energy and substances of physiological metabolic activities. The study is the first to provide detailed short-term and long-term genomic information on microalgae responding to Cd stress. Meanwhile, the key genes in this study can be used as potential targets for algae-mediated genetic engineering.
Collapse
Affiliation(s)
- Qinghua Tian
- School of Metallurgy and Environment, Central South University, Changsha, Hunan, 410083, China
| | - Junjun Wang
- School of Metallurgy and Environment, Central South University, Changsha, Hunan, 410083, China
| | - Linlin Cui
- School of Minerals Processing and Bioengineering, Central South University, Changsha, Hunan, 410083, China
| | - Weimin Zeng
- School of Minerals Processing and Bioengineering, Central South University, Changsha, Hunan, 410083, China
| | - Guanzhou Qiu
- School of Minerals Processing and Bioengineering, Central South University, Changsha, Hunan, 410083, China
| | - Qi Hu
- Department of Bioinformatics Center, NEOMICS Institute, Shenzhen, Guangdong, 518118, China
| | - Anan Peng
- School of Environmental and Chemical Engineering, Foshan University, Foshan, 528000, China
| | - Du Zhang
- Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518000, China.
| | - Li Shen
- School of Minerals Processing and Bioengineering, Central South University, Changsha, Hunan, 410083, China.
| |
Collapse
|
5
|
Inorganic Mercury and Methyl-Mercury Uptake and Effects in the Aquatic Plant Elodea nuttallii: A Review of Multi-Omic Data in the Field and in Controlled Conditions. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10051817] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
(1) Background: Mercury is a threat for the aquatic environment. Nonetheless, the entrance of Hg into food webs is not fully understood. Macrophytes are both central for Hg entry in food webs and are seen as good candidates for biomonitoring and bioremediation; (2) Methods: We review the knowledge gained on the uptake and effects of inorganic Hg (IHg) and methyl-Hg (MMHg) in the macrophyte Elodea nuttallii found in temperate freshwaters; (3) Results: E. nuttallii bioaccumulates IHg and MMHg, but IHg shows a higher affinity to cell walls. At the individual level, IHg reduced chlorophyll, while MMHg increased anthocyanin. Transcriptomics and metabolomics in shoots revealed that MMHg regulated a higher number of genes than IHg. Proteomics and metabolomics in cytosol revealed that IHg had more effect than MMHg; (4) Conclusions: MMHg and IHg show different cellular toxicity pathways. MMHg’s main impact appears on the non-soluble compartment, while IHg’s main impact happens on the soluble compartment. This is congruent with the higher affinity of IHg with dissolved OM (DOM) or cell walls. E. nuttallii is promising for biomonitoring, as its uptake and molecular responses reflect exposure to IHg and MMHg. More generally, multi-omics approaches identify cellular toxicity pathways and the early impact of sublethal pollution.
Collapse
|
6
|
Cosio C, Renault D. Effects of cadmium, inorganic mercury and methyl-mercury on the physiology and metabolomic profiles of shoots of the macrophyte Elodea nuttallii. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 257:113557. [PMID: 31733966 DOI: 10.1016/j.envpol.2019.113557] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 10/31/2019] [Accepted: 10/31/2019] [Indexed: 05/28/2023]
Abstract
Macrophytes are known to bioaccumulate metals, but a thorough understanding of tolerance strategies and molecular impact of metals in aquatic plants is still lacking. The present study aimed to compare Hg and Cd effects in a representative macrophyte, Elodea nuttallii using physiological endpoints and metabolite profiles in shoots and cytosol. Exposure 24 h to methyl-Hg (30 ng L-1), inorganic Hg (70 ng L-1) and Cd (280 μg L-1) did not affect photosynthesis, or antioxidant enzymes despite the significant accumulation of metals, confirming a sublethal stress level. In shoots, Cd resulted in a higher level of regulation of metabolites than MeHg, while MeHg resulted in the largest number of regulated metabolites and IHg treatment regulated no metabolites significantly. In cytosol, Cd regulated more metabolites than IHg and only arginine, histidine and mannose were reduced by MeHg exposure. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis of data suggested that exposure to MeHg resulted in biochemical changes including aminoacyl-tRNA biosynthesis, glycine, serine and threonine metabolism, nitrogen metabolism, arginine and proline metabolism, cyanoamino acid metabolism, while the treatment of Cd stress caused significant variations in aminoacyl-tRNA biosynthesis and branched-chain amino acids pathways. Data supports an impact of MeHg on N homeostasis, while Cd resulted in an osmotic stress-like pattern and IHg had a low impact. Marked differences in the responses to MeHg and IHg exposure were evidenced, supporting different molecular toxicity pathways and main impact of MeHg on non-soluble compartment, while main impact of IHg was on soluble compartment. Metabolomics was used for the first time in this species and proved to be very useful to confirm and complement recent knowledge gained by transcriptomics and proteomics, highlighting the high interest of multi-omics approaches to identify early impact of environmental pollution.
Collapse
Affiliation(s)
- Claudia Cosio
- Université de Reims Champagne-Ardenne, UMR-I 02 INERIS-URCA-ULH SEBIO, F-51687 Reims, France.
| | - David Renault
- Université de Rennes 1, UMR 6553 EcoBio CNRS, F-35042 Rennes, France; Institut Universitaire de France, 1 rue Descartes, 75231 Paris CEDEX 05, France
| |
Collapse
|
7
|
Molecular Effects of Inorganic and Methyl Mercury in Aquatic Primary Producers: Comparing Impact to A Macrophyte and A Green Microalga in Controlled Conditions. GEOSCIENCES 2018. [DOI: 10.3390/geosciences8110393] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Mercury (Hg) remains hazardous in aquatic environments, because of its toxicity and high biomagnification in food webs. In phytoplankton and macrophytes, Hg compounds at high concentration have been reported to affect the growth, photosynthesis, and nutrient metabolism, as well as to induce oxidative stress and damage. Here, we reviewed the recent knowledge gained on cellular toxicity of inorganic and methyl Hg (IHg; MeHg) in aquatic primary producers at more relevant environmental concentrations, with a particular focus on omics data. In addition, we compared a case study conducted with transcriptomic on the green microalga Chlamydomonas reinhardtii and the macrophyte Elodea nuttallii. At lower concentrations, IHg and MeHg influenced similar gene categories, including energy metabolism, cell structure, and nutrition. In addition, genes involved in the cell motility in the microalgae, and in hormone metabolism in the macrophyte were regulated. At equivalent intracellular concentration, MeHg regulated more genes than IHg supporting a higher molecular impact of the former. At the organism level in C. reinhardtii, MeHg increased reactive oxygen species, while both IHg and MeHg increased photosynthesis efficiency, whereas in E. nuttallii MeHg induced anti-oxidant responses and IHg reduced chlorophyll content. Data showed differences, according to species and characteristics of life cycle, in responses at the gene and cellular levels, but evidenced a higher molecular impact of MeHg than IHg and different cellular toxicity pathways in aquatic primary producers.
Collapse
|
8
|
Beauvais-Flück R, Slaveykova VI, Skyllberg U, Cosio C. Molecular Effects, Speciation, and Competition of Inorganic and Methyl Mercury in the Aquatic Plant Elodea nuttallii. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:8876-8884. [PMID: 29984984 DOI: 10.1021/acs.est.8b02124] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Mercury (Hg) remains hazardous in aquatic environments because of its biomagnification in food webs. Nonetheless, Hg uptake and impact in primary producers is still poorly understood. Here, we compared the cellular toxicity of inorganic and methyl Hg (IHg and MeHg, respectively) in the aquatic plant Elodea nuttallii. IHg and MeHg regulated contigs involved in similar categories (e.g., energy metabolism, development, transport, secondary metabolism), but MeHg regulated more contigs, supporting a higher molecular impact than IHg. At the organism level, MeHg induced antioxidants, while IHg decreased chlorophyll content. The uptake of Hg and expression of a subset of contigs was subsequently studied in complex media. Measured uptake pointed to a contrasted impact of cell walls and copper (Cu) on IHg and MeHg. Using a speciation modeling, differences in uptake were attributed to the differences in affinities of IHg and MeHg to organic matter in relation to Cu speciation. We also identified a distinct gene expression signature for IHg, MeHg, and Cu, further supporting different molecular toxicity of these trace elements. Our data provided fundamental knowledge on IHg and MeHg uptake in a key aquatic primary producer and confirmed the potential of transcriptomics to assess Hg exposure in environmentally realistic systems.
Collapse
Affiliation(s)
- Rébecca Beauvais-Flück
- Department F.-A. Forel for environmental and aquatic sciences, Earth and Environmental Sciences, Faculty of Sciences , University of Geneva , CH-1211 Geneva , Switzerland
| | - Vera I Slaveykova
- Department F.-A. Forel for environmental and aquatic sciences, Earth and Environmental Sciences, Faculty of Sciences , University of Geneva , CH-1211 Geneva , Switzerland
| | - Ulf Skyllberg
- Department of Forest Ecology and Management , Swedish University of Agricultural Sciences , 901 83 Umeå , Sweden
| | - Claudia Cosio
- Department F.-A. Forel for environmental and aquatic sciences, Earth and Environmental Sciences, Faculty of Sciences , University of Geneva , CH-1211 Geneva , Switzerland
| |
Collapse
|