1
|
Xie J, Lan R, Zhang L, Yu J, Liu X, You Z, Yang F, Lin T. Global occurrence, food web transfer, and human health risks of polycyclic aromatic hydrocarbons in biota. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 958:177969. [PMID: 39652991 DOI: 10.1016/j.scitotenv.2024.177969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 12/04/2024] [Accepted: 12/04/2024] [Indexed: 01/15/2025]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are widespread organic pollutants that pose significant health risks due to their bioaccumulation in the biota. This study examines the global distribution of PAHs in biota, identifies key factors influencing using boosted regression tree (BRT) models, analyzes their transfer through trophic magnification factors (TMF), and evaluates health risks using the EPA risk assessment model. Research on PAHs has grown from 1978 to 2023, peaking in 2021, with 171 out of 241 studies (71.1 %) focusing on marine ecosystems. The highest PAH concentrations are observed in the Mediterranean Sea, Red Sea, and North American coastal regions, primarily influenced by industrial and human activities, such as factory emissions and ship transport. BRT analysis shows region factors and feeding habitats significantly influence PAH levels. TMF analysis shows that biodilution is the main mechanism for PAH attenuation, with concentrations decreasing as trophic levels increase. Additionally, health risk assessment further illustrate that toxicity equivalent (TEQ) values are highest in Egypt and Turkey. Across all populations in Egypt, the United States, Turkey, Portugal, and China, as well as children in Portugal and Sweden, there are potential risks from aquatic product consumption (10-6 < CRI < 10-4), with CRI values positively correlated with liver cancer incidence. While hazard quotients (HQ) < 1 suggest overall safety, higher obesity risks are noted, particularly among women and adolescents.
Collapse
Affiliation(s)
- Jingqian Xie
- College of Oceanography and Ecological Science, Shanghai Ocean University, Shanghai 201306, China.
| | - Ruo Lan
- College of Oceanography and Ecological Science, Shanghai Ocean University, Shanghai 201306, China
| | - Li Zhang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Jun Yu
- College of Oceanography and Ecological Science, Shanghai Ocean University, Shanghai 201306, China
| | - Xinran Liu
- College of Oceanography and Ecological Science, Shanghai Ocean University, Shanghai 201306, China
| | - Zhiyang You
- College of Oceanography and Ecological Science, Shanghai Ocean University, Shanghai 201306, China
| | - Fen Yang
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China.
| | - Tian Lin
- College of Oceanography and Ecological Science, Shanghai Ocean University, Shanghai 201306, China
| |
Collapse
|
2
|
Yee-Duarte JA, Arellano-Martínez M, Roldán-Wong NT, Kidd KA, Ceballos-Vázquez BP. Reduction in reproductive activity from degeneration of testicular follicles in Megapitaria squalida (Mollusca: Bivalvia) exposed to metal pollution in the Gulf of California. MARINE POLLUTION BULLETIN 2024; 205:116648. [PMID: 38917499 DOI: 10.1016/j.marpolbul.2024.116648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 02/20/2024] [Accepted: 06/20/2024] [Indexed: 06/27/2024]
Abstract
Over a reproductive cycle, the prevalence and intensity of degeneration of testicular follicles in Megapitaria squalida collected from the mining port of Santa Rosalia (a highly metal-polluted area), and San Lucas (a less polluted site), Gulf of California, Mexico, were evaluated. At San Lucas, most individuals had a typical testicular structure, and degeneration of testicular follicles was present in 9.5 % of spawning organisms. In contrast, at Santa Rosalia, 68 % of males, mainly in the ripe stage, had testicular degeneration (72 % severe intensity, mostly in medium and large-sized). Degeneration was characterized by intense hemocyte infiltration, identified as dense masses with numerous melanized cells in the follicle lumen. In both sites, males with testicular follicles degeneration had a lower condition index compared to males without degeneration. Degeneration of testicular follicles before spawning compromises and decreases the reproductive activity of M. squalida males at Santa Rosalia, which may ultimately affect the population sustainability.
Collapse
Affiliation(s)
- Josué Alonso Yee-Duarte
- Instituto Politécnico Nacional, Centro Interdisciplinario de Ciencias Marinas. Av. Instituto Politécnico Nacional, s/n Col. Playa Palo de Santa Rita. C.P. 23096, La Paz, Baja California Sur, Mexico; Departamento Académico de Ciencias Marinas y Costeras, Universidad Autónoma de Baja California Sur, Carretera al Sur KM 5.5, C.P. 23080, La Paz, Baja California Sur, Mexico
| | - Marcial Arellano-Martínez
- Instituto Politécnico Nacional, Centro Interdisciplinario de Ciencias Marinas. Av. Instituto Politécnico Nacional, s/n Col. Playa Palo de Santa Rita. C.P. 23096, La Paz, Baja California Sur, Mexico
| | | | - Karen Ann Kidd
- Department of Biology, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4K1, Canada
| | - Bertha Patricia Ceballos-Vázquez
- Instituto Politécnico Nacional, Centro Interdisciplinario de Ciencias Marinas. Av. Instituto Politécnico Nacional, s/n Col. Playa Palo de Santa Rita. C.P. 23096, La Paz, Baja California Sur, Mexico.
| |
Collapse
|
3
|
Song A, Gao Z, Zhou Y, Miao J, Xu R, Pan L. Effects of Benzo[a]pyrene on Food Metabolism and Reproductive Endocrine and Ovarian Development in Female Scallop Chlamys farreri at Different Reproductive Stages. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2023. [PMID: 38088252 DOI: 10.1002/etc.5806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/05/2023] [Accepted: 12/07/2023] [Indexed: 02/01/2024]
Abstract
Benzo[a]pyrene (B[a]P), a polycyclic aromatic hydrocarbon (PAH) with the most carcinogenic effects of all the PAHs, has multiple toxic effects on marine bivalves. We investigated the interference mechanism of B[a]P on food metabolism (sugars, proteins, and sugars), and on reproductive endocrine and ovarian development in female scallops (Chlamys farreri). Scallops were exposed to different concentrations of B[a]P concentrations of 0, 0.38, 3.8, and 38 μg/L throughout gonadal development. Total cholesterol and triglyceride contents in the digestive glands were increased, and their synthesis genes were upregulated. The plasma glucose contents decreased with the inhibition of glycogen synthesis genes and the induction of glycolysis genes in the digestive gland. The results showed that B[a]P had endocrine-disrupting effects on scallops, that it negatively affected genes related to ovarian cell proliferation, sex differentiation, and egg development, and that it caused damage to ovarian tissue. Our findings supplement the information on B[a]P disruption in gonadal development of marine bivalves. Environ Toxicol Chem 2024;00:1-14. © 2023 SETAC.
Collapse
Affiliation(s)
- Aimin Song
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, China
| | - Zhongyuan Gao
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, China
| | - Yueyao Zhou
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, China
| | - Jingjing Miao
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, China
| | - Ruiyi Xu
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, China
| | - Luqing Pan
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, China
| |
Collapse
|
4
|
Ferreira MF, Turner A, Vernon EL, Grisolia C, Lebaron-Jacobs L, Malard V, Jha AN. Tritium: Its relevance, sources and impacts on non-human biota. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 876:162816. [PMID: 36921857 DOI: 10.1016/j.scitotenv.2023.162816] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 03/06/2023] [Accepted: 03/08/2023] [Indexed: 06/18/2023]
Abstract
Tritium (3H) is a radioactive isotope of hydrogen that is abundantly released from nuclear industries. It is extremely mobile in the environment and in all biological systems, representing an increasing concern for the health of both humans and non-human biota (NHB). The present review examines the sources and characteristics of tritium in the environment, and evaluates available information pertaining to its biological effects at different levels of biological organisation in NHB. Despite an increasing number of publications in the tritium radiobiology field, there exists a significant disparity between data available for the different taxonomic groups and species, and observations are heavily biased towards marine bivalves, fish and mammals (rodents). Further limitations relate to the scarcity of information in the field relative to the laboratory, and lack of studies that employ forms of tritium other than tritiated water (HTO). Within these constraints, different responses to HTO exposure, from molecular to behavioural, have been reported during early life stages, but the potential transgenerational effects are unclear. The application of rapidly developing "omics" techniques could help to fill these knowledge gaps and further elucidate the relationships between molecular and organismal level responses through the development of radiation specific adverse outcome pathways (AOPs). The use of a greater diversity of keystone species and exposures to multiple stressors, elucidating other novel effects (e.g., by-stander, germ-line, transgenerational and epigenetic effects) offers opportunities to improve environmental risk assessments for the radionuclide. These could be combined with artificial intelligence (AI) including machine learning (ML) and ecosystem-based approaches.
Collapse
Affiliation(s)
- Maria Florencia Ferreira
- School of Biological and Marine Sciences, University of Plymouth, Drake Circus, Plymouth PL4 8AA, UK
| | - Andrew Turner
- School of Geography, Earth and Environmental Sciences, University of Plymouth, Drake Circus, Plymouth PL4 8AA, UK
| | - Emily L Vernon
- School of Biological and Marine Sciences, University of Plymouth, Drake Circus, Plymouth PL4 8AA, UK
| | | | | | - Veronique Malard
- Aix Marseille Univ, CEA, CNRS, BIAM, IPM, F-13108 Saint Paul-Lez-Durance, France
| | - Awadhesh N Jha
- School of Biological and Marine Sciences, University of Plymouth, Drake Circus, Plymouth PL4 8AA, UK.
| |
Collapse
|
5
|
Georgieva E, Antal L, Stoyanova S, Aranudova D, Velcheva I, Iliev I, Vasileva T, Bivolarski V, Mitkovska V, Chassovnikarova T, Todorova B, Uzochukwu IE, Nyeste K, Yancheva V. Biomarkers for pollution in caged mussels from three reservoirs in Bulgaria: A pilot study. Heliyon 2022; 8:e09069. [PMID: 35284685 PMCID: PMC8914122 DOI: 10.1016/j.heliyon.2022.e09069] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 01/11/2022] [Accepted: 03/03/2022] [Indexed: 12/22/2022] Open
Abstract
The mussel-watch concept was firstly proposed in 1975, which was later adopted by several international monitoring programs worldwide. However, for the very first time, a field experiment with caged mussels was performed in three reservoirs in Bulgaria to follow the harmful effects of sub-chronic pollution (30 days) of metals, trace, and macro-elements, as well as some organic toxicants, such as polybrominated diphenyl ethers and chlorinated paraffins. Therefore, we studied the biometric indices, histochemical lesions in the gills, biochemical changes in the digestive glands (antioxidant defense enzymes, such as catalase, glutathione reductase, and glutathione peroxidase; metabolic enzymes, such as lactate dehydrogenase, alanine aminotransferase, and aspartate aminotransferase, and the neurotransmitter cholinesterase), in addition to the DNA damage in the Chinese pond mussel, Sinanodonta woodiana (Lea, 1834) in Kardzhali, Studen Kladenets and Zhrebchevo reservoirs in Bulgaria. Significant correlation trends between the pollution levels, which we reported before, and the biomarker responses were established in the current paper. Overall, we found that both tested organs were susceptible to pollution-induced oxidative stress. The different alterations in the selected biomarkers in the caged mussels compared to the reference group were linked to the different kinds and levels of water pollution in the reservoirs, and also to the simultaneously conducted bioaccumulation studies. The effects of water pollution in caged mussels from three large dam reservoirs in Bulgaria were assessed. A cocktail of different inorganic and organic toxicants was measured both in waters and mussels for the first time. Different biomarker responses (cellular to individual) were also followed in gills and digestive glands of the transplants. Correlation trends between the pollution levels and the applied biological tools were established.
Collapse
|
6
|
Geng Q, Guo M, Wu H, Peng J, Zheng G, Liu X, Zhai Y, Tan Z. Effects of single and combined exposure to BDE-47 and PFOA on distribution, bioaccumulation, and toxicity in blue mussel (Mytilus galloprovincialis). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 228:113014. [PMID: 34837871 DOI: 10.1016/j.ecoenv.2021.113014] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 10/19/2021] [Accepted: 11/17/2021] [Indexed: 06/13/2023]
Abstract
The contamination of 2,2',4,4'-Tetrabrmodiphenyl ether (BDE-47) and perfluorooctanoic acid (PFOA) has drawn a worldwide attention over the risks in ecological and food safety. In this work, blue mussel (Mytilus galloprpvincialis) was employed to investigate the combined effects of BDE-47 (10 ng mL-1) and PFOA (100 ng mL-1) on tissue distribution, accumulation, elimination, and toxicity. Results suggested that BDE-47 and PFOA accumulated mostly in digestive gland, followed by gills and gonad, and M. galloprovincialis displayed higher accumulation capacity to BDE-47 than PFOA. Co-exposure treatment reduced the accumulation of BDE-47, and enhanced the accumulation of PFOA. Furthermore, biochemical and histopathological tests revealed that the aggravated toxicity in co-exposure groups was mainly attributed to the oxidative stress and damage of tissue structure. This work could be helpful to get a better understanding of the combined behaviors and cumulative risks of BDE-47 and PFOA in marine ecosystem.
Collapse
Affiliation(s)
- Qianqian Geng
- Key Laboratory of Testing and Evaluation for Aquatic Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - Mengmeng Guo
- Key Laboratory of Testing and Evaluation for Aquatic Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - Haiyan Wu
- Key Laboratory of Testing and Evaluation for Aquatic Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - Jixing Peng
- Key Laboratory of Testing and Evaluation for Aquatic Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - Guanchao Zheng
- Key Laboratory of Testing and Evaluation for Aquatic Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - Xiaoyu Liu
- Key Laboratory of Testing and Evaluation for Aquatic Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Yuxiu Zhai
- Key Laboratory of Testing and Evaluation for Aquatic Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - Zhijun Tan
- Key Laboratory of Testing and Evaluation for Aquatic Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266071, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China.
| |
Collapse
|
7
|
Poulsen R, Gravert TKO, Tartara A, Bensen HK, Gunnarsen KC, Dicová K, Nielsen NJ, Christensen JH. A case study of PAH contamination using blue mussels as a bioindicator in a small Greenlandic fishing harbor. MARINE POLLUTION BULLETIN 2021; 171:112688. [PMID: 34271510 DOI: 10.1016/j.marpolbul.2021.112688] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 06/24/2021] [Accepted: 06/28/2021] [Indexed: 06/13/2023]
Abstract
This study investigated the impact of local anthropogenic activity on the marine environment around the remote harbor of Qeqertarsuaq, West Greenland. Blue mussels (Mytilus sp.) were used as a bioindicator, and their physiological condition was found to decrease with increasing proximity to the harbor. Subsequently, the distribution of 19 polycyclic aromatic hydrocarbons (PAHs) and 9 groups of alkylated PAHs were measured in mussel and sediment samples. The highest values were found in a rocky collection area 15 m from a wooden pier frequented by small boats. A PAH source investigation, indicated a mixed source from light fuel oils and creosote used as boat coating. Finally, correlations between the mussels morphological condition and the PAH pollution were found to be significant for 4-, 5-, and 6-ring PAHs. In conclusion, the results indicate that pollution sources in harbors have significant effects on the local environment and should be considered in arctic conservation research.
Collapse
Affiliation(s)
- Rikke Poulsen
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg, Denmark; Department of Environmental Science, Aarhus University, Frederiksborgvej 399, 4000 Roskilde, Denmark
| | | | - Arianna Tartara
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg, Denmark
| | - Henriette Kornmaaler Bensen
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg, Denmark
| | - Klara Cecilia Gunnarsen
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg, Denmark
| | - Kristína Dicová
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg, Denmark
| | - Nikoline Juul Nielsen
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg, Denmark
| | - Jan Henning Christensen
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg, Denmark
| |
Collapse
|
8
|
Yang Y, Pan L, Zhou Y, Xu R, Miao J, Gao Z, Li D. Damages to biological macromolecules in gonadal subcellular fractions of scallop Chlamys farreri following benzo[a]pyrene exposure: Contribution to inhibiting gonadal development and reducing fertility. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 283:117084. [PMID: 33848904 DOI: 10.1016/j.envpol.2021.117084] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 02/28/2021] [Accepted: 04/01/2021] [Indexed: 06/12/2023]
Abstract
Benzo[a]pyrene (B[a]P), a representative polycyclic aromatic hydrocarbon (PAH) compound in marine ecosystem, has great potential for chronic toxicity to marine animals. It is becoming increasingly apparent that reproductive system is the major target of B[a]P, but the adverse effects of B[a]P on subcellular fractions in bivalve gonads have not been elucidated. Scallops Chlamys farreri are used as the experimental species since they are sensitive to environmental pollutants. This study was conducted to investigate how B[a]P affected the gonadal subcellular fractions, including plasma membrane, nucleus, mitochondria and microsome in scallops, and whether subcellular damages were related to reproductive toxicity. The results showed that mature gametes' counts were significantly decreased in B[a]P-treated scallops. Three biological macromolecules (viz., DNA, lipids and proteins) in gonadal subcellular fractions obtained by differential centrifugation suffered damages, including DNA damage, lipid peroxidation and protein carbonylation in B[a]P treatment groups. Interestingly, mitochondria and microsome were more vulnerable to lipid peroxidation and protein carbonylation than plasma membrane and nucleus, meanwhile males were more susceptible to DNA damage than females under B[a]P exposure. In addition, histological analysis showed that B[a]P delayed gonadal development in C. farreri. To summarize, our results indicated that B[a]P caused damages to biological macromolecules in gonadal subcellular fractions and then induced damages to gonadal tissues of C. farreri, which further inhibited gonadal development and ultimately leaded to reduction in fertility. This study firstly reports the impacts of PAHs on subcellular fractions in bivalves and their relationship with reproductive toxicity. Moreover, exposure of reproductive scallops to B[a]P leads to defects in reproduction, raising concerns on the possible long-term consequences of PAHs for natural populations of bivalves.
Collapse
Affiliation(s)
- Yingying Yang
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, PR China
| | - Luqing Pan
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, PR China.
| | - Yueyao Zhou
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, PR China
| | - Ruiyi Xu
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, PR China
| | - Jingjing Miao
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, PR China
| | - Zhongyuan Gao
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, PR China
| | - Dongyu Li
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, PR China
| |
Collapse
|
9
|
Rimba AB, Mohan G, Chapagain SK, Arumansawang A, Payus C, Fukushi K, Husnayaen, Osawa T, Avtar R. Impact of population growth and land use and land cover (LULC) changes on water quality in tourism-dependent economies using a geographically weighted regression approach. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:25920-25938. [PMID: 33475923 DOI: 10.1007/s11356-020-12285-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 12/28/2020] [Indexed: 06/12/2023]
Abstract
This paper aims to assess the influence of land use and land cover (LULC) indicators and population density on water quality parameters during dry and rainy seasons in a tourism area in Indonesia. This study applies least squares regression (OLS) and Pearson correlation analysis to see the relationship among factors, and all LULC and population density were significantly correlated with most of water quality parameter with P values of 0.01 and 0.05. For example, DO shows high correlation with population density, farm, and built-up in dry season; however, each observation point has different percentages of LULC and population density. The concentration value should be different over space since watershed characteristics and pollutions sources are not the same in the diverse locations. The geographically weighted regression (GWR) analyze the spatially varying relationships among population density, LULC categories (i.e., built-up areas, rice fields, farms, and forests), and 11 water quality indicators across three selected rivers (Ayung, Badung, and Mati) with different levels of tourism urbanization in Bali Province, Indonesia. The results explore that compared with OLS estimates, GWR performed well in terms of their R2 values and the Akaike information criterion (AIC) in all the parameters and seasons. Further, the findings exhibit population density as a critical indicator having a highly significant association with BOD and E. Coli parameters. Moreover, the built-up area has correlated positively to the water quality parameters (Ni, Pb, KMnO4 and TSS). The parameter DO is associated negatively with the built-up area, which indicates increasing built-up area tends to deteriorate the water quality. Hence, our findings can be used as input to provide a reference to the local governments and stakeholders for issuing policy on water and LULC for achieving a sustainable water environment in this region.
Collapse
Affiliation(s)
- Andi Besse Rimba
- United Nations University Institute for the Advanced Study of Sustainability (UNU-IAS), 5 Chome-53-70 Jingumae, Shibuya-Ku, Tokyo, 150-8925, Japan.
- Institute for Future Initiatives (IFI), University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo, 113-8654, Japan.
- Center for Remote Sensing and Ocean Sciences (CReSOS), Udayana University, Jalan PB Sudirman, Denpasar, Bali, 80232, Indonesia.
| | - Geetha Mohan
- United Nations University Institute for the Advanced Study of Sustainability (UNU-IAS), 5 Chome-53-70 Jingumae, Shibuya-Ku, Tokyo, 150-8925, Japan
- Institute for Future Initiatives (IFI), University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo, 113-8654, Japan
| | - Saroj Kumar Chapagain
- United Nations University Institute for the Advanced Study of Sustainability (UNU-IAS), 5 Chome-53-70 Jingumae, Shibuya-Ku, Tokyo, 150-8925, Japan
| | - Andi Arumansawang
- Department of Mining Engineering, Hasanuddin University, Poros Malino Street km.6, Bontomarannu, Gowa, South Sulawesi, 92171, Indonesia
| | - Carolyn Payus
- United Nations University Institute for the Advanced Study of Sustainability (UNU-IAS), 5 Chome-53-70 Jingumae, Shibuya-Ku, Tokyo, 150-8925, Japan
- Institute for Future Initiatives (IFI), University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo, 113-8654, Japan
- Faculty of Science & Natural Resources, Universiti Malaysia Sabah, 88400, Kota Kinabalu, Sabah, Malaysia
| | - Kensuke Fukushi
- United Nations University Institute for the Advanced Study of Sustainability (UNU-IAS), 5 Chome-53-70 Jingumae, Shibuya-Ku, Tokyo, 150-8925, Japan
- Institute for Future Initiatives (IFI), University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo, 113-8654, Japan
| | - Husnayaen
- Center for Remote Sensing and Ocean Sciences (CReSOS), Udayana University, Jalan PB Sudirman, Denpasar, Bali, 80232, Indonesia
- Environmental Engineering Program, Faculty of Engineering, Science and Technology Institute of Nahdatul Ulama Bali (STNUBA), Jalan West Pura DemakNo.31, Denpasar, Bali, 80119, Indonesia
| | - Takahiro Osawa
- Center for Remote Sensing and Ocean Sciences (CReSOS), Udayana University, Jalan PB Sudirman, Denpasar, Bali, 80232, Indonesia
| | - Ram Avtar
- Faculty of Environmental Earth Science, Hokkaido University, Sapporo, 060-0810, Japan
| |
Collapse
|
10
|
Świacka K, Smolarz K, Maculewicz J, Caban M. Effects of environmentally relevant concentrations of diclofenac in Mytilus trossulus. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 737:139797. [PMID: 32521366 DOI: 10.1016/j.scitotenv.2020.139797] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 05/23/2020] [Accepted: 05/27/2020] [Indexed: 06/11/2023]
Abstract
The presence of pharmaceuticals in the marine environment is a growing problem of global importance. Although awareness of the significance of this issue is increasing, many questions related to the ecotoxicology of pharmaceuticals remain unclear. Diclofenac is one of the drugs most commonly detected in the marine environment and its potential toxicity has been previously highlighted, thus its impact on organisms deserves a special attention. Therefore, in this study, a thorough analysis of the effects of diclofenac on a condition and tissue level of a model representative of marine invertebrates - Mytilus trossulus - was performed. During the 25-day experiment, divided into exposure and depuration phases, bivalves were exposed to two environmentally relevant drug concentrations of 4 and 40 μg/L. The study showed that mussels absorb diclofenac in their tissues and the highest recorded concentration was 1.692 μg/g dw on day 8. Moreover, the content of diclofenac metabolites (4-OH and 5-OH diclofenac) was also examined, but they were not detected either in water or in tissues. Although exposure to low diclofenac concentrations did not significantly affect the condition index of organisms, changes in numerous histopathological parameters were noted. Performed histological examination provided additional valuable information on the influence of drugs on the functioning of invertebrates. Nevertheless, applicability of histopathological techniques in ecotoxicology of drugs requires additional evaluation in future studies.
Collapse
Affiliation(s)
- Klaudia Świacka
- Department of Marine Ecosystems Functioning, Institute of Oceanography, University of Gdansk, Av. Piłsudskiego 46, 81-378 Gdynia, Poland
| | - Katarzyna Smolarz
- Department of Marine Ecosystems Functioning, Institute of Oceanography, University of Gdansk, Av. Piłsudskiego 46, 81-378 Gdynia, Poland
| | - Jakub Maculewicz
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland.
| | - Magda Caban
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland
| |
Collapse
|
11
|
Aguirre-Martínez GV, Martín-Díaz ML. A multibiomarker approach to assess toxic effects of wastewater treatment plant effluents and activated defence mechanisms in marine (Ruditapes philippinarum) and fresh water (Corbicula fluminea) bivalve species. ECOTOXICOLOGY (LONDON, ENGLAND) 2020; 29:941-958. [PMID: 32350641 DOI: 10.1007/s10646-020-02216-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 04/15/2020] [Indexed: 06/11/2023]
Abstract
Since it has been demonstrated that urban effluents can have adverse effects on aquatic organisms, a multibiomarker study was used to evaluate the effects of wastewater treatment plant (WWTP) effluents discharged into the marine and freshwater environments on clams in Cádiz, Spain. One bioassay was performed in the Bay of Cádiz, exposing Ruditapes philippinarum (marine) to a reference site as well as two sites close to WWTP discharges for 14 days. A second bioassay was performed in the Guadalete River, exposing Corbicula fluminea (fresh water) to three sites for 21 days. The biomarkers analysed included defence mechanisms and various toxic effects. Results indicated that WWTP effluents activated defence mechanisms and induced toxic effects in clams exposed to both environments, thus indicating bioavailability of contaminants present in water. Elevated enzymatic activity was found in clams deployed in La Puntilla and El Trocadero compared to control clams and those exposed to the reference site, and 96% of clams deployed at G2 in the Guadalete River died before day 7. Clams exposed to G1 and G3 indicated significant differences in all biomarkers analysed with respect to control clams (p < 0.05). Both species were sensitive to contaminants present in studied sites. This is the first time that these species were used in cages to assess the environmental risk of wastewater effluent discharges in freshwater and marine column environments. The multibiomarker approach provided important ecotoxicological information and is useful for the assessment of the bioavailability and effect of contaminants from WWTP effluents on marine and fresh water invertebrates.
Collapse
Affiliation(s)
- G V Aguirre-Martínez
- Faculty of Marine and Environmental Sciences, Cadiz University, Campus Excelencia Internacional del Mar (CEIMAR), Polígono Río San Pedro s/n. P. Real, Cádiz, Spain.
- Faculty of Health Science, Arturo Prat University, Casilla 121, 1110939, Iquique, Chile.
- Andalusian Center of Marine Science and Technology (CACYTMAR), Campus Universitario de Puerto Real, Puerto Real, 11510, Cádiz, Spain.
| | - M L Martín-Díaz
- Faculty of Marine and Environmental Sciences, Cadiz University, Campus Excelencia Internacional del Mar (CEIMAR), Polígono Río San Pedro s/n. P. Real, Cádiz, Spain
- Andalusian Center of Marine Science and Technology (CACYTMAR), Campus Universitario de Puerto Real, Puerto Real, 11510, Cádiz, Spain
| |
Collapse
|
12
|
Yang Y, Zhou Y, Pan L, Xu R, Li D. Benzo[a]pyrene exposure induced reproductive endocrine-disrupting effects via the steroidogenic pathway and estrogen signaling pathway in female scallop Chlamys farreri. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 726:138585. [PMID: 32315858 DOI: 10.1016/j.scitotenv.2020.138585] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 04/07/2020] [Accepted: 04/07/2020] [Indexed: 06/11/2023]
Abstract
Benzo[a]pyrene (B[a]P), as one of the typical polycyclic aromatic hydrocarbons and environmental contaminants, may cause endocrine disrupting effects and reproductive impairments in bivalves. However, the molecular mechanisms are still not fully understood. In this study, three reproductive stages (proliferative stage, growing stage and mature stage) of female scallops Chlamys farreri were exposed to B[a]P at 0, 0.38 and 3.8 μg/L. The present study determined the adverse effects of B[a]P on gonadosomatic index, circulating hormone concentrations, endocrine-associated gene expression and ovarian histology. Significant decrease in sex hormones including progesterone (P), testosterone (T) and 17β-estradiol (E2), was observed in B[a]P-treated C. farreri at growing stage and mature stage. These effects were associated with down-regulated expression of steroidogenic enzymes, including 3β-HSD, CYP17 and 17β-HSD, which were regulated by the upstream adenylate cyclase (Adcy) - protein kinase (PKA) signaling pathway. Ovarian transcript levels of estrogen receptor (ER) and caveolin-1 (cav-1) were decreased in B[a]P-treated C. farreri. Vitellogenin (Vtg), an estrogen-mediated gene involved in ovarian development, was down-regulated by B[a]P. Furthermore, ovarian histology was investigated to clarify the impairment of B[a]P on ovaries at growing stage and mature stage. Overall, the present results elucidated the anti-estrogenic mechanisms along the steroidogenic pathway and estrogen signaling pathway for the stage-dependent endocrine-disrupting effects of B[a]P. This finding provides important information regarding to the underlying molecular mechanisms of B[a]P-induced endocrine disruption in different reproductive stages of bivalves. In addition, the adverse effects should be taken into concertation during protection of bivalves germplasm resources and comprehensive evaluation of ecological risks.
Collapse
Affiliation(s)
- Yingying Yang
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, PR China
| | - Yueyao Zhou
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, PR China
| | - Luqing Pan
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, PR China.
| | - Ruiyi Xu
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, PR China
| | - Dongyu Li
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, PR China
| |
Collapse
|
13
|
Lacson CFZ, Lu MC, Huang YH. Fluoride network and circular economy as potential model for sustainable development-A review. CHEMOSPHERE 2020; 239:124662. [PMID: 31499305 DOI: 10.1016/j.chemosphere.2019.124662] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 08/13/2019] [Accepted: 08/23/2019] [Indexed: 06/10/2023]
Abstract
Fluorine is the most reactive elements among the halogen group and commonly and ubiquitously occurs as fluoride in nature. The industrial processes produce fluoride by-products causing the increase of unwanted environmental levels and consequently posing risk on human and environmental health worldwide. This review gives a fundamental understanding of fluoride networks in the industrial processes, in the geological and hydrological transport, and in the biological sphere. Numerous biological pathways of fluoride also increase the risk of exposure. Literature shows that various environmental levels of fluoride due to its chemical characteristics cause bioaccumulation resulting in health deterioration among organisms. These problems are aggravated by emitted fluoride in the air and wastewater streams. Moreover, the current waste disposal dependent on incineration and landfilling superpose to the problem. In our analysis, the fluoride material flow model still follows a linear economy and reuse economy to some extent. This flow model spoils resources with high economic potential and worsens environmental problems. Thus, we intend a shift from the conventional linear economy to a circular economy with the revival of three-dimensional objectives of sustainable development. Linkages between key dimensions of the circular economy to stimulate momentum for perpetual sustainable development are proposed to gain economic, environmental and social benefits.
Collapse
Affiliation(s)
- Carl Francis Z Lacson
- Department of Chemical Engineering, Sustainable Environment Research Center, National Cheng Kung University, Tainan, 701, Taiwan
| | - Ming-Chun Lu
- Department of Environmental Resources Management, Chia Nan University of Pharmacy and Science, Tainan, 71710, Taiwan.
| | - Yao-Hui Huang
- Department of Chemical Engineering, Sustainable Environment Research Center, National Cheng Kung University, Tainan, 701, Taiwan.
| |
Collapse
|
14
|
Benito D, Ahvo A, Nuutinen J, Bilbao D, Saenz J, Etxebarria N, Lekube X, Izagirre U, Lehtonen KK, Marigómez I, Zaldibar B, Soto M. Influence of season-depending ecological variables on biomarker baseline levels in mussels (Mytilus trossulus) from two Baltic Sea subregions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 689:1087-1103. [PMID: 31466149 DOI: 10.1016/j.scitotenv.2019.06.412] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 06/24/2019] [Accepted: 06/24/2019] [Indexed: 06/10/2023]
Abstract
For reliable mussel monitoring programmes based on biomarkers, regionally relevant reference values and their natural variability need to be known. The Baltic Sea exhibits high inter-regional and seasonal variability in physical factors such as salinity, temperature and primary production. The aim of this pilot study is to depict the effects of season-related environmental factors in a selected battery of biomarkers in two environmentally different subregions of the Baltic Sea to help establishing reference data for biochemical, cellular and tissue-level biomarkers. In order to achieve that, mussels were collected from reference sites in Kiel (Germany) and Tvärminne (Finland) during three seasons: summer and autumn 2016, and spring 2017. Finally, in order to characterize the ecological situation, analysis of the chemical tissue burden was performed and chlorophyll‑a and particulate organic carbon concentration and temperature changes were analyzed at each sampling locality using satellite remote sensing images. An integrated biomarker response index was performed to summarize the biomarker responses of each locality and season. The biochemical endpoints showed seasonal variability regulated by temperature, food supply and reproductive cycle, while among the cellular endpoints only lipofuscin accumulation and lysosomal structural changes showed slight seasonal variation. Seasonal changes in tissue level biomarkers were observed only at the northern Baltic Sea site Tvärminne, dictated by the demanding energetic trade-off caused by reproduction. In conclusion, the characterization of the ecological variables and physico-chemical conditions at each site, is crucial to perform a reliable assessment of the effects of a hypothetical pollution scenario in the Baltic Sea. Moreover, reference levels of biomarkers and their responses to natural environmental conditions must be established.
Collapse
Affiliation(s)
- Denis Benito
- CBET Research Group, Department of Zoology and Animal Cell Biology, Faculty of Science and Technology, Research Centre for Experimental Marine Biology and Biotechnology PIE, University of the Basque Country UPV/EHU, Sarriena z/g, Leioa, Basque Country, Spain
| | - Aino Ahvo
- Finnish Environment Institute, Marine Research Centre, Agnes Sjöbergin katu 2, FI-00790 Helsinki, Finland
| | - Jari Nuutinen
- Finnish Environment Institute, Laboratory Centre, Ultramariinikuja 4, FI-00430 Helsinki, Finland
| | - Dennis Bilbao
- IBEA Res Grp, Analytical Chemistry Dept. (Science and Technology Fac.), Univ Basque Country (UPV/EHU), PO Box 644, E-48080 Bilbao, Basque Country, Spain
| | - Jon Saenz
- Department of Applied Physics II, University of the Basque Country (UPV/EHU), B. Sarriena s/n, Leioa 48940, Spain
| | - Nestor Etxebarria
- IBEA Res Grp, Analytical Chemistry Dept. (Science and Technology Fac.), Univ Basque Country (UPV/EHU), PO Box 644, E-48080 Bilbao, Basque Country, Spain
| | - Xabier Lekube
- CBET Research Group, Department of Zoology and Animal Cell Biology, Faculty of Science and Technology, Research Centre for Experimental Marine Biology and Biotechnology PIE, University of the Basque Country UPV/EHU, Sarriena z/g, Leioa, Basque Country, Spain
| | - Urtzi Izagirre
- CBET Research Group, Department of Zoology and Animal Cell Biology, Faculty of Science and Technology, Research Centre for Experimental Marine Biology and Biotechnology PIE, University of the Basque Country UPV/EHU, Sarriena z/g, Leioa, Basque Country, Spain
| | - Kari K Lehtonen
- Finnish Environment Institute, Marine Research Centre, Agnes Sjöbergin katu 2, FI-00790 Helsinki, Finland
| | - Ionan Marigómez
- CBET Research Group, Department of Zoology and Animal Cell Biology, Faculty of Science and Technology, Research Centre for Experimental Marine Biology and Biotechnology PIE, University of the Basque Country UPV/EHU, Sarriena z/g, Leioa, Basque Country, Spain
| | - Beñat Zaldibar
- CBET Research Group, Department of Zoology and Animal Cell Biology, Faculty of Science and Technology, Research Centre for Experimental Marine Biology and Biotechnology PIE, University of the Basque Country UPV/EHU, Sarriena z/g, Leioa, Basque Country, Spain
| | - Manu Soto
- CBET Research Group, Department of Zoology and Animal Cell Biology, Faculty of Science and Technology, Research Centre for Experimental Marine Biology and Biotechnology PIE, University of the Basque Country UPV/EHU, Sarriena z/g, Leioa, Basque Country, Spain.
| |
Collapse
|
15
|
Bolognesi C. Micronucleus Experiments with Bivalve Molluscs. THE MICRONUCLEUS ASSAY IN TOXICOLOGY 2019. [DOI: 10.1039/9781788013604-00273] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The micronucleus (MN) test, as an index of accumulated DNA damage during the lifespan of cells, is the most applied assay in aquatic animals to assess the exposure to a complex mixture of genotoxic pollutants. An increase in MN frequency was reported on mussels exposed to the most common environmental pollutants under laboratory conditions, such as heavy metals, polycyclic aromatic hydrocarbons, and ionizing radiation. The test was applied in a large number of biomonitoring studies in different geographic areas to identify the exposure to different classes of pollutants with good discrimination power and to evaluate the recovery effects after accidental pollution events. A standardized MN assay protocol in hemocytes and gill cells for use in bivalve species, including scoring of different cell types, necrotic and apoptotic cells and nuclear anomalies, was established following the “cytome approach”. The mussel MNcytome (MUMNcyt) assay, using the proposed detailed criteria for the identification of cell types, is suitable for application in experimental studies under controlled conditions and in biomonitoring programs in aquatic environments.
Collapse
Affiliation(s)
- Claudia Bolognesi
- Unit of Environmental Carcinogenesis Ospedale Policlinico San Martino L.go Rosanna Benzi 10, 16132 Genova Italy
| |
Collapse
|
16
|
Vernon EL, Jha AN. Assessing relative sensitivity of marine and freshwater bivalves following exposure to copper: Application of classical and novel genotoxicological biomarkers. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2019; 842:60-71. [DOI: 10.1016/j.mrgentox.2019.01.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 01/15/2019] [Accepted: 01/17/2019] [Indexed: 12/20/2022]
|
17
|
Zaborska A, Siedlewicz G, Szymczycha B, Dzierzbicka-Głowacka L, Pazdro K. Legacy and emerging pollutants in the Gulf of Gdańsk (southern Baltic Sea) - loads and distribution revisited. MARINE POLLUTION BULLETIN 2019; 139:238-255. [PMID: 30686425 DOI: 10.1016/j.marpolbul.2018.11.060] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 11/22/2018] [Accepted: 11/23/2018] [Indexed: 06/09/2023]
Abstract
Coastal marine areas of densely populated countries are exposed to a wide array of human activities having an impact on their ecological status. The Baltic Sea is particularly susceptible to pollution by hazardous substances (limited water exchange, shallowness, and large catchment area). Polish media regularly reports ecological catastrophes in the Gulf of Gdańsk area caused by eg. shipwrecks leaking. Thus, there is a need of a broad scientific based report on recent contaminant loads and distribution. In this review paper, we report loads of contaminants from different obvious and non-obvious sources. We also gather data on legacy and new emerging contaminant concentrations measured in the Gulf of Gdańsk within the last decade (2008-2018). The paper also includes available biological effect measurements performed recently as well as a summary of needs and gaps to be filled for the development of reliable risk assessment.
Collapse
Affiliation(s)
- Agata Zaborska
- Institute of Oceanology, Polish Academy of Sciences, Powstańców Warszawy street 55, 81-712 Sopot, Poland.
| | - Grzegorz Siedlewicz
- Institute of Oceanology, Polish Academy of Sciences, Powstańców Warszawy street 55, 81-712 Sopot, Poland
| | - Beata Szymczycha
- Institute of Oceanology, Polish Academy of Sciences, Powstańców Warszawy street 55, 81-712 Sopot, Poland
| | - Lidia Dzierzbicka-Głowacka
- Institute of Oceanology, Polish Academy of Sciences, Powstańców Warszawy street 55, 81-712 Sopot, Poland
| | - Ksenia Pazdro
- Institute of Oceanology, Polish Academy of Sciences, Powstańców Warszawy street 55, 81-712 Sopot, Poland
| |
Collapse
|