1
|
Gao F, Zhu L, Zhang F, Li M, Lian H, Feng S, Cheng X, Xiang X. The toxicity comparison of metformin and its degradant guanylurea through multi-routes exposure experiments using algae and rotifer. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 299:118351. [PMID: 40393325 DOI: 10.1016/j.ecoenv.2025.118351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2025] [Revised: 05/06/2025] [Accepted: 05/16/2025] [Indexed: 05/22/2025]
Abstract
Metformin (MET) and its metabolite guanylurea (GUA) are prevalent in aquatic environments, raising concerns about their potential risks to aquatic organisms. However, the toxicity of these compounds through different exposure routes has not been reported. This study evaluated the effects of MET and GUA on the growth of the green algae Tetradesmus obliquus and on life table parameters of the freshwater rotifer Brachionus calyciflorus through various exposure routes, including waterborne, foodborne, and combined waterborne + foodborne. Our results indicated that both MET and GUA, at concentrations of 1 mg/L and 100 mg/L, inhibited algae growth, with GUA causing greater stress than MET. Additionally, compared to waterborne exposure, foodborne and combined waterborne + foodborne exposures of MET and GUA at these concentrations significantly decreased the net reproductive rate (R0), intrinsic rate of population increase (rm), and life expectancy (e0) of B. calyciflorus. Notably, the impact of exposure routes on the life table parameters of B. calyciflorus was generally greater than the impact of exposure concentrations. Therefore, previous studies focusing solely on waterborne exposure may have underestimated the toxicity of MET and GUA.
Collapse
Affiliation(s)
- Fan Gao
- School of Ecology and Environment, Anhui Normal University, Wuhu, Anhui 241002, China
| | - Lingyun Zhu
- School of Ecology and Environment, Anhui Normal University, Wuhu, Anhui 241002, China
| | - Fan Zhang
- School of Ecology and Environment, Anhui Normal University, Wuhu, Anhui 241002, China
| | - Meng Li
- School of Ecology and Environment, Anhui Normal University, Wuhu, Anhui 241002, China
| | - Hairong Lian
- School of Ecology and Environment, Anhui Normal University, Wuhu, Anhui 241002, China
| | - Sen Feng
- School of Ecology and Environment, Anhui Normal University, Wuhu, Anhui 241002, China
| | - Xinfeng Cheng
- School of Ecology and Environment, Anhui Normal University, Wuhu, Anhui 241002, China; Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-Founded by Anhui Province and Ministry of Education, Wuhu, Anhui 241000, China
| | - Xianling Xiang
- School of Ecology and Environment, Anhui Normal University, Wuhu, Anhui 241002, China; Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-Founded by Anhui Province and Ministry of Education, Wuhu, Anhui 241000, China.
| |
Collapse
|
2
|
Blandford NC, Palace V, Rodríguez-Gil JL, Timlick L, Stanley M, Frank RA, Campbell S, Rudy M, Marshall S, Wynia A, Clark T, Cunningham J, Alaee M, Parrott J, Kidd KA, Stevack K, Sabourin L, Renaud JB, Sumarah MW, Nielsen K, McMaster ME, Ussery E. Community-level responses and environmental fate of metformin in freshwater mesocosms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 957:177493. [PMID: 39566626 DOI: 10.1016/j.scitotenv.2024.177493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 10/31/2024] [Accepted: 11/08/2024] [Indexed: 11/22/2024]
Abstract
The type 2 diabetes drug metformin is among the most frequently prescribed, dispensed, and consumed pharmaceuticals worldwide; and its heavy use and poor breakdown means it is consequently detected in various wastewater treatment plant (WWTP) effluents and surface waters. The resulting environmental concentrations of metformin can have adverse impacts on aquatic ecosystems. An 8-week in-lake mesocosm experiment was conducted in a freshwater boreal lake at the IISD-Experimental Lakes Area (Ontario, Canada) to determine the environmental fate and effects of metformin. Mesocosms were assigned to nominal concentrations of 0, 5, or 50 μg L-1 metformin, in replicates of four. Biotic communities (i.e. microbial, phytoplankton, zooplankton, benthic macroinvertebrate) were assessed and complementary Lemna gibba and Daphnia magna bioassays were conducted in the laboratory. Metformin was extremely stable during the 8-week experiment, with mean measured concentrations of 0.00, 5.42, and 42.79 μg L-1 in mesocosm surface waters for the 0, 5, and 50 μg L-1 treatments, respectively. While trace amounts of metformin were detected in mesocosm sediments, the compound was primarily found in the water column. After over 1 year following metformin additions, the mean loss of metformin from surface water was 94.0 % and 91.0 % for the 5 and 50 μg L-1 treatment groups, respectively. No adverse effects of metformin treatment on the diversity, abundance, or biomass of microbial, phytoplankton, zooplankton, or benthic macroinvertebrate communities were found. Additionally, no survival or reproductive effects were observed in the 21-d Daphnia magna bioassays and no significant effects were observed in the 7-d Lemna gibba growth assays. No substantial metformin transformation to guanylurea was observed in mesocosm surface waters or sediments, likely due to a lack of bacterial degradation occurring within mesocosms relative to WWTPs.
Collapse
Affiliation(s)
- Nicholas C Blandford
- University of Manitoba, Winnipeg, Manitoba, Canada; International Institute for Sustainable Development - Experimental Lakes Area, Winnipeg, Manitoba, Canada
| | - Vince Palace
- International Institute for Sustainable Development - Experimental Lakes Area, Winnipeg, Manitoba, Canada
| | - José Luis Rodríguez-Gil
- University of Manitoba, Winnipeg, Manitoba, Canada; International Institute for Sustainable Development - Experimental Lakes Area, Winnipeg, Manitoba, Canada
| | - Lauren Timlick
- International Institute for Sustainable Development - Experimental Lakes Area, Winnipeg, Manitoba, Canada
| | | | - Richard A Frank
- Environment and Climate Change Canada, Burlington, Ontario, Canada
| | - Sheena Campbell
- Environment and Climate Change Canada, Burlington, Ontario, Canada
| | - Martina Rudy
- Environment and Climate Change Canada, Burlington, Ontario, Canada
| | | | - Abby Wynia
- Environment and Climate Change Canada, Burlington, Ontario, Canada
| | - Thomas Clark
- Environment and Climate Change Canada, Burlington, Ontario, Canada
| | | | - Mehran Alaee
- Environment and Climate Change Canada, Burlington, Ontario, Canada
| | - Joanne Parrott
- Environment and Climate Change Canada, Burlington, Ontario, Canada
| | - Karen A Kidd
- Department of Biology, McMaster University, Hamilton, Ontario, Canada
| | - Kathleen Stevack
- Ministry of the Environment, Conservation and Parks, Etobicoke, Ontario, Canada
| | - Lyne Sabourin
- Agriculture and Agri-Food Canada, London Research and Development Centre, London, ON N5V 4T3, Canada
| | - Justin B Renaud
- Agriculture and Agri-Food Canada, London Research and Development Centre, London, ON N5V 4T3, Canada
| | - Mark W Sumarah
- Agriculture and Agri-Food Canada, London Research and Development Centre, London, ON N5V 4T3, Canada
| | - Kristin Nielsen
- University of Texas at Austin, Department of Marine Science, Port Aransas, TX, USA
| | - Mark E McMaster
- Environment and Climate Change Canada, Burlington, Ontario, Canada
| | - Erin Ussery
- Environment and Climate Change Canada, Burlington, Ontario, Canada.
| |
Collapse
|
3
|
Zheng Y, Shao Y, Zhang Y, Liu Z, Zhao Z, Xu R, Ding J, Li W, Wang B, Zhang H. Metformin as an Emerging Pollutant in the Aquatic Environment: Occurrence, Analysis, and Toxicity. TOXICS 2024; 12:483. [PMID: 39058135 PMCID: PMC11281297 DOI: 10.3390/toxics12070483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 06/23/2024] [Accepted: 06/28/2024] [Indexed: 07/28/2024]
Abstract
The use of human and veterinary drugs has led to the accumulation of pharmaceuticals in various aquatic environments at progressively increasing levels, exhibiting strong ecological risks. Metformin is widely used as a first-line prescription drug for the treatment of type 2 diabetes mellitus as well as a livestock drug. Unlike other drugs, metformin is not metabolized in the body, and almost all of its intake is excreted and released into the aquatic environment via urine and feces, causing adverse effects on aquatic ecosystems. This review provides an overview of the occurrence and detection of metformin in the aquatic environment and its toxic effects on different aquatic organisms (fish, daphnia, rotifers, chlorella). Metformin has been documented in a variety of aqueous environments such as wastewater, surface water, and groundwater as well as drinking water. The wide distribution of metformin in the aqueous environment calls for the development of more accurate detection methods. This paper reviews detection methods for metformin in the aqueous environment and evaluates their advantages and disadvantages. Toxicity studies have shown that metformin can cause adverse reactions in fish, such as oxidative stress, genotoxicity, disruption of intestinal flora, and morphological alterations; it also affects the growth and reproduction of small aquatic organisms. Knowledge gaps in the field of metformin research were assessed, and future research priorities were identified.
Collapse
Affiliation(s)
- Yueyue Zheng
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Yongjian Shao
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Yinan Zhang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Zhiquan Liu
- School of Engineering, Hangzhou Normal University, Hangzhou 311121, China
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, Shanghai Academy of Environment Sciences, Shanghai 200233, China
| | - Zirui Zhao
- School of Engineering, Hangzhou Normal University, Hangzhou 311121, China
| | - Ranyun Xu
- School of Engineering, Hangzhou Normal University, Hangzhou 311121, China
| | - Jiafeng Ding
- School of Engineering, Hangzhou Normal University, Hangzhou 311121, China
| | - Wenbing Li
- School of Engineering, Hangzhou Normal University, Hangzhou 311121, China
| | - Binhao Wang
- School of Engineering, Hangzhou Normal University, Hangzhou 311121, China
| | - Hangjun Zhang
- School of Engineering, Hangzhou Normal University, Hangzhou 311121, China
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, Shanghai Academy of Environment Sciences, Shanghai 200233, China
| |
Collapse
|
4
|
Ussery E, McMaster M, Palace V, Parrott J, Blandford NC, Frank R, Kidd K, Birceanu O, Wilson J, Alaee M, Cunningham J, Wynia A, Clark T, Campbell S, Timlick L, Michaleski S, Marshall S, Nielsen K. Effects of metformin on wild fathead minnows (Pimephales promelas) using in-lake mesocosms in a boreal lake ecosystem. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 929:172457. [PMID: 38649046 DOI: 10.1016/j.scitotenv.2024.172457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 04/11/2024] [Accepted: 04/11/2024] [Indexed: 04/25/2024]
Abstract
Due to its widespread use for the treatment of Type-2 diabetes, metformin is routinely detected in surface waters globally. Laboratory studies have shown that environmentally relevant concentrations of metformin can adversely affect the health of adult fish, with effects observed more frequently in males. However, the potential risk to wild fish populations has yet to be fully elucidated and remains a topic of debate. To explore whether environmentally relevant metformin exposure poses a risk to wild fish populations, the present study exposed wild fathead minnows (Pimephales promelas) to 5 or 50 μg/L metformin via 2 m diameter in-lake mesocosms deployed in a natural boreal lake in Northern Ontario at the International Institute for Sustainable Development - Experimental Lakes Area (IISD-ELA). Environmental monitoring was performed at regular intervals for 8-weeks, with fish length, weight (body, liver and gonad), condition factor, gonadosomatic index, liver-somatic index, body composition (water and biomolecules) and hematocrit levels evaluated at test termination. Metabolic endpoints were also evaluated using liver, brain and muscle tissue, and gonads were evaluated histologically. Results indicate that current environmental exposure scenarios may be sufficient to adversely impact the health of wild fish populations. Adult male fish exposed to metformin had significantly reduced whole body weight and condition factor and several male fish from the high-dose metformin had oocytes in their testes. Metformin-exposed fish had altered moisture and lipid (decrease) content in their tissues. Further, brain (increase) and liver (decrease) glycogen were altered in fish exposed to high-dose metformin. To our knowledge, this study constitutes the first effort to understand metformin's effects on a wild small-bodied fish population under environmentally relevant field exposure conditions.
Collapse
Affiliation(s)
- Erin Ussery
- Environment and Climate Change Canada, Aquatic Contaminants Research Division, Burlington, Ontario, Canada
| | - Mark McMaster
- Environment and Climate Change Canada, Aquatic Contaminants Research Division, Burlington, Ontario, Canada
| | - Vince Palace
- University of Manitoba, Winnipeg, Manitoba, Canada; International Institute for Sustainable Development-Experimental Lakes Area, Winnipeg, Manitoba, Canada
| | - Joanne Parrott
- Environment and Climate Change Canada, Aquatic Contaminants Research Division, Burlington, Ontario, Canada
| | - Nicholas C Blandford
- University of Manitoba, Winnipeg, Manitoba, Canada; International Institute for Sustainable Development-Experimental Lakes Area, Winnipeg, Manitoba, Canada
| | - Richard Frank
- Environment and Climate Change Canada, Aquatic Contaminants Research Division, Burlington, Ontario, Canada
| | - Karen Kidd
- McMaster University, Department of Biology, Hamilton, Ontario, Canada
| | - Oana Birceanu
- Western University, Department of Physiology and Pharmacology, London, Ontario, Canada
| | - Joanna Wilson
- McMaster University, Department of Biology, Hamilton, Ontario, Canada
| | - Mehran Alaee
- Environment and Climate Change Canada, Aquatic Contaminants Research Division, Burlington, Ontario, Canada
| | - Jessie Cunningham
- Environment and Climate Change Canada, Aquatic Contaminants Research Division, Burlington, Ontario, Canada
| | - Abby Wynia
- Environment and Climate Change Canada, Aquatic Contaminants Research Division, Burlington, Ontario, Canada
| | - Thomas Clark
- Environment and Climate Change Canada, Aquatic Contaminants Research Division, Burlington, Ontario, Canada
| | - Sheena Campbell
- Environment and Climate Change Canada, Aquatic Contaminants Research Division, Burlington, Ontario, Canada
| | - Lauren Timlick
- International Institute for Sustainable Development-Experimental Lakes Area, Winnipeg, Manitoba, Canada
| | - Sonya Michaleski
- International Institute for Sustainable Development-Experimental Lakes Area, Winnipeg, Manitoba, Canada
| | - Stephanie Marshall
- Environment and Climate Change Canada, Aquatic Contaminants Research Division, Burlington, Ontario, Canada
| | - Kristin Nielsen
- University of Texas at Austin, Department of Marine Science, Port Aransas, TX, USA
| |
Collapse
|
5
|
Blewett TA, Ackerly KL, Schlenker LS, Martin S, Nielsen KM. Implications of biotic factors for toxicity testing in laboratory studies. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:168220. [PMID: 37924878 DOI: 10.1016/j.scitotenv.2023.168220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 10/25/2023] [Accepted: 10/28/2023] [Indexed: 11/06/2023]
Abstract
There is an emerging call from scientists globally to advance the environmental relevance of laboratory studies, particularly within the field of ecotoxicology. To answer this call, we must carefully examine and elucidate the shortcomings of standardized toxicity testing methods that are used in the derivation of toxicity values and regulatory criteria. As a consequence of rapidly accelerating climate change, the inclusion of abiotic co-stressors are increasingly being incorporated into toxicity studies, with the goal of improving the representativeness of laboratory-derived toxicity values used in ecological risk assessments. However, much less attention has been paid to the influence of biotic factors that may just as meaningfully impact our capacity to evaluate and predict risks within impacted ecosystems. Therefore, the overarching goal is to highlight key biotic factors that should be taken into consideration during the experimental design and model selection phase. SYNOPSIS: Scientists are increasingly finding that lab reared results in toxicology might not be reflective of the external wild environment, we highlight in this review some key considerations when working between the lab and field.
Collapse
Affiliation(s)
- Tamzin A Blewett
- University of Alberta, Department of Biological Sciences, Canada.
| | - Kerri Lynn Ackerly
- The University of Texas at Austin, Marine Science Institute, United States of America
| | - Lela S Schlenker
- East Carolina University, Department of Biology, United States of America
| | - Sidney Martin
- University of Alberta, Department of Biological Sciences, Canada
| | - Kristin M Nielsen
- The University of Texas at Austin, Marine Science Institute, United States of America
| |
Collapse
|
6
|
Elizalde-Velázquez GA, Herrera-Vázquez SE, Gómez-Oliván LM, García-Medina S. Health impact assessment after Danio rerio long-term exposure to environmentally relevant concentrations of metformin and guanylurea. CHEMOSPHERE 2023; 341:140070. [PMID: 37689151 DOI: 10.1016/j.chemosphere.2023.140070] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 07/19/2023] [Accepted: 09/03/2023] [Indexed: 09/11/2023]
Abstract
The antidiabetic drug metformin (MET) and its metabolite guanylurea (GUA) have been frequently and ubiquitously detected in surface water. Consequently, there has been a consistent rise in studying the toxicity of MET and GUA in fish over the past decade. Nonetheless, it is noteworthy that no study has assessed the harmful effects both compounds might trigger on fish blood and organs after chronic exposure. Taking into consideration the data above, our research strived to accomplish two primary objectives: Firstly, to assess the effect of comparable concentrations of MET and GUA (1, 40, 100 μg/L) on the liver, gills, gut, and brain of Danio rerio after six months of flow-through exposure. Secondly, to compare the outcomes to identify which compound prompts more significant oxidative stress and apoptosis in organs and blood parameter alterations. Herein, findings indicate that both compounds induced oxidative damage and increased the expression of genes associated with apoptosis (bax, bcl2, p53, and casp3). Chronic exposure to MET and GUA also generated fluctuations in glucose, creatinine, phosphorus, liver enzymes, red and white blood count, hemoglobin, and hematocrit levels. The observed biochemical changes indicate that MET and GUA are responsible for inducing hepatic damage in fish, whereas hematological alterations suggest that both compounds cause anemia. Considering GUA altered to a more considerable extent the values of all endpoints compared to the control group, it is suggested transformation product GUA is more toxic than MET. Moreover, based on the above evidence, it can be inferred that a six-month exposure to MET and GUA can impair REDOX status and generate apoptosis in fish, adversely affecting their essential organs' functioning.
Collapse
Affiliation(s)
- Gustavo Axel Elizalde-Velázquez
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma Del Estado de México. Paseo Colón Intersección Paseo Tollocan, Colonia Residencial Colón, CP 50120, Toluca, Estado de México, Mexico
| | - Selene Elizabeth Herrera-Vázquez
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma Del Estado de México. Paseo Colón Intersección Paseo Tollocan, Colonia Residencial Colón, CP 50120, Toluca, Estado de México, Mexico
| | - Leobardo Manuel Gómez-Oliván
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma Del Estado de México. Paseo Colón Intersección Paseo Tollocan, Colonia Residencial Colón, CP 50120, Toluca, Estado de México, Mexico. https://orcid.org/0000-0002-7248-3449
| | - Sandra García-Medina
- Laboratorio de Toxicología Acuática, Departamento de Farmacia, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional. Unidad Profesional Adolfo López Mateos, Av. Wilfrido Massieu S/n y Cerrada Manuel Stampa, Col. Industrial Vallejo, Ciudad de México, CP, 07700, Mexico
| |
Collapse
|
7
|
O'Rourke K, Virgiliou C, Theodoridis G, Gika H, Grintzalis K. The impact of pharmaceutical pollutants on daphnids - A metabolomic approach. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2023:104157. [PMID: 37225008 DOI: 10.1016/j.etap.2023.104157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 05/06/2023] [Accepted: 05/20/2023] [Indexed: 05/26/2023]
Abstract
Pharmaceuticals have been classified as emerging contaminants in the aquatic ecosystem, mainly due to their increased use and improper disposal. A significant range of pharmaceutical compounds and their metabolites have been globally detected in surface waters and pose detrimental effects to non-target organisms. Monitoring pharmaceutical water pollution relies on the analytical approaches for their detection, however, such approaches are limited by their sensitivity limit and coverage of the wide range pharmaceutical compounds. This lack of realism in risk assessment is bypassed with effect-based methods, which are complemented by chemical screening and impact modelling, and are able to provide mechanistic insight for pollution. Focusing on the freshwater ecosystem, in this study we evaluated the acute effects on daphnids for three distinct groups of pharmaceuticals; antibiotics, estrogens, and a range of commonly encountered environmentally relevant pharmaceutical pollutants. Combining several endpoints such as mortality, biochemical (enzyme activities) and holistic (metabolomics) we discovered distinct patterns in biological responses. In this study, changes in enzymes of metabolism e.g. phosphatases and lipase, as well as the detoxification enzyme, glutathione-S-transferase, were recorded following acute exposure to the selected pharmaceuticals. A targeted analysis of the hydrophilic profile of daphnids revealed mainly the up-regulation of metabolites following metformin, gabapentin, amoxicillin, trimethoprim and β-estradiol. Whereas gemfibrozil, sulfamethoxazole and oestrone exposure resulted in the down-regulation of majority of metabolites.
Collapse
Affiliation(s)
- Katie O'Rourke
- School of Biotechnology, Dublin City University, Republic of Ireland.
| | - Christina Virgiliou
- Department of Chemical Engineering, Laboratory of Analytical Chemistry, and Center for Interdisciplinary Research and Innovation (CIRI-AUTH) Biomic_AUTh, Aristotle University of Thessaloniki, Thessaloniki, Greece.
| | - Georgios Theodoridis
- Department of Chemistry, Aristotle University, Thessaloniki 54124, Greece; Biomic_AUTh, Center for Interdisciplinary Research and Innovation (CIRI-AUTH), Balkan Center, B1.4, Thessaloniki, 10th km Thessaloniki-Thermi Rd, P.O. Box 8318, GR 57001, Greece; FoodOmicsGR, Research Infrastructure, Aristotle University Node, Thessaloniki, 10th km Thessaloniki-Thermi Rd, P.O. Box 8318, 57001,Greece.
| | - Helen Gika
- Laboratory of Forensic Medicine & Toxicology, School of Medicine, Aristotle University of Thessaloniki, 54124, Greece; Biomic AUTH, Center for Interdisciplinary Research and Innovation (CIRI-AUTH), Balkan Center B1.4, Thessaloniki GR 57001, Greece.
| | | |
Collapse
|
8
|
Elizalde-Velázquez GA, Gómez-Oliván LM, García-Medina S, Hernández-Díaz M, Islas-Flores H, Galar-Martínez M, García-Medina AL, Chanona-Pérez JJ, Hernández-Varela JD. Polystyrene microplastics mitigate the embryotoxic damage of metformin and guanylurea in Danio rerio. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 852:158503. [PMID: 36058320 DOI: 10.1016/j.scitotenv.2022.158503] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 08/29/2022] [Accepted: 08/30/2022] [Indexed: 06/15/2023]
Abstract
Microplastics (MPs) alone may endanger the health and fitness of aquatic species through different mechanisms. However, the harmful effects of these when mixed with other emerging contaminants require additional research. Herein, we aimed to determine whether a mixture of MPs with metformin (MET) or guanylurea (GUA) might induce embryotoxicity and oxidative stress in Danio rerio. Upon exposure to mixtures, our results showed MPs reduced the mortality rate of MET and GUA in embryos. Moreover, the severity and the rate of malformations were also decreased in all mixtures with MPs. Concerning oxidative stress, our findings indicated MET, GUA, MPs, and the mixtures increased the levels of lipoperoxidation, hydroperoxide content, and protein carbonyl content in D. rerio larvae. However, the oxidative damage induced in all mixtures was lower than that produced by both drugs alone. Thus, it is likely that the accumulation of MPs avoided the entrance of MET and GUA into the embryos. Once the embryo hatched, MPs did only remain accumulated in the yolk sac of larvae and did not translocate to other organs. Our risk assessment analysis confirmed that MPs shrunk the damage produced by MET and GUA. In a nutshell, MPs mitigate the embryotoxic damage of metformin and guanylurea in D. rerio by blocking their entrance.
Collapse
Affiliation(s)
- Gustavo Axel Elizalde-Velázquez
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan, Colonia Residencial Colón, CP 50120 Toluca, Estado de México, Mexico
| | - Leobardo Manuel Gómez-Oliván
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan, Colonia Residencial Colón, CP 50120 Toluca, Estado de México, Mexico.
| | - Sandra García-Medina
- Laboratorio de Toxicología Acuática, Departamento de Farmacia, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Unidad Profesional Adolfo López Mateos, Av. Wilfrido Massieu s/n y cerrada Manuel Stampa, Col. Industrial Vallejo, Ciudad de México CP 07700, Mexico
| | - Misael Hernández-Díaz
- Laboratorio de Toxicología Acuática, Departamento de Farmacia, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Unidad Profesional Adolfo López Mateos, Av. Wilfrido Massieu s/n y cerrada Manuel Stampa, Col. Industrial Vallejo, Ciudad de México CP 07700, Mexico
| | - Hariz Islas-Flores
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan, Colonia Residencial Colón, CP 50120 Toluca, Estado de México, Mexico
| | - Marcela Galar-Martínez
- Laboratorio de Toxicología Acuática, Departamento de Farmacia, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Unidad Profesional Adolfo López Mateos, Av. Wilfrido Massieu s/n y cerrada Manuel Stampa, Col. Industrial Vallejo, Ciudad de México CP 07700, Mexico
| | - Alba Lucero García-Medina
- Laboratorio de Toxicología Acuática, Departamento de Farmacia, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Unidad Profesional Adolfo López Mateos, Av. Wilfrido Massieu s/n y cerrada Manuel Stampa, Col. Industrial Vallejo, Ciudad de México CP 07700, Mexico
| | - José Jorge Chanona-Pérez
- Departamento de Ingeniería Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Unidad Profesional Adolfo López Mateos, Av. Wilfrido Massieu s/n y cerrada Manuel Stampa, Col. Industrial Vallejo, Ciudad de México CP 07700, Mexico
| | - Josué David Hernández-Varela
- Departamento de Ingeniería Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Unidad Profesional Adolfo López Mateos, Av. Wilfrido Massieu s/n y cerrada Manuel Stampa, Col. Industrial Vallejo, Ciudad de México CP 07700, Mexico
| |
Collapse
|
9
|
Blackwell BR, Ankley GT, Biales AD, Cavallin JE, Cole AR, Collette TW, Ekman DR, Hofer RN, Huang W, Jensen KM, Kahl MD, Kittelson AR, Romano SN, See MJ, Teng Q, Tilton CB, Villeneuve DL. Effects of Metformin and its Metabolite Guanylurea on Fathead Minnow (Pimephales promelas) Reproduction. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2022; 41:2708-2720. [PMID: 35920346 PMCID: PMC10634263 DOI: 10.1002/etc.5450] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/25/2022] [Accepted: 07/26/2022] [Indexed: 06/15/2023]
Abstract
Metformin, along with its biotransformation product guanylurea, is commonly observed in municipal wastewaters and subsequent surface waters. Previous studies in fish have identified metformin as a potential endocrine-active compound, but there are inconsistencies with regard to its effects. To further investigate the potential reproductive toxicity of metformin and guanylurea to fish, a series of experiments was performed with adult fathead minnows (Pimephales promelas). First, explants of fathead minnow ovary tissue were exposed to 0.001-100 µM metformin or guanylurea to investigate whether the compounds could directly perturb steroidogenesis. Second, spawning pairs of fathead minnows were exposed to metformin (0.41, 4.1, and 41 µg/L) or guanylurea (1.0, 10, and 100 µg/L) for 23 days to assess impacts on reproduction. Lastly, male fathead minnows were exposed to 41 µg/L metformin, 100 µg/L guanylurea, or a mixture of both compounds, with samples collected over a 96-h time course to investigate potential impacts to the hepatic transcriptome or metabolome. Neither metformin nor guanylurea affected steroid production by ovary tissue exposed ex vivo. In the 23 days of exposure, neither compound significantly impacted transcription of endocrine-related genes in male liver or gonad, circulating steroid concentrations in either sex, or fecundity of spawning pairs. In the 96-h time course, 100 µg guanylurea/L elicited more differentially expressed genes than 41 µg metformin/L and showed the greatest impacts at 96 h. Hepatic transcriptome and metabolome changes were chemical- and time-dependent, with the largest impact on the metabolome observed at 23 days of exposure to 100 µg guanylurea/L. Overall, metformin and guanylurea did not elicit effects consistent with reproductive toxicity in adult fathead minnows at environmentally relevant concentrations. Environ Toxicol Chem 2022;41:2708-2720. © 2022 SETAC. This article has been contributed to by U.S. Government employees and their work is in the public domain in the USA.
Collapse
Affiliation(s)
- Brett R. Blackwell
- Great Lakes Toxicology and Ecology Division, US Environmental Protection Agency, Duluth, Minnesota, USA
| | - Gerald T. Ankley
- Great Lakes Toxicology and Ecology Division, US Environmental Protection Agency, Duluth, Minnesota, USA
| | - Adam D. Biales
- Great Lakes Toxicology and Ecology Division, US Environmental Protection Agency, Cincinnati, Ohio, USA
| | - Jenna E. Cavallin
- Great Lakes Toxicology and Ecology Division, US Environmental Protection Agency, Duluth, Minnesota, USA
| | - Alexander R. Cole
- Oak Ridge Institute for Science and Education, Duluth, Minnesota, USA
| | - Timothy W. Collette
- Ecosystem Processes Division, US Environmental Protection Agency, Athens, Georgia, USA
| | - Drew R. Ekman
- Ecosystem Processes Division, US Environmental Protection Agency, Athens, Georgia, USA
| | - Rachel N. Hofer
- Oak Ridge Institute for Science and Education, Duluth, Minnesota, USA
| | - Weichun Huang
- Great Lakes Toxicology and Ecology Division, US Environmental Protection Agency, Research Triangle Park, North Carolina, USA
| | - Kathleen M. Jensen
- Great Lakes Toxicology and Ecology Division, US Environmental Protection Agency, Duluth, Minnesota, USA
| | - Michael D. Kahl
- Great Lakes Toxicology and Ecology Division, US Environmental Protection Agency, Duluth, Minnesota, USA
| | | | - Shannon N. Romano
- Ecosystem Processes Division, US Environmental Protection Agency, Athens, Georgia, USA
| | - Mary Jean See
- Great Lakes Toxicology and Ecology Division, US Environmental Protection Agency, Cincinnati, Ohio, USA
| | - Quincy Teng
- Ecosystem Processes Division, US Environmental Protection Agency, Athens, Georgia, USA
| | | | - Daniel L. Villeneuve
- Great Lakes Toxicology and Ecology Division, US Environmental Protection Agency, Duluth, Minnesota, USA
| |
Collapse
|
10
|
He Y, Zhang Y, Ju F. Metformin Contamination in Global Waters: Biotic and Abiotic Transformation, Byproduct Generation and Toxicity, and Evaluation as a Pharmaceutical Indicator. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:13528-13545. [PMID: 36107956 DOI: 10.1021/acs.est.2c02495] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Metformin is the first-line antidiabetic drug and one of the most prescribed medications worldwide. Because of its ubiquitous occurrence in global waters and demonstrated ecotoxicity, metformin, as with other pharmaceuticals, has become a concerning emerging contaminant. Metformin is subject to transformation, producing numerous problematic transformation byproducts (TPs). The occurrence, removal, and toxicity of metformin have been continually reviewed; yet, a comprehensive analysis of its transformation pathways, byproduct generation, and the associated change in adverse effects is lacking. In this review, we provide a critical overview of the transformation fate of metformin during water treatments and natural processes and compile the 32 organic TPs generated from biotic and abiotic pathways. These TPs occur in aquatic systems worldwide along with metformin. Enhanced toxicity of several TPs compared to metformin has been demonstrated through organism tests and necessitates the development of complete mineralization techniques for metformin and more attention on TP monitoring. We also assess the potential of metformin to indicate overall contamination of pharmaceuticals in aquatic environments, and compared to the previously acknowledged ones, metformin is found to be a more robust or comparable indicator of such overall pharmaceutical contamination. In addition, we provide insightful avenues for future research on metformin.
Collapse
Affiliation(s)
- Yuanzhen He
- Key Laboratory of Coastal Environment and Resources of Zhejiang Province, School of Engineering, Westlake University, Hangzhou 310024, China
- Institute of Advanced Technology, Westlake Institute for Advanced Study, Hangzhou, 310024, China
| | - Yanyan Zhang
- Key Laboratory of Coastal Environment and Resources of Zhejiang Province, School of Engineering, Westlake University, Hangzhou 310024, China
- Institute of Advanced Technology, Westlake Institute for Advanced Study, Hangzhou, 310024, China
| | - Feng Ju
- Key Laboratory of Coastal Environment and Resources of Zhejiang Province, School of Engineering, Westlake University, Hangzhou 310024, China
- Institute of Advanced Technology, Westlake Institute for Advanced Study, Hangzhou, 310024, China
- Research Center for Industries of the Future (RCIF), School of Engineering, Westlake University, Hangzhou 310030, China
- Westlake Laboratory of Life Sciences and Biomedicine, 310024, Hangzhou, China
| |
Collapse
|
11
|
Nielsen KM, DeCamp L, Birgisson M, Palace VP, Kidd KA, Parrott JL, McMaster ME, Alaee M, Blandford N, Ussery EJ. Comparative Effects of Embryonic Metformin Exposure on Wild and Laboratory-Spawned Fathead Minnow ( Pimephales promelas) Populations. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:10193-10203. [PMID: 35748754 DOI: 10.1021/acs.est.2c01079] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Metformin is routinely detected in aquatic ecosystems because of its widespread use as a treatment for Type 2 diabetes. Laboratory studies have shown that exposure to environmentally relevant concentrations of metformin can alter metabolic pathways and impact the growth of early life stage (ELS) fish; however, it is unknown whether these effects occur in wild populations. Herein, we evaluate whether findings from laboratory studies are representative and describe the relative sensitivities of both populations. Duplicate exposures (0, 5, or 50 μg/L metformin) were conducted using wild- and lab-spawned fathead minnow (Pimephales promelas) embryos. Apart from the water source, exposure conditions remained constant. Wild embryos were exposed to previously dosed lake water to account for changes in bioavailability, while reconstituted freshwater was used for the laboratory study. Developmental metformin exposure differentially impacted the growth and morphology of both cohorts, with energy dyshomeostasis and visual effects indicated. The fitness of wild-spawned larvae was impacted to a greater extent relative to lab-spawned fish. Moreover, baseline data reveal important morphological differences between wild- and lab-spawned ELS fatheads that may diminish representativeness of lab studies. Findings also confirm the bioavailability of metformin in naturally occurring systems and suggest current exposure scenarios may be sufficient to negatively impact developing fish.
Collapse
Affiliation(s)
- Kristin M Nielsen
- Department of Marine Science, University of Texas at Austin, Port Aransas, Texas 78373, USA
| | - Lily DeCamp
- Department of Marine Science, University of Texas at Austin, Port Aransas, Texas 78373, USA
| | - Mona Birgisson
- Department of Marine Science, University of Texas at Austin, Port Aransas, Texas 78373, USA
| | - Vince P Palace
- International Institute for Sustainable Development─Experimental Lakes Area, Winnipeg, Manitoba R3B 0T4, Canada
- University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada
| | - Karen A Kidd
- Department of Biology & School of Earth, Environment & Society, McMaster University, Hamilton, Ontario L8S 4L8, Canada
| | - Joanne L Parrott
- Aquatic Contaminants Research Division, Environment and Climate Change Canada, Burlington, Ontario L7S 1A1, Canada
| | - Mark E McMaster
- Aquatic Contaminants Research Division, Environment and Climate Change Canada, Burlington, Ontario L7S 1A1, Canada
| | - Mehran Alaee
- Aquatic Contaminants Research Division, Environment and Climate Change Canada, Burlington, Ontario L7S 1A1, Canada
| | | | - Erin J Ussery
- Aquatic Contaminants Research Division, Environment and Climate Change Canada, Burlington, Ontario L7S 1A1, Canada
| |
Collapse
|
12
|
Elizalde-Velázquez GA, Gómez-Oliván LM, Rosales-Pérez KE, Orozco-Hernández JM, García-Medina S, Islas-Flores H, Galar-Martínez M. Chronic exposure to environmentally relevant concentrations of guanylurea induces neurotoxicity of Danio rerio adults. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 819:153095. [PMID: 35038519 DOI: 10.1016/j.scitotenv.2022.153095] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 01/07/2022] [Accepted: 01/09/2022] [Indexed: 06/14/2023]
Abstract
Recent studies have shown guanylurea (GUA) alters the growth and development of fish, induces oxidative stress, and disrupts the levels and expression of several genes, metabolites, and proteins related to the overall fitness of fish. Nonetheless, up to date, no study has assessed the potential neurotoxic effects that GUA may induce in non-target organisms. To fill the current knowledge gaps about the effects of this metabolite in the central nervous system of fish, we aimed to determine whether or not environmentally relevant concentrations of this metabolite may disrupt the behavior, redox status, AChE activity in Danio rerio adults. In addition, we also meant to assess if 25, 50, and 200 μg/L of GUA can alter the expression of several antioxidant defenses-, apoptosis-, AMPK pathway-, and neuronal communication-related genes in the brain of fish exposed for four months to GUA. Our results demonstrated that chronic exposure to GUA altered the swimming behavior of D. rerio, as fish remained more time frozen and traveled less distance in the tank compared to the control group. Moreover, this metabolite significantly increased the levels of oxidative damage biomarkers and inhibited the activity of acetylcholinesterase of fish in a concentration-dependent manner. Concerning gene expression, environmentally relevant concentrations of GUA downregulated the expression GRID2IP, PCDH17, and PCDH19, but upregulated Nrf1, Nrf2, p53, BAX, CASP3, PRKAA1, PRKAA2, and APP in fish after four months of exposure. Collectively, we can conclude that GUA may alter the homeostasis of several essential brain biomarkers, generating anxiety-like behavior in fish.
Collapse
Affiliation(s)
- Gustavo Axel Elizalde-Velázquez
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan, Colonia Residencial Colón, CP 50120 Toluca, Estado de México, Mexico
| | - Leobardo Manuel Gómez-Oliván
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan, Colonia Residencial Colón, CP 50120 Toluca, Estado de México, Mexico.
| | - Karina Elisa Rosales-Pérez
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan, Colonia Residencial Colón, CP 50120 Toluca, Estado de México, Mexico
| | - José Manuel Orozco-Hernández
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan, Colonia Residencial Colón, CP 50120 Toluca, Estado de México, Mexico
| | - Sandra García-Medina
- Laboratorio de Toxicología Acuática, Departamento de Farmacia, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Unidad Profesional Adolfo López Mateos, Av. Wilfrido Massieu s/n y cerrada Manuel Stampa, Col. Industrial Vallejo, Ciudad de México, CP 07700, Mexico
| | - Hariz Islas-Flores
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan, Colonia Residencial Colón, CP 50120 Toluca, Estado de México, Mexico
| | - Marcela Galar-Martínez
- Laboratorio de Toxicología Acuática, Departamento de Farmacia, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Unidad Profesional Adolfo López Mateos, Av. Wilfrido Massieu s/n y cerrada Manuel Stampa, Col. Industrial Vallejo, Ciudad de México, CP 07700, Mexico
| |
Collapse
|
13
|
Dumas T, Courant F, Fenet H, Gomez E. Environmental Metabolomics Promises and Achievements in the Field of Aquatic Ecotoxicology: Viewed through the Pharmaceutical Lens. Metabolites 2022; 12:186. [PMID: 35208259 PMCID: PMC8880617 DOI: 10.3390/metabo12020186] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 02/14/2022] [Accepted: 02/16/2022] [Indexed: 02/04/2023] Open
Abstract
Scientists often set ambitious targets using environmental metabolomics to address challenging ecotoxicological issues. This promising approach has a high potential to elucidate the mechanisms of action (MeOAs) of contaminants (in hazard assessments) and to develop biomarkers (in environmental biomonitoring). However, metabolomics fingerprints often involve a complex mixture of molecular effects that are hard to link to a specific MeOA (if detected in the analytical conditions used). Given these promises and limitations, here we propose an updated review on the achievements of this approach. Metabolomics-based studies conducted on the effects of pharmaceutical active compounds in aquatic organisms provide a relevant means to review the achievements of this approach, as prior knowledge about the MeOA of these molecules could help overcome some shortcomings. This review highlighted that current metabolomics advances have enabled more accurate MeOA assessment, especially when combined with other omics approaches. The combination of metabolomics with other measured biological endpoints has also turned out to be an efficient way to link molecular effects to (sub)-individual adverse outcomes, thereby paving the way to the construction of adverse outcome pathways (AOPs). Here, we also discuss the importance of determining MeOA as a key strategy in the identification of MeOA-specific biomarkers for biomonitoring. We have put forward some recommendations to take full advantage of environmental metabolomics and thus help fulfil these promises.
Collapse
Affiliation(s)
| | - Frédérique Courant
- HydroSciences Montpellier, IRD, CNRS, University of Montpellier, Montpellier, France; (T.D.); (H.F.); (E.G.)
| | | | | |
Collapse
|
14
|
Elizalde-Velázquez GA, Gómez-Oliván LM, Islas-Flores H, Hernández-Navarro MD, García-Medina S, Galar-Martínez M. Oxidative stress as a potential mechanism by which guanylurea disrupts the embryogenesis of Danio rerio. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 799:149432. [PMID: 34365262 DOI: 10.1016/j.scitotenv.2021.149432] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 07/29/2021] [Accepted: 07/30/2021] [Indexed: 06/13/2023]
Abstract
Metformin is one the most prescribed drug to treat type 2 diabetes. In wastewater treatment plants, this drug is bacterially transformed to guanylurea, which occurs at higher concentrations in the aquatic environments than its parent compound. Since there is a huge knowledge gap about the toxicity of this metabolite on aquatic organisms, we aimed to investigate the impact of guanylurea on the embryonic development and oxidative stress biomarkers of zebrafish (Danio rerio). For this effect, zebrafish embryos (4 h post fertilization) were exposed to 25, 50, 100, 200, 250, 25,000, 50,000, 75,000 μg/L guanylurea until 96 h post fertilization. Guanylurea led to a significant delay in the hatching process in all exposure groups. Furthermore, this transformation product affected the embryonic development of fish, inducing severe body alterations and consequently leading to their death. The most pronounced malformations were malformation of tail, scoliosis, pericardial edema, yolk deformation and craniofacial malformation. Concerning oxidative stress response, we demonstrated that guanylurea induced the antioxidant activity of superoxide dismutase, catalase, and glutathione peroxidase in zebrafish embryos. In addition, the levels of lipid peroxidation, protein carbonyl and hydroperoxide content were also increased in the embryos exposed to this transformation product. However, the integrated biomarker response (IBR) analysis carried out in this study demonstrated that oxidative damage biomarkers got more influence over the embryos than antioxidant enzymes. Thus, we can conclude that guanylurea induces oxidative stress in zebrafish embryos, and that this transformation product impair the normal development of this freshwater organism.
Collapse
Affiliation(s)
- Gustavo Axel Elizalde-Velázquez
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan, Colonia Residencial Colón, CP 50120 Toluca, Estado de México, Mexico
| | - Leobardo Manuel Gómez-Oliván
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan, Colonia Residencial Colón, CP 50120 Toluca, Estado de México, Mexico.
| | - Hariz Islas-Flores
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan, Colonia Residencial Colón, CP 50120 Toluca, Estado de México, Mexico
| | - María Dolores Hernández-Navarro
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan, Colonia Residencial Colón, CP 50120 Toluca, Estado de México, Mexico
| | - Sandra García-Medina
- Laboratorio de Toxicología Acuática, Departamento de Farmacia, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Unidad Profesional Adolfo López Mateos, Av. Wilfrido Massieu s/n y cerrada Manuel Stampa, Col. Industrial Vallejo, Ciudad de México CP 07700, Mexico
| | - Marcela Galar-Martínez
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan, Colonia Residencial Colón, CP 50120 Toluca, Estado de México, Mexico
| |
Collapse
|