1
|
Kurowska P, Berthet L, Ramé C, Węgiel M, Maślanka A, Guérif F, Froment P, Rak A, Dupont J. Polycyclic aromatic hydrocarbons in human granulosa cells: first in vivo presence and positive correlation with body mass index and in vitro ovarian cell steroidogenesis regulation. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2025; 113:104611. [PMID: 39674531 DOI: 10.1016/j.etap.2024.104611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 12/09/2024] [Accepted: 12/10/2024] [Indexed: 12/16/2024]
Abstract
Polycyclic Aromatic Hydrocarbons (PAHs) exposure leads to disorders reported in female infertility patients. Our hypothesis is that PAHs accumulate in granulosa cells (Gc) according to body mass index (BMI) and directly affects its functions. All 16 high-priority PAHs were in human FF, Gc and blood plasma with the highest concentration in Gc (GC-MS/MS). Their highest concentration was in obese Gc, except for acenaphthene and acenaphthylene, and positively correlated with BMI. In FF, we noted only positive correlation between naphthalene and BMI, whereas in blood plasma positive correlation between naphthalene, acenaphthene, pyrene and BMI. Phenanthrene and naphthalene but not fluoranthene inhibited totally steroidogenesis (ELISA), CYP19A1 mRNA expression (real-time PCR) and increased oxidative stress index and catalase expression in Gc independently on BMI. While all studied PAHs decreased Gc proliferation (BrdU assay) and viability (Cell Count kit-8 assay). Thus, Gc PAHs concentrations are positively correlated with BMI and alter ovarian functions.
Collapse
Affiliation(s)
- Patrycja Kurowska
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Gronostajowa 9 Street, Krakow 30-387, Poland.
| | - Lucille Berthet
- INRAE UMR 85 Physiologie de la Reproduction et des Comportements, Nouzilly 37380, France.
| | - Christelle Ramé
- INRAE UMR 85 Physiologie de la Reproduction et des Comportements, Nouzilly 37380, France.
| | - Małgorzata Węgiel
- Faculty of Chemical Engineering and Technology, Cracow University of Technology, Warszawska 24 Street, Kracow 31-155, Poland.
| | - Anna Maślanka
- Faculty of Chemical Engineering and Technology, Cracow University of Technology, Warszawska 24 Street, Kracow 31-155, Poland.
| | - Fabrice Guérif
- Service de Médecine et Biologie de la Reproduction, CHRU de Tours, Tours, France.
| | - Pascal Froment
- INRAE UMR 85 Physiologie de la Reproduction et des Comportements, Nouzilly 37380, France.
| | - Agnieszka Rak
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Gronostajowa 9 Street, Krakow 30-387, Poland.
| | - Joelle Dupont
- INRAE UMR 85 Physiologie de la Reproduction et des Comportements, Nouzilly 37380, France.
| |
Collapse
|
2
|
Li J, Liu X, Fu J, Gong Z, Jiang SY, Chen JP. Metabolic profile changes of zebrafish larvae in the single- and co-exposures of microplastics and phenanthrene. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 953:175994. [PMID: 39236825 DOI: 10.1016/j.scitotenv.2024.175994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 08/29/2024] [Accepted: 08/31/2024] [Indexed: 09/07/2024]
Abstract
Microplastics (MPs) are ubiquitous in the environment, and can adsorb organic contaminants (OCs) and be taken by various microorganisms and organisms, which could eventually lead to risk to humans. In this study, the phenotypic changes and metabolic profile alternations of zebrafish in the single- and co-exposure of MPs and phenanthrene (Phe) were investigated. The results showed that significantly higher tail malformation rate and edema rate in zebrafish induced by MPs can be enhanced due to the co-existence of Phe. The metabolomic analysis revealed that both synergistic and antagonistic effects of MPs and Phe on the metabolic alternation of zebrafish larvae exist, since unique perturbations of metabolites or pathways were found in all of the three exposure scenarios. Based on Partial least squares-discriminant analysis, porphine, ribose, and L-glutamic acid were the most important metabolites resulting in the difference between the treated and control groups in the MP exposure, Phe exposure and co-exposure, respectively. Two dysregulated pathways namely d-glutamine and D-glutamate metabolism, and alanine, aspartate and glutamate metabolism were significantly affected in the co-exposure while not in either of the single exposure. These findings provide new insights into the toxic effects of MPs on aquatic organisms, and further studies on combined effects of MPs and OCs are suggested to be conducted.
Collapse
Affiliation(s)
- Jingyi Li
- Department of Civil and Environmental Engineering, National University of Singapore, 10 Kent Ridge, Singapore; Sichuan Cancer Hospital, Chengdu, China
| | - Xiao Liu
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518055, China
| | - Jing Fu
- Department of Civil and Environmental Engineering, National University of Singapore, 10 Kent Ridge, Singapore; Key Laboratory of Organic Compound Pollution Control Engineering, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, China
| | - Zhiyuan Gong
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore
| | - Sabrina Yanan Jiang
- National Observation and Research Station of Coastal Ecological Environments in Macao, Macao Environmental Research Institute, Macau University of Science and Technology, Taipa, 999078 Macao, China
| | - J Paul Chen
- Department of Civil and Environmental Engineering, National University of Singapore, 10 Kent Ridge, Singapore; College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518055, China.
| |
Collapse
|
3
|
Essfeld F, Luckner B, Bruder A, Marghany F, Ayobahan SU, Alvincz J, Eilebrecht S. Gene biomarkers for the assessment of thyroid-disrupting activity in zebrafish embryos. CHEMOSPHERE 2024; 365:143287. [PMID: 39243900 DOI: 10.1016/j.chemosphere.2024.143287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/21/2024] [Accepted: 09/04/2024] [Indexed: 09/09/2024]
Abstract
Active ingredients of pesticides or biocides and industrial chemicals can negatively affect environmental organisms, potentially endangering populations and ecosystems. European legislation mandates that chemical manufacturers provide data for the environmental risk assessment of substances to obtain registration. Endocrine disruptors, substances that interfere with the hormone system, are not granted marketing authorization due to their adverse effects. Current methods for identifying disruptors targeting the thyroid hormone system are costly and require many amphibians. Consequently, alternative methods compliant with the 3R principle (replacement, reduction, refinement) are essential to prioritize risk assessment using reliable biomarkers at non-protected life stages. Our study focused on detecting robust biomarkers for thyroid-disrupting mechanisms of action (MoA) by analyzing molecular signatures in zebrafish embryos induced by deiodinase inhibitor iopanoic acid and thyroid peroxidase inhibitor methimazole. We exposed freshly fertilized zebrafish eggs to these compounds, measuring lethality, hatching rate, swim bladder size and transcriptomic responses. Both compounds significantly reduced swim bladder size, aligning with prior findings. Transcriptome analysis revealed specific molecular fingerprints consistent with the MoA under investigation. This analysis confirmed regulation directions seen in other studies involving thyroid disruptors and allowed us to identify genes like tg, scl2a11b, guca1d, cthrc1a, si:ch211-226h7.5, soul5, nnt2, cox6a2 and mep1a as biomarker genes for thyroid disrupting MoA in zebrafish embryos as per OECD test guideline 236. Future screening methods based on our findings will enable precise identification of thyroid-related activity in chemicals, promoting the development of environmentally safer substances. Additionally, these biomarkers could potentially be incorporated into legally mandated chronic toxicity tests in fish, potentially replacing amphibian tests for thyroid disruption screening in the future.
Collapse
Affiliation(s)
- Fabian Essfeld
- Department Ecotoxicogenomics, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Schmallenberg, Germany; Computational Biology, Faculty of Biology, Bielefeld University, Bielefeld, Germany
| | - Benedikt Luckner
- Department Ecotoxicogenomics, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Schmallenberg, Germany
| | - Antonia Bruder
- Department Ecotoxicogenomics, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Schmallenberg, Germany; Biotechnology, Faculty of Biology, University of Münster, Germany
| | - Fatma Marghany
- Department Ecotoxicogenomics, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Schmallenberg, Germany; Department Evolutionary Ecology and Environmental Toxicology, Faculty Biological Sciences, Goethe University Frankfurt, Frankfurt, Germany; Department of Botany and Microbiology, Faculty of Science, Cairo University, Giza, Egypt
| | - Steve Uwa Ayobahan
- Department Ecotoxicogenomics, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Schmallenberg, Germany
| | - Julia Alvincz
- Department Ecotoxicogenomics, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Schmallenberg, Germany
| | - Sebastian Eilebrecht
- Department Ecotoxicogenomics, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Schmallenberg, Germany.
| |
Collapse
|
4
|
Park S, Siwakoti RC, Ferguson KK, Cathey AL, Hao W, Cantonwine DE, Mukherjee B, McElrath TF, Meeker JD. Associations of urinary polycyclic aromatic hydrocarbon (PAH) metabolites and their mixture with thyroid hormone concentration during pregnancy in the LIFECODES cohort: A repeated measures study. ENVIRONMENTAL RESEARCH 2024; 255:119205. [PMID: 38782334 PMCID: PMC11421857 DOI: 10.1016/j.envres.2024.119205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 05/08/2024] [Accepted: 05/20/2024] [Indexed: 05/25/2024]
Abstract
BACKGROUND Polycyclic aromatic hydrocarbons (PAHs) are endocrine disruptors resulting from incomplete combustion. Pregnancy represents a particularly vulnerable period to such exposures, given the significant influence of hormone physiology on fetal growth and pregnancy outcomes. Maternal thyroid hormones play crucial roles in fetal development and pregnancy outcomes. However, limited studies have examined gestational PAH exposure and maternal thyroid hormones during pregnancy. METHODS Our study included 439 women enrolled in the LIFECODES birth cohort in Boston, aiming to explore the relationship between urinary PAH metabolites and thyroid hormones throughout pregnancy. Urine samples for PAH metabolite analysis and plasma samples for thyroid hormone were measured up to four visits throughout gestation. Single pollutant analyses employed linear mixed effect models to investigate individual associations between each PAH metabolite and thyroid hormone concentration. Sensitivity analyses were conducted to assess potential susceptibility windows and fetal-sex-specific effects of PAH exposure. Mixture analyses utilized quantile g-computation to evaluate the collective impact of eight PAH metabolites on thyroid hormone concentrations. Additionally, Bayesian kernel machine regression (BKMR) was employed to explore potential non-linear associations and interactions between PAH metabolites. Subject-specific random intercepts were incorporated to address intra-individual correlation of serial measurements over time in both single pollutant and mixture analyses. RESULTS Our findings revealed positive trends in associations between PAH metabolites and thyroid hormones, both individually and collectively as a mixture. Sensitivity analyses indicated that these associations were influenced by the study visit and fetal sex. Mixture analyses suggested non-linear relationships and interactions between different PAH exposures. CONCLUSIONS This comprehensive investigation underscores the critical importance of understanding the impact of PAH exposures on thyroid hormone physiology during pregnancy. The findings highlight the intricate interplay between environmental pollutants and human pregnancy physiology, emphasizing the need for targeted interventions and public health policies to mitigate adverse outcomes associated with prenatal PAH exposure.
Collapse
Affiliation(s)
- Seonyoung Park
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Ram C Siwakoti
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Kelly K Ferguson
- Epidemiology Branch, Division of Intramural Research, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC, USA
| | - Amber L Cathey
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Wei Hao
- Department of Biostatistics, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - David E Cantonwine
- Division of Maternal-Fetal Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Bhramar Mukherjee
- Department of Biostatistics, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Thomas F McElrath
- Division of Maternal-Fetal Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - John D Meeker
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, MI, USA.
| |
Collapse
|
5
|
Cao H, Guo Y, Ma C, Wang Y, Jing Y, Chen X, Liang H. Comparative study of the effects of different surface-coated silver nanoparticles on thyroid disruption and bioaccumulation in zebrafish early life. CHEMOSPHERE 2024; 360:142422. [PMID: 38795916 DOI: 10.1016/j.chemosphere.2024.142422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 05/10/2024] [Accepted: 05/22/2024] [Indexed: 05/28/2024]
Abstract
The widespread use of silver nanoparticles (AgNPs) in commercial and industrial applications has led to their increased presence in the environment, raising concerns about their ecological and health impacts. This study pioneers an investigation into the chronic versus short-term acute toxicological impacts of differently coated AgNPs on zebrafish, with a novel focus on the thyroid-disrupting effects previously unexplored. The results showed that acute toxicity ranked from highest to lowest as AgNO3 (0.128 mg/L), PVP-AgNPs (1.294 mg/L), Citrate-AgNPs (6.984 mg/L), Uncoated-AgNPs (8.269 mg/L). For bioaccumulation, initial peaks were observed at 2 days, followed by fluctuations over time, with the eventual highest enrichment seen in Uncoated-AgNPs and Citrate-AgNPs at concentrations of 13 and 130 μg/L. Additionally, the four exposure groups showed a significant increase in T3 levels, which was 1.28-2.11 times higher than controls, and significant changes in thyroid peroxidase (TPO) and thyroglobulin (TG) content, indicating thyroid disruption. Gene expression analysis revealed distinct changes in the HPT axis-related genes, providing potential mechanisms underlying the thyroid toxicity induced by different AgNPs. The higher the Ag concentration in zebrafish, the stronger the thyroid disrupting effects, which in turn affected growth and development, in the order of Citrate-AgNPs, Uncoated-AgNPs > AgNO3, PVP-AgNPs. This research underscores the importance of considering nanoparticle coatings in risk assessments and offers insights into the mechanisms by which AgNPs affect aquatic organisms' endocrine systems, highlighting the need for careful nanotechnology use and the relevance of these findings for understanding environmental pollutants' role in thyroid disease.
Collapse
Affiliation(s)
- Huihui Cao
- Inner Mongolia Key Laboratory of Environmental Pollution Control & Waste Resource Reuse, School of Ecology and Environment, Inner Mongolia University, Hohhot, 010030, China
| | - Yinping Guo
- Inner Mongolia Key Laboratory of Environmental Pollution Control & Waste Resource Reuse, School of Ecology and Environment, Inner Mongolia University, Hohhot, 010030, China
| | - Chaofan Ma
- Inner Mongolia Key Laboratory of Environmental Pollution Control & Waste Resource Reuse, School of Ecology and Environment, Inner Mongolia University, Hohhot, 010030, China
| | - Yang Wang
- Inner Mongolia Key Laboratory of Environmental Pollution Control & Waste Resource Reuse, School of Ecology and Environment, Inner Mongolia University, Hohhot, 010030, China
| | - Yuan Jing
- Inner Mongolia Key Laboratory of Environmental Pollution Control & Waste Resource Reuse, School of Ecology and Environment, Inner Mongolia University, Hohhot, 010030, China
| | - Xiaolei Chen
- Inner Mongolia Key Laboratory of Environmental Pollution Control & Waste Resource Reuse, School of Ecology and Environment, Inner Mongolia University, Hohhot, 010030, China
| | - Hongwu Liang
- Inner Mongolia Key Laboratory of Environmental Pollution Control & Waste Resource Reuse, School of Ecology and Environment, Inner Mongolia University, Hohhot, 010030, China.
| |
Collapse
|
6
|
Li H, Kang S, Gu X, Yang H, Chen H, Mao Z, Zeng Q, Chen Y, Wang W, Gong C. The toxicological effects of life-cycle exposure to harmful benthic cyanobacteria Oscillatoria on zebrafish growth and reproduction: A comparative study with planktonic Microcystis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169302. [PMID: 38104816 DOI: 10.1016/j.scitotenv.2023.169302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 11/29/2023] [Accepted: 12/10/2023] [Indexed: 12/19/2023]
Abstract
The risks of planktonic cyanobacteria blooms have been the focus of much scientific research, but studies on the ecotoxicological effects of benthic cyanobacteria are lagging. The impacts of cyanobacteria cells on fish populations might be more complex in contrast to purified cyanotoxins or cyanobacteria extracts. This study systematically compared the chronic effects of benthic Oscillatoria sp. (producing cylindrospermopsins) and planktonic Microcystis aeruginosa (producing microcystins) on the growth and reproduction of zebrafish through life-cycle exposure (5- 90 days post fertilization). The results showed that both Oscillatoria sp. and M. aeruginosa exposure caused growth inhibition and fecundity reduction in F0 generation by disrupting sex hormone levels, delayed ovarian and sperm development, and induced pathological lesions in zebrafish gonads. Furthermore, exposure to Oscillatoria sp. or M. aeruginosa in adult zebrafish increased mortality and teratogenicity in F1 embryos (without exposure), indicating a parental transmission effect of developmental toxicity. The difference was that M. aeruginosa exposure led to significant alterations in pathways, such as tissue development, redox processes, and steroid hormone synthesis. In contrast, Oscillatoria sp. exposure primarily disrupted the PPAR signaling pathway, cell adhesion molecules, and lipid transport pathways. Interestingly, the differentially expressed genes revealed that male fish were more sensitive to harmful cyanobacteria than females, whether exposed to Oscillatoria sp. or M. aeruginosa. These findings contribute to a better mechanistic understanding of the chronic toxic effects of distinct types of harmful cyanobacteria, suggesting that the ecological risk of benthic cyanobacteria requires further attention.
Collapse
Affiliation(s)
- Hongmin Li
- School of Geography and Tourism, Qufu Normal University, Rizhao 276826, China
| | - Siqi Kang
- School of Geography and Tourism, Qufu Normal University, Rizhao 276826, China
| | - Xiaohong Gu
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography & Limnology, Chinese Academy of Sciences, Nanjing 210008, China.
| | - Huiting Yang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography & Limnology, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huihui Chen
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography & Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Zhigang Mao
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography & Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Qingfei Zeng
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography & Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Yanfeng Chen
- School of Geography and Tourism, Qufu Normal University, Rizhao 276826, China
| | - Wenxia Wang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography & Limnology, Chinese Academy of Sciences, Nanjing 210008, China; College of Life Sciences, Linyi University, Linyi, Shandong 276000, China
| | - Chen Gong
- School of Geography and Tourism, Qufu Normal University, Rizhao 276826, China
| |
Collapse
|
7
|
Pesce E, Garde M, Rigolet M, Tindall AJ, Lemkine GF, Baumann LA, Sachs LM, Du Pasquier D. A Novel Transgenic Model to Study Thyroid Axis Activity in Early Life Stage Medaka. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:99-109. [PMID: 38117130 PMCID: PMC10786150 DOI: 10.1021/acs.est.3c05515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 11/14/2023] [Accepted: 11/14/2023] [Indexed: 12/21/2023]
Abstract
Identifying endocrine disrupting chemicals in order to limit their usage is a priority and required according to the European Regulation. There are no Organization for Economic Co-operation and Development (OECD) test guidelines based on fish available for the detection of Thyroid axis Active Chemicals (TACs). This study aimed to fill this gap by developing an assay at eleuthero-embryonic life stages in a novel medaka (Oryzias latipes) transgenic line. This transgenic line expresses green fluorescent protein (GFP) in thyrocytes, under the control of the medaka thyroglobulin gene promoter. The fluorescence expressed in the thyrocytes is inversely proportional to the thyroid axis activity. When exposed for 72 h to activators (triiodothyronine (T3) and thyroxine (T4)) or inhibitors (6-N-propylthiouracil (PTU), Tetrabromobisphenol A (TBBPA)) of the thyroid axis, the thyrocytes can change their size and express lower or higher levels of fluorescence, respectively. This reflects the regulation of thyroglobulin by the negative feedback loop of the Hypothalamic-Pituitary-Thyroid axis. T3, T4, PTU, and TBBPA induced fluorescence changes with the lowest observable effect concentrations (LOECs) of 5 μg/L, 1 μg/L, 8 mg/L, and 5 mg/L, respectively. This promising tool could be used as a rapid screening assay and also to help decipher the mechanisms by which TACs can disrupt the thyroid axis in medaka.
Collapse
Affiliation(s)
- Elise Pesce
- Laboratoire
WatchFrog S.A., 1 Rue
Pierre Fontaine, 91000 Évry, France
- UMR
7221 Physiologie Moléculaire et Adaptation, CNRS, Muséum
National d’Histoire Naturelle, CP32, 7 rue Cuvier, 75005 Paris, France
| | - Marion Garde
- Laboratoire
WatchFrog S.A., 1 Rue
Pierre Fontaine, 91000 Évry, France
| | - Muriel Rigolet
- UMR
7221 Physiologie Moléculaire et Adaptation, CNRS, Muséum
National d’Histoire Naturelle, CP32, 7 rue Cuvier, 75005 Paris, France
| | - Andrew J. Tindall
- Laboratoire
WatchFrog S.A., 1 Rue
Pierre Fontaine, 91000 Évry, France
| | | | - Lisa A. Baumann
- University
of Heidelberg, Centre for Organismal
Studies, Aquatic Ecology and Toxicology, Im Neuenheimer Feld 504, 69120 Heidelberg, Germany
- Vrije
Universiteit Amsterdam, Amsterdam Institute
for Life and Environment, Section Environmental Health & Toxicology, De Boelelaan 1085, 1081 HV Amsterdam, The Netherlands
| | - Laurent M. Sachs
- UMR
7221 Physiologie Moléculaire et Adaptation, CNRS, Muséum
National d’Histoire Naturelle, CP32, 7 rue Cuvier, 75005 Paris, France
| | - David Du Pasquier
- Laboratoire
WatchFrog S.A., 1 Rue
Pierre Fontaine, 91000 Évry, France
| |
Collapse
|
8
|
Yang S, Sun J, Wang S, E L, Zhang S, Jiang X. Association of exposure to polycyclic aromatic hydrocarbons with thyroid hormones in adolescents and adults, and the influence of the iodine status. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2023; 25:1449-1463. [PMID: 37555279 DOI: 10.1039/d3em00135k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/10/2023]
Abstract
Some studies of endocrine-disrupting polycyclic aromatic hydrocarbon (PAH) exposure and thyroid hormones (THs) are inconclusive. To assess the associations between PAHs and THs, and the influence of the iodine status on PAHs-THs, we employed 648 adolescents (12-19 years old) and 2691 adults from the National Health and Nutrition Examination Survey 2007-2008 and 2011-2012. PAH metabolites [1-hydroxynaphthalene (1-NAP), 2-NAP, 1-hydroxyphenanthrene (1-PHE), 2-PHE, 3-PHE, 2-hydroxyfluorene (2-FLU), 3-FLU, 9-FLU, and 1-hydroxypyrene (1-PYR)], THs [total and free thyroxine (TT4 and FT4), total and free triiodothyronine (TT3 and FT3), thyroid stimulating hormone (TSH), and thyroglobulin (Tg)], peripheral deiodinase activity (GD) and thyroid's secretory capacity (GT) were involved. Multiple linear regression and weighted quantile sum (WQS) regression models were used to assess PAH-TH associations and the interaction between PAHs and the iodine status. Stratification analyses were conducted based on sex, smoking and iodine status. For adolescents, in a multivariable-adjusted regression model (β; 95% CI), 1-PHE (4.08%; 1.01%, and 7.25%), 2-PHE (3.98%; 0.70%, and 7.25%) and 9-FLU (3.77%; 1.10%, 7.47%) were positively correlated with TT3; 3-PHE and 1-PYR interacted with the iodine status (P-int < 0.05); 9-FLU was positively correlated with GD in both sexes. Combined exposure to PAHs was positively associated with Tg (0.137; 0.030, and 0.243), and negatively correlated with TSH (-0.087; -0.166, and -0.008). For adults, 2-NAP was positively correlated with FT3 (0.90%; 0.20%, and 1.61%), FT4 (1.82%; 0.70%, and 2.94%), TT3 (1.31%; 0.10%, and 2.63%), TT4 (2.12%; 0.90%, and 3.36%) and GT (2.22%; 1.01%, and 3.46%), but negatively correlated with TSH (-4.97%; -8.33%, and -1.49%); 1-NAP interacted with the iodine status (P-int < 0.05); 1-PHE was inversely correlated with TT3 in males; 2-PHE was positively correlated with TT3 in females. Combined exposure to PAHs was positively associated with FT3 (0.008; 0.001, and 0.014). Combined exposure to PAHs was positively associated with FT3, TT3 and GD, and negatively correlated with FT4, TT4 and GT in non-smoking adults; but positively associated with Tg (β = 0.140; 95% CI: 0.042, 0.237) in smoking adults. Our results indicated that combined and individual PAH exposure might be related to THs, and the iodine status had an influence on PAH-TH associations. These associations were not identical between adolescents and adults, and there were sex and smoking status differences.
Collapse
Affiliation(s)
- Siqi Yang
- Department of Epidemiology and Health Statistics, the School of Public Health of Qingdao University, Qingdao, China.
| | - Junhao Sun
- Department of Epidemiology and Health Statistics, the School of Public Health of Qingdao University, Qingdao, China.
| | - Shihao Wang
- Institute of Nutrition and Health, School of Public Health, Qingdao University, Qingdao, China
| | - Limei E
- Department of Epidemiology and Health Statistics, the School of Public Health of Qingdao University, Qingdao, China.
| | - Shuai Zhang
- Department of Epidemiology and Health Statistics, the School of Public Health of Qingdao University, Qingdao, China.
| | - Xiubo Jiang
- Department of Epidemiology and Health Statistics, the School of Public Health of Qingdao University, Qingdao, China.
| |
Collapse
|
9
|
Huang K, Fei J, Zhang Z, Kong R, Li M, Zhang Y, Liu C. Exposure to environmentally relevant concentrations of TnBP results in tissue-specific bio-accumulation and inhibits growth of silver carp (Hypophthalmichthys molitrix). CHEMOSPHERE 2023; 334:138972. [PMID: 37230301 DOI: 10.1016/j.chemosphere.2023.138972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/10/2023] [Accepted: 05/16/2023] [Indexed: 05/27/2023]
Abstract
Tri-n-butyl phosphate (TnBP) is commonly used as flame retardant and rubber plasticizer, and has been widely detected in aquatic organisms and natural waters. However, the potential toxicity of TnBP in fish remains unclear. In the present study, silver carp (Hypophthalmichthys molitrix) larvae were treated with environmentally relevant concentrations (100 or 1000 ng/L) of TnBP for 60 d and then they were depurated in clean water for 15 d, and the accumulation and depuration of the chemical in six tissues of silver carp were measured. Furthermore, effects on growth were evaluated and potential molecular mechanisms were explored. Results indicated that TnBP could be rapidly accumulated and depurated in silver carp tissues. In addition, the bio-accumulation of TnBP displayed tissue-specificity, where intestine contained the greatest and vertebra had the smallest level of TnBP. Furthermore, exposure to environmentally relevant concentrations of TnBP led to time- and concentration-dependent growth inhibition of silver carp, even though TnBP was completely depurated in tissues. Mechanistic studies suggested that exposure to TnBP up- and down-regulated the expression of ghr and igf1 in liver, respectively, and increased GH contents in plasma of silver carp. TnBP exposure also up-regulated the expression of ugt1ab and dio2 in liver, as well as decreased T4 contents in plasma of silver carp. Our findings provide direct evidence of health hazards of TnBP to fish in natural waters, calling for more attention of environmental risks of TnBP in aquatic environment.
Collapse
Affiliation(s)
- Kai Huang
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jiamin Fei
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zihan Zhang
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China
| | - Ren Kong
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China
| | - Meng Li
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yongkang Zhang
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Chunsheng Liu
- School of Environmental Studies, China University of Geosciences, Wuhan, 430074, China
| |
Collapse
|
10
|
Horie Y. Environmentally relevant concentrations of triclosan induce lethality and disrupt thyroid hormone activity in zebrafish (Danio rerio). ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2023; 100:104151. [PMID: 37207895 DOI: 10.1016/j.etap.2023.104151] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 04/30/2023] [Accepted: 05/16/2023] [Indexed: 05/21/2023]
Abstract
Triclosan is an antimicrobial agent that has been used in common household products and can be detected in water environment. In this study, therefore, I aimed at clarifying the effects of environmentally relevant concentrations of triclosan on the early life stage development in zebrafish. A lethal effect was observed: the lowest effect and the no effect concentrations were 70.6 and 48.4μg/L, respectively. These concentrations are very close to the environmentally detected residual concentrations. In 10.9, 19.8, 48.4, and 70.6μg/L of triclosan, the iodothyronine deiodinase 1 gene expression was found to be significantly increased when compared with that of the control group. These findings indicate that triclosan can potentially disrupt the thyroid hormone activity in zebrafish. The exposure to triclosan (at 149.2μg/L) was also found to inhibit the gene expression of insulin-like growth factor-1. My findings suggest that triclosan can exert a thyroid hormone-disrupting effect on fish.
Collapse
Affiliation(s)
- Yoshifumi Horie
- Research Center for Inland Seas (KURCIS), Kobe University, Fukaeminami-machi, Higashinada-ku, Kobe 658-0022, Japan.
| |
Collapse
|
11
|
Zhong L, Wu L, Ru H, Wei N, Yao F, Zhang H, Ni Z, Duan X, Li Y. Sex-specific thyroid disruption caused by phenanthrene in adult zebrafish (Danio rerio). Comp Biochem Physiol C Toxicol Pharmacol 2023; 263:109484. [PMID: 36210033 DOI: 10.1016/j.cbpc.2022.109484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/24/2022] [Accepted: 10/02/2022] [Indexed: 11/19/2022]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are well-known contaminants with widespread distribution in environment and food. Phenanthrene is one of the most abundant PAHs in food and aquatic environment and generates reproductive and developmental toxicity in zebrafish. Nonetheless, whether phenanthrene caused sex-specific thyroid disruption in adult zebrafish is unclear. To determine this, adult zebrafish (male and female) were treated with phenanthrene (0, 0.85, 8.5, and 85 μg/L) for 60 days. After the treatment period, we assessed the concentrations of thyroid hormones (THs) and expression levels of genes in the hypothalamic-pituitary-thyroid (HPT) axis. The results showed that phenanthrene exposure can lead to thyroid disruption in both male and female zebrafish. Exposure to phenanthrene dramatically reduced the levels of L-thyroxine (T4) and L-triiodothyronine (T3) in both male and female zebrafish, with a similar trend in both. However, the genes expression profiles of hypothalamic-pituitary-thyroid (HPT) axis were sex-specific. In all, the present study demonstrated that phenanthrene exposure could result in sex-specific thyroid disruption in adult zebrafish.
Collapse
Affiliation(s)
- Liqiao Zhong
- Fishery Resources and Environmental Science Experimental Station of The Upper-Middle Reaches of Yangtze River (Ministry of Agriculture and Rural Affairs), Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
| | - Luyin Wu
- Fishery Resources and Environmental Science Experimental Station of The Upper-Middle Reaches of Yangtze River (Ministry of Agriculture and Rural Affairs), Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China; Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Huijun Ru
- Fishery Resources and Environmental Science Experimental Station of The Upper-Middle Reaches of Yangtze River (Ministry of Agriculture and Rural Affairs), Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
| | - Nian Wei
- Fishery Resources and Environmental Science Experimental Station of The Upper-Middle Reaches of Yangtze River (Ministry of Agriculture and Rural Affairs), Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
| | - Fan Yao
- Fishery Resources and Environmental Science Experimental Station of The Upper-Middle Reaches of Yangtze River (Ministry of Agriculture and Rural Affairs), Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
| | - He Zhang
- National and Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, Zhejiang Provincial Key Lab for Subtropical Water Environment and Marine Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Zhaohui Ni
- Fishery Resources and Environmental Science Experimental Station of The Upper-Middle Reaches of Yangtze River (Ministry of Agriculture and Rural Affairs), Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
| | - Xinbin Duan
- Fishery Resources and Environmental Science Experimental Station of The Upper-Middle Reaches of Yangtze River (Ministry of Agriculture and Rural Affairs), Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China.
| | - Yunfeng Li
- Fishery Resources and Environmental Science Experimental Station of The Upper-Middle Reaches of Yangtze River (Ministry of Agriculture and Rural Affairs), Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China.
| |
Collapse
|
12
|
Zhong L, Zhang H, Wu L, Ru H, Wei N, Yao F, Ni Z, Duan X, Li Y. Copper and Zinc Treatments Alter the Thyroid Endocrine System in Zebrafish Embryos/Larvae. TOXICS 2022; 10:756. [PMID: 36548589 PMCID: PMC9788113 DOI: 10.3390/toxics10120756] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 11/29/2022] [Accepted: 12/02/2022] [Indexed: 06/17/2023]
Abstract
Copper (Cu2+) and zinc (Zn2+) are two kinds of heavy metals essential to living organisms. Cu2+ and Zn2+ at excessive concentrations can cause adverse effects on animals, but little is known about the thyroid-disrupting effects of these metals in fish, especially in the early developmental transition stage from embryos to larvae. Wild-type zebrafish embryos were used to expose to Cu2+ (0, 1.5, 15, and 150 μg/L) and Zn2+ (0, 20, 200, and 2000 μg/L) for 120 h. Thyroid hormone contents and transcriptional changes of the genes connected with the hypothalamic-pituitary-thyroid (HPT) axis were measured. Results showed that zebrafish embryos/larvae malformation rates were significantly increased in the Cu2+ and Zn2+ groups. Remarkably elevated thyroxine (T4) concentrations and reduced triiodothyronine (T3) concentrations were observed in Cu2+ and Zn2+ exposure fish. And the expression patterns of genes connected with the HPT axis were changed after Cu2+ and Zn2+ treatment. Based on principal component analysis (PCA) results, Zn2+ caused significant effects on the thyroid endocrine system at 200 μg/L, while Cu2+ resulted in thyroid disruption as low as 1.5 μg/L. In short, our study demonstrated that exposure to Cu2+ and Zn2+ induced developmental toxicity and thyroid disruption to zebrafish embryos/larvae.
Collapse
Affiliation(s)
- Liqiao Zhong
- Fishery Resources and Environmental Science Experimental Station of the Upper-Middle Reaches of Yangtze River (Ministry of Agriculture and Rural Affairs), Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
| | - He Zhang
- Zhejiang Provincial Key Lab for Subtropical Water Environment and Marine Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Universtiy, Wuhan 430062, China
| | - Luyin Wu
- Fishery Resources and Environmental Science Experimental Station of the Upper-Middle Reaches of Yangtze River (Ministry of Agriculture and Rural Affairs), Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
| | - Huijun Ru
- Fishery Resources and Environmental Science Experimental Station of the Upper-Middle Reaches of Yangtze River (Ministry of Agriculture and Rural Affairs), Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
| | - Nian Wei
- Fishery Resources and Environmental Science Experimental Station of the Upper-Middle Reaches of Yangtze River (Ministry of Agriculture and Rural Affairs), Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
| | - Fan Yao
- Fishery Resources and Environmental Science Experimental Station of the Upper-Middle Reaches of Yangtze River (Ministry of Agriculture and Rural Affairs), Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
| | - Zhaohui Ni
- Fishery Resources and Environmental Science Experimental Station of the Upper-Middle Reaches of Yangtze River (Ministry of Agriculture and Rural Affairs), Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
| | - Xinbin Duan
- Fishery Resources and Environmental Science Experimental Station of the Upper-Middle Reaches of Yangtze River (Ministry of Agriculture and Rural Affairs), Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
| | - Yunfeng Li
- Fishery Resources and Environmental Science Experimental Station of the Upper-Middle Reaches of Yangtze River (Ministry of Agriculture and Rural Affairs), Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
| |
Collapse
|
13
|
Liu Z, Shangguan Y, Zhu P, Sultan Y, Feng Y, Li X, Ma J. Developmental toxicity of glyphosate on embryo-larval zebrafish (Danio rerio). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 236:113493. [PMID: 35398647 DOI: 10.1016/j.ecoenv.2022.113493] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 04/02/2022] [Accepted: 04/04/2022] [Indexed: 06/14/2023]
Abstract
Glyphosate (GLY) induces developmental toxicity in fish, but research on the toxicity mechanism is limited. In this study, zebrafish embryos were exposed for 120 hpf to 0.7, 7, and 35 mg L-1 GLY. The results show that GLY treatment induced developmental toxicity in the fish, including premature hatching, reduced heartbeats, pericardial and yolk sac oedema, swim bladder deficiency, and shortened body length, which was possibly due to a significantly decreased triiodothyronine (T3)/thyroxine (T4) ratio and the abnormal expression patterns of hypothalamic-pituitary-thyroid (HPT) (crh, tshβ, tr α, tr β, and t tr ) and growth hormone/insulin-like growth factor (GH/IGF) axis-related genes (gh, ghrα, ghrβ, igf1, igf1rα, and igf1rβ) in larvae exposed to GLY. In addition, GLY exposure altered the levels of SOD and CAT, increased ROS, promoted malondialdehyde (MDA) content, and significantly altered the levels of endoplasmic reticulum (ER) stress signalling pathway factors (perk, eif2α, gadd34, atf4, ire1α, xbp1, atf6, hspa5, and chop), suggesting that GLY treatment induced oxidative injury and ER stress in the larvae. Further research showed that treatment with a higher concentration of GLY upregulated the levels of iNOS, IL-1β, and TNF-α while inhibiting the expression of IL-10 and TGF-β, suggesting that GLY causes an inflammatory reaction in the larvae. In addition, we also found that apoptosis was induced in the larvae, which was determined by acridine orange staining and abnormal expression of p53, caspase-3, -8, and -9. Taken together, our results demonstrate that GLY exposure altered the T3/T4 ratio, disturbed the expression patterns of HPT and GH/IGF axis-related genes, and induced oxidative and ER stress, inflammatory reactions, and apoptosis in the zebrafish larvae. This investigation contributes to improved understanding of the developmental toxicity mechanism of GLY in fish.
Collapse
Affiliation(s)
- Zhihui Liu
- Henan International Joint Laboratory of Aquatic Toxicology and Health Protection, College of Life Science, Henan Normal University, Xinxiang, Henan 453007, China
| | - Yingying Shangguan
- Henan International Joint Laboratory of Aquatic Toxicology and Health Protection, College of Life Science, Henan Normal University, Xinxiang, Henan 453007, China
| | - Penglin Zhu
- Henan International Joint Laboratory of Aquatic Toxicology and Health Protection, College of Life Science, Henan Normal University, Xinxiang, Henan 453007, China
| | - Yousef Sultan
- Department of Food Toxicology and Contaminants, National Research Centre, Dokki, Cairo 12622, Egypt
| | - Yiyi Feng
- Henan International Joint Laboratory of Aquatic Toxicology and Health Protection, College of Life Science, Henan Normal University, Xinxiang, Henan 453007, China
| | - Xiaoyu Li
- Henan International Joint Laboratory of Aquatic Toxicology and Health Protection, College of Life Science, Henan Normal University, Xinxiang, Henan 453007, China
| | - Junguo Ma
- Henan International Joint Laboratory of Aquatic Toxicology and Health Protection, College of Life Science, Henan Normal University, Xinxiang, Henan 453007, China.
| |
Collapse
|