1
|
Ito-Harashima S, Sano E, Takada E, Nakashima M, Kawanishi M, Yagi T. Development of a New Reporter Gene Assay for Detecting Juvenile Hormone Agonists Using Yeast Expressing Methoprene-Tolerant of the Freshwater Cladoceran Daphnia magna. J Appl Toxicol 2025. [PMID: 40223157 DOI: 10.1002/jat.4784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 03/23/2025] [Accepted: 03/25/2025] [Indexed: 04/15/2025]
Abstract
Juvenile hormones (JHs) play crucial roles in regulating growth, metamorphosis, and reproduction in arthropods. Synthetic JH agonists (JHAs), categorized as insect growth regulators, have been widely employed as insecticides. Natural JHs and synthetic JHAs both exert their physiological effects by binding to the JH receptor methoprene-tolerant (Met), forming a functional heterodimer complex with steroid receptor coactivators (SRCs). These juvenoids induce male offspring production in various daphnids, including Daphnia magna, highlighting the significance of the Met-mediated signaling in environmental sex determination. As a representative invertebrate model for assessing aquatic endocrine-disrupting chemicals, D. magna is incorporated in the test guidelines of the Organization for Economic Corporation and Development. We herein introduced a newly developed yeast-based reporter gene assay (RGA) for easy and rapid screening of JH-like ligands for D. magna Met (Dapma-Met). Dapma-Met was expressed alongside the SRC of D. magna (Dapma-SRC) in yeast cells carrying the lacZ reporter plasmid with a JH-responsive element derived from the Bombyx mori Krüppel homolog 1 gene. The yeast RGA system for Dapma-Met revealed a dose-dependent response to various juvenoids. The rank order of the ligand potencies of natural JHs and synthetic JHAs examined in yeast RGA strongly correlated with those previously observed in RGAs for Daphnia Met proteins established in Chinese hamster ovary cells and positively correlated with the male neonate-inducing activity in vivo. Our novel yeast RGA offers a rapid, easy-to-handle, and cost-effective solution that will be valuable for discriminating Dapma-Met ligands among chemicals with male offspring-inducing activity.
Collapse
Affiliation(s)
- Sayoko Ito-Harashima
- Department of Biological Science, Graduate School of Science, Osaka Prefecture University, Sakai, Osaka, Japan
- Department of Applied Biological Chemistry, Graduate School of Agriculture, Osaka Metropolitan University, Sakai, Osaka, Japan
| | - Erika Sano
- Department of Biological Science, Graduate School of Science, Osaka Prefecture University, Sakai, Osaka, Japan
| | - Eiji Takada
- Department of Biological Science, Graduate School of Science, Osaka Prefecture University, Sakai, Osaka, Japan
| | - Mayuko Nakashima
- Department of Biological Chemistry, Graduate School of Science, Osaka Metropolitan University, Sakai, Osaka, Japan
| | - Masanobu Kawanishi
- Department of Biological Science, Graduate School of Science, Osaka Prefecture University, Sakai, Osaka, Japan
- Department of Biological Chemistry, Graduate School of Science, Osaka Metropolitan University, Sakai, Osaka, Japan
| | - Takashi Yagi
- Department of Biological Science, Graduate School of Science, Osaka Prefecture University, Sakai, Osaka, Japan
- Department of Biological Chemistry, Graduate School of Science, Osaka Metropolitan University, Sakai, Osaka, Japan
| |
Collapse
|
2
|
Sedlak D, Tuma R, Kolla JN, Mokhamatam RB, Bahrova L, Lisova M, Bittova L, Jindra M. Unique and Common Agonists Activate the Insect Juvenile Hormone Receptor and the Human AHR. J Mol Biol 2025; 437:168883. [PMID: 39608634 DOI: 10.1016/j.jmb.2024.168883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Accepted: 11/20/2024] [Indexed: 11/30/2024]
Abstract
Transcription factors of the bHLH-PAS family play vital roles in animal development, physiology, and disease. Two members of the family require binding of low-molecular weight ligands for their activity: the vertebrate aryl hydrocarbon receptor (AHR) and the insect juvenile hormone receptor (JHR). In the fly Drosophila melanogaster, the paralogous proteins GCE and MET constitute the ligand-binding component of JHR complexes. Whilst GCE/MET and AHR are phylogenetically heterologous, their mode of action is similar. JHR is targeted by several synthetic agonists that serve as insecticides disrupting the insect endocrine system. AHR is an important regulator of human endocrine homeostasis, and it responds to environmental pollutants and endocrine disruptors. Whether AHR signaling is affected by compounds that can activate JHR has not been reported. To address this question, we screened a chemical library of 50,000 compounds to identify 93 novel JHR agonists in a reporter system based on Drosophila cells. Of these compounds, 26% modulated AHR signaling in an analogous reporter assay in a human cell line, indicating a significant overlap in the agonist repertoires of the two receptors. To explore the structural features of agonist-dependent activation of JHR and AHR, we compared the ligand-binding cavities and their interactions with selective and common ligands of AHR and GCE. Molecular dynamics modeling revealed ligand-specific as well as conserved side chains within the respective cavities. Significance of predicted interactions was supported through site-directed mutagenesis. The results have indicated that synthetic insect juvenile hormone agonists might interfere with AHR signaling in human cells.
Collapse
Affiliation(s)
- David Sedlak
- Institute of Molecular Genetics, Czech Academy of Sciences, Prague 14220, Czech Republic.
| | - Roman Tuma
- Faculty of Science, University of South Bohemia, Ceske Budejovice 37005, Czech Republic
| | | | | | - Liliia Bahrova
- Institute of Molecular Genetics, Czech Academy of Sciences, Prague 14220, Czech Republic
| | - Michaela Lisova
- CZ-OPENSCREEN, Institute of Molecular Genetics, Czech Academy of Sciences, Prague 14220, Czech Republic
| | - Lenka Bittova
- Institute of Entomology, Biology Center of the Czech Academy of Sciences, Ceske Budejovice 37005, Czech Republic
| | - Marek Jindra
- Faculty of Science, University of South Bohemia, Ceske Budejovice 37005, Czech Republic; Institute of Entomology, Biology Center of the Czech Academy of Sciences, Ceske Budejovice 37005, Czech Republic.
| |
Collapse
|
3
|
Watanabe H, Abe R, Tatarazako N, Yamamoto H. Non-chemical stresses do not strongly induce male offspring in Daphnia magna ascertained using the short-term juvenile hormone activity screening assay. J Appl Toxicol 2024; 44:1914-1923. [PMID: 39134406 DOI: 10.1002/jat.4678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 07/12/2024] [Accepted: 07/15/2024] [Indexed: 11/09/2024]
Abstract
Juvenile hormone (JH), together with ecdysone, regulates molting, metamorphosis, growth, and reproduction in arthropods. The effects of its analogs used as insecticides on nontarget species are of concern. Since JH and JH analogs (JHAs) induce male offspring in daphnids, which generally reproduce by parthenogenesis, short-term JH activity screening assay (JHASA) using the male offspring ratio as an endpoint has been developed as a detection method for JHA. However, the production of male offspring is also induced by environmental stresses such as temperature, short-day length, overcrowding, and food limitation. Thus, it is vital to prevent non-chemical stresses from inducing male offspring during the test to detect chemicals with potential JH activity accurately. Therefore, we investigated the effects of temperature (low and high), hardness, high density with low feeding, and day length on male production utilizing JHASA. Male offspring were not strongly induced by any stresses in JHASA, although the male ratios of 4-12% were observed in the preculture under high density (≥70 daphnid/L) and constant darkness. The Clone A strain was relatively more sensitive to high density and day length compared with the strain from National Institute for Environmental Studies (NIES). The selection of strains that rarely produce males under non-chemical stresses and finding the culturing conditions for each strain appropriate for not-inducing male offspring are recommended to control and prevent male offspring induction during JHASA.
Collapse
Affiliation(s)
- Haruna Watanabe
- Health and Environmental Risk Division, National Institute for Environmental Studies, Tsukuba, Ibaraki, Japan
| | - Ryoko Abe
- Health and Environmental Risk Division, National Institute for Environmental Studies, Tsukuba, Ibaraki, Japan
| | - Norihisa Tatarazako
- Department of Science and Technology for Biological Resources and Environment, Graduate School of Agriculture, Ehime University, Matsuyama, Ehime, Japan
| | - Hiroshi Yamamoto
- Health and Environmental Risk Division, National Institute for Environmental Studies, Tsukuba, Ibaraki, Japan
| |
Collapse
|
4
|
Adamovsky O, Groh KJ, Białk-Bielińska A, Escher BI, Beaudouin R, Mora Lagares L, Tollefsen KE, Fenske M, Mulkiewicz E, Creusot N, Sosnowska A, Loureiro S, Beyer J, Repetto G, Štern A, Lopes I, Monteiro M, Zikova-Kloas A, Eleršek T, Vračko M, Zdybel S, Puzyn T, Koczur W, Ebsen Morthorst J, Holbech H, Carlsson G, Örn S, Herrero Ó, Siddique A, Liess M, Braun G, Srebny V, Žegura B, Hinfray N, Brion F, Knapen D, Vandeputte E, Stinckens E, Vergauwen L, Behrendt L, João Silva M, Blaha L, Kyriakopoulou K. Exploring BPA alternatives - Environmental levels and toxicity review. ENVIRONMENT INTERNATIONAL 2024; 189:108728. [PMID: 38850672 DOI: 10.1016/j.envint.2024.108728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/10/2024] [Accepted: 05/07/2024] [Indexed: 06/10/2024]
Abstract
Bisphenol A alternatives are manufactured as potentially less harmful substitutes of bisphenol A (BPA) that offer similar functionality. These alternatives are already in the market, entering the environment and thus raising ecological concerns. However, it can be expected that levels of BPA alternatives will dominate in the future, they are limited information on their environmental safety. The EU PARC project highlights BPA alternatives as priority chemicals and consolidates information on BPA alternatives, with a focus on environmental relevance and on the identification of the research gaps. The review highlighted aspects and future perspectives. In brief, an extension of environmental monitoring is crucial, extending it to cover BPA alternatives to track their levels and facilitate the timely implementation of mitigation measures. The biological activity has been studied for BPA alternatives, but in a non-systematic way and prioritized a limited number of chemicals. For several BPA alternatives, the data has already provided substantial evidence regarding their potential harm to the environment. We stress the importance of conducting more comprehensive assessments that go beyond the traditional reproductive studies and focus on overlooked relevant endpoints. Future research should also consider mixture effects, realistic environmental concentrations, and the long-term consequences on biota and ecosystems.
Collapse
Affiliation(s)
- Ondrej Adamovsky
- RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, 602 00 Brno, Czech Republic.
| | - Ksenia J Groh
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Ueberlandstrasse 133, 8600 Duebendorf, Switzerland
| | - Anna Białk-Bielińska
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland
| | - Beate I Escher
- Department of Cell Toxicology, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany
| | - R Beaudouin
- Experimental Toxicology and Modeling Unit, INERIS, UMR-I 02 SEBIO, Verneuil en Halatte 65550, France
| | - Liadys Mora Lagares
- Theory Department, Laboratory for Cheminformatics, National Institute of Chemistry, 1000 Ljubljana, Slovenia
| | - Knut Erik Tollefsen
- Norwegian Institute for Water Research (NIVA), Økernveien 94, N-0579 Oslo, Norway; Norwegian University of Life Sciences (NMBU), Po.Box 5003, N-1432 Ås, Norway
| | - Martina Fenske
- Department of Biochemistry and Ecotoxicology, Federal Institute of Hydrology (BfG), Am Mainzer Tor 1, 56068 Koblenz, Germany
| | - Ewa Mulkiewicz
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland
| | - Nicolas Creusot
- INRAE, French National Research Institute for Agriculture, Food & Environment, UR1454 EABX, Bordeaux Metabolome, MetaboHub, Gazinet Cestas, France
| | - Anita Sosnowska
- Laboratory of Environmental Chemoinformatics, Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland
| | - Susana Loureiro
- CESAM and Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Jonny Beyer
- Norwegian Institute for Water Research (NIVA), Økernveien 94, N-0579 Oslo, Norway
| | - Guillermo Repetto
- Area of Toxicology, Universidad Pablo de Olavide, 41013-Sevilla, Spain
| | - Alja Štern
- National Institute of Biology, Department of Genetic Toxicology and Cancer Biology, Večna pot 121, 1000 Ljubljana, Slovenia
| | - Isabel Lopes
- CESAM and Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Marta Monteiro
- CESAM and Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Andrea Zikova-Kloas
- Testing and Assessment Strategies Pesticides, German Federal Institute for Risk Assessment, Max-Dohrn-Str. 8-10, 10589 Berlin, Germany; Ecotoxicological Laboratory, German Environment Agency, Schichauweg 58, 12307 Berlin, Germany
| | - Tina Eleršek
- National Institute of Biology, Department of Genetic Toxicology and Cancer Biology, Večna pot 121, 1000 Ljubljana, Slovenia
| | - Marjan Vračko
- Theory Department, Laboratory for Cheminformatics, National Institute of Chemistry, 1000 Ljubljana, Slovenia
| | - Szymon Zdybel
- Laboratory of Environmental Chemoinformatics, Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland
| | - Tomasz Puzyn
- Laboratory of Environmental Chemoinformatics, Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland
| | - Weronika Koczur
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland
| | - Jane Ebsen Morthorst
- Department of Biology, University of Southern Denmark, DK-5230 Odense M, Denmark
| | - Henrik Holbech
- Department of Biology, University of Southern Denmark, DK-5230 Odense M, Denmark
| | - Gunnar Carlsson
- Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, SE-750 07 Uppsala, Sweden
| | - Stefan Örn
- Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, SE-750 07 Uppsala, Sweden
| | - Óscar Herrero
- Molecular Entomology, Biomarkers and Environmental Stress Group, Faculty of Science, Universidad Nacional de Educación a Distancia (UNED), 28232 Las Rozas de Madrid, Spain
| | - Ayesha Siddique
- System Ecotoxicology, Helmholtz Centre for Environmental Research-UFZ, Permoserstrasse 15 04318 Leipzig, Germany
| | - Matthias Liess
- System Ecotoxicology, Helmholtz Centre for Environmental Research-UFZ, Permoserstrasse 15 04318 Leipzig, Germany; RWTH Aachen University, Institute for Environmental Research (Biology V), Worringerweg 1, 52074 Aachen, Germany
| | - Georg Braun
- Department of Cell Toxicology, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany
| | - Vanessa Srebny
- Department of Cell Toxicology, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany
| | - Bojana Žegura
- National Institute of Biology, Department of Genetic Toxicology and Cancer Biology, Večna pot 121, 1000 Ljubljana, Slovenia
| | - Nathalie Hinfray
- Ecotoxicology of Substances and Environments, Ineris, Verneuil-en-Halatte, France
| | - François Brion
- Ecotoxicology of Substances and Environments, Ineris, Verneuil-en-Halatte, France
| | - Dries Knapen
- Zebrafishlab, Veterinary Physiology and Biochemistry, Department of Veterinary Sciences, University of Antwerp, Wilrijk, Belgium
| | - Ellen Vandeputte
- Zebrafishlab, Veterinary Physiology and Biochemistry, Department of Veterinary Sciences, University of Antwerp, Wilrijk, Belgium
| | - Evelyn Stinckens
- Zebrafishlab, Veterinary Physiology and Biochemistry, Department of Veterinary Sciences, University of Antwerp, Wilrijk, Belgium
| | - Lucia Vergauwen
- Zebrafishlab, Veterinary Physiology and Biochemistry, Department of Veterinary Sciences, University of Antwerp, Wilrijk, Belgium
| | - Lars Behrendt
- Science for Life Laboratory, Department of Organismal Biology, Program of Environmental Toxicology, Uppsala University, 75236 Uppsala, Sweden
| | - Maria João Silva
- Department of Human Genetics, National Institute of Health Doutor Ricardo Jorge (INSA), Lisbon, Portugal; Center for Toxicogenomics and Human Health (ToxOmics), NOVA Medical School-FCM, UNL, Lisbon, Portugal
| | - Ludek Blaha
- RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, 602 00 Brno, Czech Republic
| | - Katerina Kyriakopoulou
- Laboratory of Environmental Control of Pesticides, Benaki Phytopathological Institute, 8th Stefanou Delta str., 14561, Kifissia, Attica, Greece.
| |
Collapse
|
5
|
Abe S, Takahata Y, Miyakawa H. Daphnia uses its circadian clock for short-day recognition in environmental sex determination. Curr Biol 2024; 34:2002-2010.e3. [PMID: 38579713 DOI: 10.1016/j.cub.2024.03.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 02/12/2024] [Accepted: 03/14/2024] [Indexed: 04/07/2024]
Abstract
Some organisms have developed a mechanism called environmental sex determination (ESD), which allows environmental cues, rather than sex chromosomes or genes, to determine offspring sex.1,2,3,4 ESD is advantageous to optimize sex ratios according to environmental conditions, enhancing reproductive success.5,6 However, the process by which organisms perceive and translate diverse environmental signals into offspring sex remains unclear. Here, we analyzed the environmental perception mechanism in the crustacean, Daphnia pulex, a seasonal (photoperiodic) ESD arthropod, capable of producing females under long days and males under short days.7,8,9,10 Through breeding experiments, we found that their circadian clock likely contributes to perception of day length. To explore this further, we created a genetically modified daphnid by knocking out the clock gene, period, using genome editing. Knockout disrupted the daphnid's ability to sustain diel vertical migration (DVM) under constant darkness, driven by the circadian clock, and leading them to produce females regardless of day length. Additionally, when exposed to an analog of juvenile hormone (JH), an endocrine factor synthesized in mothers during male production, or subjected to unfavorable conditions of high density and low food availability, these knockout daphnids produced males regardless of day length, like wild-type daphnids. Based on these findings, we propose that recognizing short days via the circadian clock is the initial step in sex determination. This recognition subsequently triggers male production by signaling the endocrine system, specifically via the JH signal. Establishment of a connection between these two processes may be the crucial element in evolution of ESD in Daphnia.
Collapse
Affiliation(s)
- Shione Abe
- Center for Bioscience Research and Education, Utsunomiya University, Utsunomiya, Tochigi 321-8505, Japan
| | - Yugo Takahata
- Center for Bioscience Research and Education, Utsunomiya University, Utsunomiya, Tochigi 321-8505, Japan
| | - Hitoshi Miyakawa
- Center for Bioscience Research and Education, Utsunomiya University, Utsunomiya, Tochigi 321-8505, Japan.
| |
Collapse
|
6
|
Rodríguez EM. Endocrine disruption in crustaceans: New findings and perspectives. Mol Cell Endocrinol 2024; 585:112189. [PMID: 38365065 DOI: 10.1016/j.mce.2024.112189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 02/02/2024] [Accepted: 02/12/2024] [Indexed: 02/18/2024]
Abstract
A significant advance has been made, especially during the last two decades, in the knowledge of the effects on crustacean species of pollutants proven to be endocrine disruptors in vertebrates. Such effects have been also interpreted in the light of recent studies on crustacean endocrinology. Year after year, the increased number of reports refer to the effects of endocrine disruptors on several processes hormonally controlled. This review is aimed at summarizing and discussing the effects of several kinds of endocrine disruptors on the hormonal control of reproduction (including gonadal growth, sexual differentiation, and offspring development), molting, and intermediate metabolism of crustaceans. A final discussion about the state of the art, as well as the perspective of this toxicological research line is given.
Collapse
Affiliation(s)
- Enrique M Rodríguez
- Universidad de Buenos Aires. CONICET. Instituto de Biodiversidad y Biología Experimental y Aplicada (IBBEA). Facultad de Ciencias Exactas y Naturales, Departamento de Biodiversidad y Biología Experimental. Ciudad Universitaria, C1428EGA, Buenos Aires, Argentina.
| |
Collapse
|
7
|
Matsumoto M, Ito H, Tateishi A, Kobayashi Y, Satoh K, Numata K, Miyakawa H. Effects of polycaprolactone degradation products on the water flea, Daphnia magna: Carbodiimide additives have acute and chronic toxicity. J Appl Toxicol 2023; 43:1840-1848. [PMID: 37443423 DOI: 10.1002/jat.4516] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/20/2023] [Accepted: 07/01/2023] [Indexed: 07/15/2023]
Abstract
Plastics have benefited our lives in many ways, but their long persistence in the environment causes serious problems. Rapid decomposition and detoxification of plastics after use are significant challenges. As a possible solution, biodegradable plastics have attracted attention, and for environmental risk assessment research on polymer toxicity, use of indicator organisms, like water fleas and fish, has increased globally. However, such research often focuses on standardized substances without considering changes in toxicity due to plastic degradation products. Additionally, tests generally focus on acute toxicity, while long-term effects on organismal reproduction and lifespan are largely unknown. Understanding the impact of degraded polymers on biological activities is crucial for accurate risk assessment. In this study, we investigated the biological toxicity of substances generated during degradation of polycaprolactone (PCL), a common biodegradable plastic, using the indicator organism, Daphnia magna. We examined PCL, oligocaprolactones (OCLs), and monomers resulting from polymer cleavage, as well as carbodiimides, added during polyester synthesis. As a result, PCL, which is insoluble in water, reduced individual survival and total number of offspring at an exposure concentration of 100 mg/L, while no toxicity was observed for water-soluble degradation products, OCLs, and monomers. Furthermore, carbodiimides, which are expected to be released during PCL degradation, showed strong toxicity, significantly reducing individual survival and total number of offspring at 0.1-10 mg/L. These findings suggest that changes in physical properties due to polymer degradation and release of additives can significantly alter their toxicity.
Collapse
Affiliation(s)
- Megumi Matsumoto
- Center for Bioscience Research and Education, Utsunomiya University, Utsunomiya, Japan
| | - Haruka Ito
- Center for Bioscience Research and Education, Utsunomiya University, Utsunomiya, Japan
| | - Ayaka Tateishi
- Biomacromolecule Research Team, RIKEN Center for Sustainable Resource Science, Wako, Japan
| | - Yasuaki Kobayashi
- School of Materials and Chemical Technology, Tokyo Institute of Technology, Meguro, Japan
| | - Kotaro Satoh
- School of Materials and Chemical Technology, Tokyo Institute of Technology, Meguro, Japan
| | - Keiji Numata
- Biomacromolecule Research Team, RIKEN Center for Sustainable Resource Science, Wako, Japan
- Department of Material Chemistry, Kyoto University, Kyoto, Japan
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Japan
| | - Hitoshi Miyakawa
- Center for Bioscience Research and Education, Utsunomiya University, Utsunomiya, Japan
| |
Collapse
|
8
|
Toyota K, Yamamoto T, Mori T, Mekuchi M, Miyagawa S, Ihara M, Shigenobu S, Ohira T. Eyestalk transcriptome and methyl farnesoate titers provide insight into the physiological changes in the male snow crab, Chionoecetes opilio, after its terminal molt. Sci Rep 2023; 13:7204. [PMID: 37137964 PMCID: PMC10156855 DOI: 10.1038/s41598-023-34159-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 04/25/2023] [Indexed: 05/05/2023] Open
Abstract
The snow crab, Chionoecetes opilio, is a giant deep-sea brachyuran. While several decapod crustaceans generally continue to molt and grow throughout their lifetime, the snow crab has a fixed number of molts. Adolescent males continue to molt proportionately to their previous size until the terminal molt at which time an allometric increase in chela size occurs and an alteration of behavioral activities occurs, ensuring breeding success. In this study, we investigated the circulating concentrations of methyl farnesoate (an innate juvenile hormone in decapods) (MF) before or after the terminal molt in males. We then conducted eyestalk RNAseq to obtain molecular insight into the regulation of physiological changes after the terminal molt. Our analyses revealed an increase in MF titers after the terminal molt. This MF surge may be caused by suppression of the genes that encode MF-degrading enzymes and mandibular organ-inhibiting hormone that negatively regulates MF biosynthesis. Moreover, our data suggests that behavioral changes after the terminal molt may be driven by the activation of biogenic amine-related pathways. These results are important not only for elucidating the physiological functions of MFs in decapod crustaceans, which are still largely unknown, but also for understanding the reproductive biology of the snow crab.
Collapse
Affiliation(s)
- Kenji Toyota
- Noto Marine Laboratory, Institute of Nature and Environmental Technology, Kanazawa University, Ogi, Noto-cho, Ishikawa, 927-0553, Japan.
- Department of Biological Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo, 125-8585, Japan.
- Department of Biological Sciences, Faculty of Science, Kanagawa University, 2946 Tsuchiya, Hiratsuka, Kanagawa, 259-1293, Japan.
| | - Takeo Yamamoto
- Miyazu Field Station, Fisheries Technology Institute, Japan Fisheries Research and Education Agency, 1721 Odasyukuno, Miyazu, Kyoto, 626-0052, Japan
| | - Tomoko Mori
- Trans-Omics Facility, National Institute for Basic Biology, Okazaki, 444-8585, Japan
| | - Miyuki Mekuchi
- Yokohama Field Station, Fisheries Resources Institute, Japan Fisheries Research and Education Agency, 2-12-4 Hukuura, Kanazawa-ku, Yokohama, Kanagawa, 236-8648, Japan
| | - Shinichi Miyagawa
- Department of Biological Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo, 125-8585, Japan
| | - Masaru Ihara
- Faculty of Agriculture and Marine Science, Kochi University, 200 Monobe-Otsu, Nankoku, Kochi, 783-8502, Japan
| | - Shuji Shigenobu
- Trans-Omics Facility, National Institute for Basic Biology, Okazaki, 444-8585, Japan
| | - Tsuyoshi Ohira
- Department of Biological Sciences, Faculty of Science, Kanagawa University, 2946 Tsuchiya, Hiratsuka, Kanagawa, 259-1293, Japan.
| |
Collapse
|
9
|
Bajard L, Adamovsky O, Audouze K, Baken K, Barouki R, Beltman JB, Beronius A, Bonefeld-Jørgensen EC, Cano-Sancho G, de Baat ML, Di Tillio F, Fernández MF, FitzGerald RE, Gundacker C, Hernández AF, Hilscherova K, Karakitsios S, Kuchovska E, Long M, Luijten M, Majid S, Marx-Stoelting P, Mustieles V, Negi CK, Sarigiannis D, Scholz S, Sovadinova I, Stierum R, Tanabe S, Tollefsen KE, van den Brand AD, Vogs C, Wielsøe M, Wittwehr C, Blaha L. Application of AOPs to assist regulatory assessment of chemical risks - Case studies, needs and recommendations. ENVIRONMENTAL RESEARCH 2023; 217:114650. [PMID: 36309218 PMCID: PMC9850416 DOI: 10.1016/j.envres.2022.114650] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/18/2022] [Accepted: 10/21/2022] [Indexed: 05/06/2023]
Abstract
While human regulatory risk assessment (RA) still largely relies on animal studies, new approach methodologies (NAMs) based on in vitro, in silico or non-mammalian alternative models are increasingly used to evaluate chemical hazards. Moreover, human epidemiological studies with biomarkers of effect (BoE) also play an invaluable role in identifying health effects associated with chemical exposures. To move towards the next generation risk assessment (NGRA), it is therefore crucial to establish bridges between NAMs and standard approaches, and to establish processes for increasing mechanistically-based biological plausibility in human studies. The Adverse Outcome Pathway (AOP) framework constitutes an important tool to address these needs but, despite a significant increase in knowledge and awareness, the use of AOPs in chemical RA remains limited. The objective of this paper is to address issues related to using AOPs in a regulatory context from various perspectives as it was discussed in a workshop organized within the European Union partnerships HBM4EU and PARC in spring 2022. The paper presents examples where the AOP framework has been proven useful for the human RA process, particularly in hazard prioritization and characterization, in integrated approaches to testing and assessment (IATA), and in the identification and validation of BoE in epidemiological studies. Nevertheless, several limitations were identified that hinder the optimal usability and acceptance of AOPs by the regulatory community including the lack of quantitative information on response-response relationships and of efficient ways to map chemical data (exposure and toxicity) onto AOPs. The paper summarizes suggestions, ongoing initiatives and third-party tools that may help to overcome these obstacles and thus assure better implementation of AOPs in the NGRA.
Collapse
Affiliation(s)
- Lola Bajard
- RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, 611 37 Brno, Czech Republic
| | - Ondrej Adamovsky
- RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, 611 37 Brno, Czech Republic
| | - Karine Audouze
- Université Paris Cité, T3S, Inserm UMR S-1124, F-75006 Paris, France
| | - Kirsten Baken
- Unit Health, Flemish Institute for Technological Research (VITO NV), Boeretang 200, 2400 Mol, Belgium
| | - Robert Barouki
- Université Paris Cité, T3S, Inserm UMR S-1124, F-75006 Paris, France
| | - Joost B Beltman
- Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Leiden University, Leiden, Netherlands
| | - Anna Beronius
- Institute of Environmental Medicine, Karolinska Institutet, Nobels väg 13, Solna, Sweden
| | - Eva Cecilie Bonefeld-Jørgensen
- Centre for Arctic Health & Molecular Epidemiology, Department of Public Health, Aarhus University, Bartholins Allé 2, 8000 Aarhus, Denmark; Greenland Centre for Health Research, University of Greenland, Manutooq 1, 3905 Nuussuaq, Greenland
| | | | - Milo L de Baat
- KWR Water Research Institute, Groningenhaven 7, 3433 PE Nieuwegein, the Netherlands
| | - Filippo Di Tillio
- Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Leiden University, Leiden, Netherlands
| | - Mariana F Fernández
- Center for Biomedical Research (CIBM) & School of Medicine, University of Granada, 18016 Granada, Spain; Instituto de Investigación Biosanitaria (ibs. GRANADA), 18012, Granada, Spain; Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), 28029 Madrid, Spain
| | - Rex E FitzGerald
- Swiss Centre for Applied Human Toxicology SCAHT, University of Basel, Missionsstrasse 64, CH-4055 Basel, Switzerland
| | - Claudia Gundacker
- Institute of Medical Genetics, Center for Pathobiochemistry and Genetics, Medical University of Vienna, 1090 Vienna, Austria
| | - Antonio F Hernández
- Instituto de Investigación Biosanitaria (ibs. GRANADA), 18012, Granada, Spain; Department of Legal Medicine and Toxicology, University of Granada School of Medicine, Avda. de la Investigación, 11, 18016, Granada, Spain; Consortium for Biomedical Research in Epidemiology & Public Health, CIBERESP, Madrid, Spain
| | - Klara Hilscherova
- RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, 611 37 Brno, Czech Republic
| | - Spyros Karakitsios
- Environmental Engineering Laboratory, Department of Chemical Engineering, Aristotle University of Thessaloniki, Thessaloniki, Greece; HERACLES Research Centre on the Exposome and Health, Center for Interdisciplinary Research and Innovation, Thessaloniki, Greece
| | - Eliska Kuchovska
- IUF-Leibniz Research Institute for Environmental Medicine, Auf'm Hennekamp 50, 40225, Duesseldorf, Germany
| | - Manhai Long
- Centre for Arctic Health & Molecular Epidemiology, Department of Public Health, Aarhus University, Bartholins Allé 2, 8000 Aarhus, Denmark
| | - Mirjam Luijten
- National Institute for Public Health and the Environment (RIVM), Centre for Health Protection, Bilthoven, the Netherlands
| | - Sanah Majid
- KWR Water Research Institute, Groningenhaven 7, 3433 PE Nieuwegein, the Netherlands
| | - Philip Marx-Stoelting
- German Federal Institute for Risk Assessment, Dept. Pesticides Safety, Berlin, Germany
| | - Vicente Mustieles
- Center for Biomedical Research (CIBM) & School of Medicine, University of Granada, 18016 Granada, Spain; Instituto de Investigación Biosanitaria (ibs. GRANADA), 18012, Granada, Spain; Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), 28029 Madrid, Spain
| | - Chander K Negi
- RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, 611 37 Brno, Czech Republic
| | - Dimosthenis Sarigiannis
- Environmental Engineering Laboratory, Department of Chemical Engineering, Aristotle University of Thessaloniki, Thessaloniki, Greece; HERACLES Research Centre on the Exposome and Health, Center for Interdisciplinary Research and Innovation, Thessaloniki, Greece
| | - Stefan Scholz
- UFZ Helmholtz Center for Environmental Research, Dept Bioanalyt Ecotoxicol, D-04318 Leipzig, Germany
| | - Iva Sovadinova
- RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, 611 37 Brno, Czech Republic
| | - Rob Stierum
- Netherlands Organisation for Applied Scientific Research, Risk Analysis for Products in Development, Utrecht, the Netherlands
| | - Shihori Tanabe
- Division of Risk Assessment, Center for Biological Safety and Research, National Institute of Health Sciences, Kawasaki, Japan
| | - Knut Erik Tollefsen
- Norwegian Institute for Water Research (NIVA), Section of Ecotoxicology and Risk Assessment, Gaustadalléen, Oslo, Norway; Norwegian University of Life Sciences (NMBU), Faculty of Environmental Sciences and Natural Resource Management (MINA), Norway
| | - Annick D van den Brand
- Institute for Public Health and the Environment (RIVM), Centre for Nutrition, Prevention and Health Services, 3720 BA Bilthoven, the Netherlands
| | - Carolina Vogs
- Institute of Environmental Medicine, Karolinska Institutet, Nobels väg 13, Solna, Sweden; Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, SE-75007 Uppsala, Sweden
| | - Maria Wielsøe
- Centre for Arctic Health & Molecular Epidemiology, Department of Public Health, Aarhus University, Bartholins Allé 2, 8000 Aarhus, Denmark
| | | | - Ludek Blaha
- RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, 611 37 Brno, Czech Republic.
| |
Collapse
|