1
|
Novaes Matilde ME, da Silva LM, Santos TAC, Magalhães ME, Palmieri MJ, Andrade-Vieira LF. Cyto-genotoxic effects predict ecotoxicity in plant bioassays and the aquatic organism Artemia salina L.: a case study from a sewage treatment plant. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2025; 60:29-45. [PMID: 40025697 DOI: 10.1080/10934529.2025.2473832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 02/21/2025] [Accepted: 02/25/2025] [Indexed: 03/04/2025]
Abstract
This study evaluated the toxicological and mutagenic potential of water samples from a Wastewater Treatment Plant (WWTP) in Lavras, Minas Gerais, Brazil. Samples were taken from four sites: upstream in the stream (P1), downstream (P2), at the entrance of the treatment station (P3), and at the exit (P4). We conducted physicochemical analyses in water, phytotoxicity tests on plants (Triticum aestivum, Pennisetum glaucum, Lactuca sativa, Raphanus sativus), cytogenotoxicity tests using onion roots (Allium cepa), and Artemia salina immobilization tests. Elevated Biochemical Oxygen Demand (BOD), Chemical Oxygen Demand (COD), anionic surfactants, and ammoniacal nitrogen were found at P3 and P4. While germination rates were generally unaffected, P4 inhibited the germination speed of R. sativus. The growth of L. sativa increased in P3 and P4, and of R. sativus in P2, due to more nitrogen and phosphorus. T. aestivum and P. glaucum, however, had their growth inhibited at P4 due to surfactant toxicity. Cytogenotoxicity tests revealed the highest frequencies of micronuclei and nuclear buds in cells exposed to P3 and P4. Additionally, P3 caused 87.5% immobilization of A. salina. These findings suggest that the WWTP is not fully efficient, and its effluent discharge may contribute to eutrophication and genetic mutations in exposed organisms.
Collapse
Affiliation(s)
| | | | | | | | - Marcel José Palmieri
- Department of Ecology and Conservation, Federal University of Lavras, Lavras, MG, Brazil
| | | |
Collapse
|
2
|
Souza CRD, Souza-Silva G, Silva FVM, Cardoso PVR, Lima WDS, Pereira CADJ, Mol MPG, Silveira MR. Ecotoxicological studies of direct and indirect genotoxicity with Artemia: a integrative review. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2024; 59:305-320. [PMID: 39087887 DOI: 10.1080/10934529.2024.2384216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 07/16/2024] [Accepted: 07/20/2024] [Indexed: 08/02/2024]
Abstract
Artemia is a brine shrimp genus adapted to extreme habitats like ranges salinity from 5-25 g/L and in temperatures from 9 to 35 °C. It is widely distributed and used as an environmental quality biomarker. Artemia franciscana and Artemia salina species are commonly used in ecotoxicological studies and genotoxicity assays due to their short life cycle, high fecundity rate, easy culture, and availability. Thus, considering the importance of these tests in ecotoxicological studies, the present study aimed to present Artemia genus as a biological model in genotoxicity research. To this end, we reviewed the literature, analyzing data published until July 2023 in the Web of Science, SCOPUS, Embase, and PubMed databases. After screening, we selected 34 studies in which the genotoxicity of Artemia for various substances. This review presents the variability of the experimental planning of assays and biomarkers in genotoxicity using Artemia genus as a biological model for ecotoxicological studies and show the possibility of monitoring biochemical alterations and genetic damage effects. Also highlight innovative technologies such as transcriptomic and metabolomic analysis, as well as studies over successive generations to identify changes in DNA and consequently in gene expression.
Collapse
Affiliation(s)
| | - Gabriel Souza-Silva
- Social Pharmacy Department, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | | | | | - Walter Dos Santos Lima
- Department of Parasitology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | | | - Marcos Paulo Gomes Mol
- Department of Research and Development, Ezequiel Dias Foundantion, Belo Horizonte, Brazil
| | | |
Collapse
|
3
|
Pang H, Zheng K, Wang W, Zheng M, Liu Y, Yin H, Zhang D. Cefotaxime Exposure-Caused Oxidative Stress, Intestinal Damage and Gut Microbial Disruption in Artemia sinica. Microorganisms 2024; 12:675. [PMID: 38674619 PMCID: PMC11052325 DOI: 10.3390/microorganisms12040675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 03/17/2024] [Accepted: 03/25/2024] [Indexed: 04/28/2024] Open
Abstract
Cefotaxime (CTX) is an easily detectable antibiotic pollutant in the water environment, but little is known about its toxic effects on aquatic invertebrates, especially on the intestine. Here, we determined the oxidative stress conditions of A. sinica under CTX exposure with five concentrations (0, 0.001, 0.01, 0.1 and 1 mg/L) for 14 days. After that, we focused on changes in intestinal tissue morphology and gut microbiota in A. sinica caused by CTX exposure at 0.01 mg/L. We found malondialdehyde (MDA) was elevated in CTX treatment groups, suggesting the obvious antibiotic-induced oxidative stress. We also found CTX exposure at 0.01 mg/L decreased the villus height and muscularis thickness in gut tissue. The 16S rRNA gene analysis indicated that CTX exposure reshaped the gut microbiota diversity and community composition. Proteobacteria, Actinobacteriota and Bacteroidota were the most widely represented phyla in A. sinica gut. The exposure to CTX led to the absence of Verrucomicrobia in dominant phyla and an increase in Bacteroidota abundance. At the genus level, eleven genera with an abundance greater than 0.1% exhibited statistically significant differences among groups. Furthermore, changes in gut microbiota composition were accompanied by modifications in gut microbiota functions, with an up-regulation in amino acid and drug metabolism functions and a down-regulation in xenobiotic biodegradation and lipid metabolism-related functions under CTX exposure. Overall, our study enhances our understanding of the intestinal damage and microbiota disorder caused by the cefotaxime pollutant in aquatic invertebrates, which would provide guidance for healthy aquaculture.
Collapse
Affiliation(s)
- Huizhong Pang
- The International Centre for Precision Environmental Health and Governance, College of Life Sciences, Hebei University, Baoding 071002, China; (H.P.); (K.Z.); (W.W.); (M.Z.)
| | - Kaixuan Zheng
- The International Centre for Precision Environmental Health and Governance, College of Life Sciences, Hebei University, Baoding 071002, China; (H.P.); (K.Z.); (W.W.); (M.Z.)
| | - Wenbo Wang
- The International Centre for Precision Environmental Health and Governance, College of Life Sciences, Hebei University, Baoding 071002, China; (H.P.); (K.Z.); (W.W.); (M.Z.)
| | - Mingjuan Zheng
- The International Centre for Precision Environmental Health and Governance, College of Life Sciences, Hebei University, Baoding 071002, China; (H.P.); (K.Z.); (W.W.); (M.Z.)
| | - Yudan Liu
- The International Centre for Precision Environmental Health and Governance, College of Life Sciences, Hebei University, Baoding 071002, China; (H.P.); (K.Z.); (W.W.); (M.Z.)
| | - Hong Yin
- The International Centre for Precision Environmental Health and Governance, College of Life Sciences, Hebei University, Baoding 071002, China; (H.P.); (K.Z.); (W.W.); (M.Z.)
- Key Laboratory of Zoological Systematics and Application of Hebei Province, College of Life Sciences, Hebei University, Baoding 071002, China
| | - Daochuan Zhang
- The International Centre for Precision Environmental Health and Governance, College of Life Sciences, Hebei University, Baoding 071002, China; (H.P.); (K.Z.); (W.W.); (M.Z.)
- Key Laboratory of Zoological Systematics and Application of Hebei Province, College of Life Sciences, Hebei University, Baoding 071002, China
| |
Collapse
|
4
|
Albarano L, De Rosa I, Santaniello I, Montuori M, Serafini S, Toscanesi M, Trifuoggi M, Lofrano G, Guida M, Libralato G. Synergistic, antagonistic, and additive effects of naphthalene, phenanthrene, fluoranthene and benzo(k)fluoranthene on Artemia franciscana nauplii and adult. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 335:122286. [PMID: 37524240 DOI: 10.1016/j.envpol.2023.122286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 07/25/2023] [Accepted: 07/28/2023] [Indexed: 08/02/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are widespread across the globe and can be highly toxic for the marine environment. This research investigated the short-term (48 h of exposure) effects of PAHs mixtures on the nauplii and adult of crustacean Artemia franciscana considering the impact in term of toxicity and changes in gene expression. Results showed that all combinations caused additive or synergic effects with the exception of naphthalene + phenanthrene (NAP + PHE; Combination Index (CI) = 22.3), while naphthalene + benzo(k)fluoranthene (NAP + BkF; CI = 7.8) mixture evidenced an antagonistic effect. Real-time qPCR showed that all mixtures impacted the expression level of the five known genes involved in Artemia stress response. The effects of PAHs at environmental concentrations on both adult and nauplii suggested the need for further investigations about the impact of such contaminants on the marine biota considering that crustaceans can accumulate PAHs at concentrations comparable to those assessed in the present study.
Collapse
Affiliation(s)
- Luisa Albarano
- Department of Biology, University of Naples Federico II, Complesso Universitario di Monte Sant'Angelo, Via Vicinale Cupa Cintia 26, 80126, Napoli, Italy.
| | - Ilaria De Rosa
- Department of Biology, University of Naples Federico II, Complesso Universitario di Monte Sant'Angelo, Via Vicinale Cupa Cintia 26, 80126, Napoli, Italy
| | - Ilaria Santaniello
- Department of Biology, University of Naples Federico II, Complesso Universitario di Monte Sant'Angelo, Via Vicinale Cupa Cintia 26, 80126, Napoli, Italy
| | - Maria Montuori
- Department of Biology, University of Naples Federico II, Complesso Universitario di Monte Sant'Angelo, Via Vicinale Cupa Cintia 26, 80126, Napoli, Italy
| | - Sara Serafini
- Department of Biology, University of Naples Federico II, Complesso Universitario di Monte Sant'Angelo, Via Vicinale Cupa Cintia 26, 80126, Napoli, Italy
| | - Maria Toscanesi
- Dipartiment of Chemical Sciences, University of Naples Federico II, Complesso Universitario di Monte Sant'Angelo, Via Vicinale Cupa Cintia 26, 80126, Napoli, Italy
| | - Marco Trifuoggi
- Dipartiment of Chemical Sciences, University of Naples Federico II, Complesso Universitario di Monte Sant'Angelo, Via Vicinale Cupa Cintia 26, 80126, Napoli, Italy
| | - Giusy Lofrano
- Department of Movement, Health and Human Sciences, University of Rome Foro Italico, Piazza Lauro De Bosis, 15, 00135, Rome, Italy
| | - Marco Guida
- Department of Biology, University of Naples Federico II, Complesso Universitario di Monte Sant'Angelo, Via Vicinale Cupa Cintia 26, 80126, Napoli, Italy; NBFC, National Biodiversity Future Center, Palermo, 90133, Italy
| | - Giovanni Libralato
- Department of Biology, University of Naples Federico II, Complesso Universitario di Monte Sant'Angelo, Via Vicinale Cupa Cintia 26, 80126, Napoli, Italy
| |
Collapse
|
5
|
Contino M, Ferruggia G, Indelicato S, Pecoraro R, Scalisi EM, Salvaggio A, Brundo MV. Sublethal Effects of Polystyrene Nanoplastics on the Embryonic Development of Artemia salina (Linnaeus, 1758). Animals (Basel) 2023; 13:3152. [PMID: 37835758 PMCID: PMC10572060 DOI: 10.3390/ani13193152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 09/27/2023] [Accepted: 10/08/2023] [Indexed: 10/15/2023] Open
Abstract
Currents, wave motion, solar radiation, and abrasion are mechanisms responsible for the degradation of large plastic artifacts and contribute to the dispersion of micro and nanoplastics into aquatic ecosystems, which are, currently, the most dangerous threats due to their invisibility and persistence. The present work evaluated the possible lethal and sublethal effects of amino-modified polystyrene nanoplastics (nPS-NH2) with diameters of 50 nm and 100 nm on Artemia salina (A. salina), an organism at the base of the trophic chain of the aquatic system, using a widely used model for the analysis of embryotoxicity from environmental pollutants. For this purpose, after evaluating the biodistribution of nanoplastics in the body of the tested animals, several endpoints such as anomalies, apoptosis, and ROS production were assessed. In addition, particular attention was dedicated to evaluating the correlation between toxicity and the particle size tested. The results reported that, despite the absence of a lethal impact, several sublethal effects involving gut and body size malformations, as well as the enhancement of apoptosis and oxidative stress in relation to an increase in tested concentration and a decrease in nanoparticle size.
Collapse
Affiliation(s)
- Martina Contino
- Department of Biological, Geological and Environmental Sciences, University of Catania, Via Androne 81, 95124 Catania, Italy; (G.F.); (S.I.); (R.P.); (E.M.S.); (M.V.B.)
| | - Greta Ferruggia
- Department of Biological, Geological and Environmental Sciences, University of Catania, Via Androne 81, 95124 Catania, Italy; (G.F.); (S.I.); (R.P.); (E.M.S.); (M.V.B.)
| | - Stefania Indelicato
- Department of Biological, Geological and Environmental Sciences, University of Catania, Via Androne 81, 95124 Catania, Italy; (G.F.); (S.I.); (R.P.); (E.M.S.); (M.V.B.)
| | - Roberta Pecoraro
- Department of Biological, Geological and Environmental Sciences, University of Catania, Via Androne 81, 95124 Catania, Italy; (G.F.); (S.I.); (R.P.); (E.M.S.); (M.V.B.)
| | - Elena Maria Scalisi
- Department of Biological, Geological and Environmental Sciences, University of Catania, Via Androne 81, 95124 Catania, Italy; (G.F.); (S.I.); (R.P.); (E.M.S.); (M.V.B.)
| | - Antonio Salvaggio
- Zooprophylactic Institute of Sicily “A. Mirri”, Via Gino Marinuzzi, 3, 90129 Palermo, Italy;
| | - Maria Violetta Brundo
- Department of Biological, Geological and Environmental Sciences, University of Catania, Via Androne 81, 95124 Catania, Italy; (G.F.); (S.I.); (R.P.); (E.M.S.); (M.V.B.)
| |
Collapse
|
6
|
Silva-Neto HA, Zucolotto V, D'Alessandro EB, Tavares MGO, Antoniosi Filho NR, Coltro WKT, Grosseli GM, Fadini PS, Urban RC. Preliminary assessment of toxicity of aerosol samples from central-west Brazil using Artemia spp. bioassays. CHEMOSPHERE 2023:139283. [PMID: 37348616 DOI: 10.1016/j.chemosphere.2023.139283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 03/26/2023] [Accepted: 06/19/2023] [Indexed: 06/24/2023]
Abstract
The present study reports the development of a bioassay using Artemia spp. to analyse the preliminary ecotoxicity of atmospheric aerosols (PM), which can affect the environment and human health. Herein, PM samples were collected in the city of Goiânia (Brazil) in 2016, extracted with ultrapure water and subsequently filtered through membranes with different pore sizes (100, 0.8, and 0.22 μm), and the extracts employed in the bioassays. The mortality rates (endpoint analysed) declined to membranes with smaller pore sizes (15 ± 4%, 47 ± 10% and 43 ± 9% for pore sizes of 100 μm, 0.8 μm and 0.22 μm, respectively). In general, the toxicity of the extract depended on its concentration, except for the sample with a higher negative particle surface charge, which presents a lower affinity for the negatively charged surfaces of cellular membranes. Moreover, although the PM concentration was higher for the sample collected during the dry season (September), the mortality rate was not significantly different to that determined for a sample with similar physical and chemical characteristics collected in the rainy season (December). This result demonstrates the importance of monitoring PM toxicities and their chemical and physical characteristics, in addition to their concentrations. Therefore, the new protocol to provide a preliminary analysis of the toxicity of the extracts of aerosol emerges as a useful, accessible, and fast tool for monitoring possible environmental hazards, and can simplify fieldwork.
Collapse
Affiliation(s)
- Habdias A Silva-Neto
- Institute of Chemistry, Federal University of Goiás, Goiânia, GO, 74690-900, Brazil.
| | - Valtencir Zucolotto
- Physics Institute of São Carlos (IFSC), University of São Paulo, São Carlos, SP, 13566-590, Brazil
| | | | - Maria G O Tavares
- Institute of Chemistry, Federal University of Goiás, Goiânia, GO, 74690-900, Brazil
| | | | - Wendell K T Coltro
- Institute of Chemistry, Federal University of Goiás, Goiânia, GO, 74690-900, Brazil
| | - Guilherme M Grosseli
- Department of Chemistry, Federal University of São Carlos, São Carlos, SP, 13565-905, Brazil
| | - Pedro S Fadini
- Department of Chemistry, Federal University of São Carlos, São Carlos, SP, 13565-905, Brazil
| | - Roberta C Urban
- Department of Chemistry, Federal University of São Carlos, São Carlos, SP, 13565-905, Brazil.
| |
Collapse
|
7
|
Silva ICA, Azevedo LS, Castro AHF, Farias KDS, Zanuncio VSS, Silva DB, Lima LARDS. Chemical profile, antioxidant potential and toxicity of Smilax brasiliensis Sprengel (Smilacaceae) stems. Food Res Int 2023; 168:112781. [PMID: 37120225 DOI: 10.1016/j.foodres.2023.112781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 01/17/2023] [Accepted: 03/26/2023] [Indexed: 04/05/2023]
Abstract
Smilax brasiliensis Sprengel is a monocotyledon of the Smilacaceae family, native to the Brazilian Cerrado, popularly known as "salsaparrilha" or "japecanga". In this study, the ethanol extract (EE) and the hexane (HEXF), dichloromethane (DCMF), ethyl acetate (ACF), and hydroethanol (HEF) fractions of the stems were obtained. The chemical composition was determined, the contents of phenolic compounds and flavonoids were quantified, and the antioxidant potential and the cytotoxic effect on Artemia salina were evaluated. Fatty acid esters, hydrocarbons, and phytosterols were identified in the HEXF analyzed by gas chromatography - mass spectrometry (GC-MS). The EE and DCMF, ACF, and HEF were analyzed by liquid chromatography coupled to a diode array detector and mass spectrometer (LC-DAD-MS), and the identified constituents included glycosylated (rutin, 3-O-β-galactopyranosyl quercetin, 3-O-β-glucopyranosyl quercetin, O-deoxyhexosyl-hexosyl quercetin, O-deoxyhexosyl-hexosyl kaempferol, O-deoxyhexosyl-hexosyl O-methyl quercetin, and others), and non-glycosylated (quercetin) flavonoids, phenylpropanoids (3-O-E-caffeoyl quinic acid, 5-O-E-caffeoyl quinic acid, O-caffeoyl shikimic acid, and others), neolignan, steroidal saponin (dioscin), and N-feruloyltyramine. The EE, DCMF, and ACF showed high total contents of phenolic compounds (112.99, 175.71, and 524.02 µg of GAE/mg, respectively), and in the ACF and DCMF a great content of flavonoids was also quantified (50.08 and 31.49 µg of QE/mg, respectively). The EE, DCMF, ACF, and HEF exhibited great antioxidant potential by DPPH (IC50 1.71 - 32.83 µg/mL) and FRAP (IC50 0.63 - 6,71 µg/mL) assays. A maximum cytotoxic activity on A. salina of 60% was observed for the DCMF (LC50 = 856.17 µg/mL). This study contributes to the phytochemical study of S. brasiliensis since these compounds were identified for the first time in the stems of this species. The S. brasiliensis stems demonstrated to be a rich source of polyphenols compounds and exhibited high antioxidant potential without toxicity. Thus, extract and fractions obtained from the S. brasiliensis stems can be used in food supplements or as natural antioxidants in the food industry.
Collapse
Affiliation(s)
- Izabela Caputo Assis Silva
- Campus Centro-Oeste Dona Lindu, Universidade Federal de São João Del-Rei (UFSJ), Rua Sebastião Gonçalves Coelho, 400, Chanadour, 35501-296, Divinópolis, MG, Brazil
| | - Lucas Santos Azevedo
- Campus Centro-Oeste Dona Lindu, Universidade Federal de São João Del-Rei (UFSJ), Rua Sebastião Gonçalves Coelho, 400, Chanadour, 35501-296, Divinópolis, MG, Brazil
| | - Ana Hortência Fonsêca Castro
- Campus Centro-Oeste Dona Lindu, Universidade Federal de São João Del-Rei (UFSJ), Rua Sebastião Gonçalves Coelho, 400, Chanadour, 35501-296, Divinópolis, MG, Brazil
| | - Katyuce de Souza Farias
- Laboratório de Produtos Naturais e Espectrometria de Massas (LaPNEM), Faculdade de Ciências Farmacêuticas, Alimentos e Nutrição (FACFAN), Universidade Federal de Mato Grosso do Sul (UFMS), Cidade Universitária, Av. Costa e Silva, Pioneiros, 79070-900, Campo Grande, MS, Brazil
| | - Vanessa Samúdio Santos Zanuncio
- Laboratório de Produtos Naturais e Espectrometria de Massas (LaPNEM), Faculdade de Ciências Farmacêuticas, Alimentos e Nutrição (FACFAN), Universidade Federal de Mato Grosso do Sul (UFMS), Cidade Universitária, Av. Costa e Silva, Pioneiros, 79070-900, Campo Grande, MS, Brazil
| | - Denise Brentan Silva
- Laboratório de Produtos Naturais e Espectrometria de Massas (LaPNEM), Faculdade de Ciências Farmacêuticas, Alimentos e Nutrição (FACFAN), Universidade Federal de Mato Grosso do Sul (UFMS), Cidade Universitária, Av. Costa e Silva, Pioneiros, 79070-900, Campo Grande, MS, Brazil
| | - Luciana Alves Rodrigues Dos Santos Lima
- Campus Centro-Oeste Dona Lindu, Universidade Federal de São João Del-Rei (UFSJ), Rua Sebastião Gonçalves Coelho, 400, Chanadour, 35501-296, Divinópolis, MG, Brazil.
| |
Collapse
|
8
|
Sureshkumar J, Jenipher C, Sriramavaratharajan V, Gurav SS, Gandhi GR, Ravichandran K, Ayyanar M. Genus Equisetum L: Taxonomy, toxicology, phytochemistry and pharmacology. JOURNAL OF ETHNOPHARMACOLOGY 2023; 314:116630. [PMID: 37207877 DOI: 10.1016/j.jep.2023.116630] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/21/2023] [Accepted: 05/09/2023] [Indexed: 05/21/2023]
Abstract
INTRODUCTION The genus Equisetum (Equisetaceae) is cosmopolitan in distribution, with 41 recognized species. Several species of Equisetum are widely used in treating genitourinary and related diseases, inflammatory and rheumatic problems, hypertension, and wound healing in traditional medicine practices worldwide. This review intends to present information on the traditional uses, phytochemical components, pharmacological activities, and toxicity of Equisetum spp. and to analyze the new insights for further study. METHODS Relevant literature has been scanned and collected via various electronic repositories, including PubMed, Science Direct, Google Scholar, Springer Connect, and Science Online, from 1960 to 2022. RESULTS Sixteen Equisetum spp. were documented as widely used in traditional medicine practices by different ethnic groups throughout the world. A total of 229 chemical compounds were identified from Equisetum spp. with the major group of constituents being flavonol glycosides and flavonoids. The crude extracts and phytochemicals of Equisetum spp. exhibited significant antioxidant, antimicrobial, anti-inflammatory, antiulcerogenic, antidiabetic, hepatoprotective, and diuretic properties. A wide range of studies have also demonstrated the safety of Equisetum spp. CONCLUSION The reported pharmacological properties of Equisetum spp. support its use in traditional medicine, though there are gaps in understanding the traditional usage of these plants for clinical experiments. The documented information revealed that the genus is not only a great herbal remedy but also has several bioactives with the potential to be discovered as novel drugs. Detailed scientific investigation is still needed to fully understand the efficacy of this genus; hence, very few Equisetum spp. were studied in detail for phytochemical and pharmacological investigation. Moreover, its bioactives, structure-activity connection, in vivo activity, and associated mechanism of action ought to be explored further.
Collapse
Affiliation(s)
- J Sureshkumar
- Department of Botany, Sri Kaliswari College (Autonomous), (Affiliated to Madurai Kamaraj University), Sivakasi, 626 123, India.
| | - C Jenipher
- Department of Botany, A.V.V.M. Sri Pushpam College (Affiliated to Bharathidasan University), Poondi, Thanjavur, 613 503, Tamil Nadu, India.
| | - V Sriramavaratharajan
- School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, 613 401, India.
| | - S S Gurav
- Department of Pharmacognosy, Goa College of Pharmacy, Panaji, Goa University, Goa, 403 001, India.
| | - G Rajiv Gandhi
- Department of Biosciences, Rajagiri College of Social Sciences, Kalamaserry, Kochi, 683104, India.
| | - K Ravichandran
- Department of Physics, A.V.V.M. Sri Pushpam College (Affiliated to Bharathidasan University), Poondi, Thanjavur, 613 503, Tamil Nadu, India.
| | - M Ayyanar
- Department of Botany, A.V.V.M. Sri Pushpam College (Affiliated to Bharathidasan University), Poondi, Thanjavur, 613 503, Tamil Nadu, India.
| |
Collapse
|