1
|
Harsha ML, Salas-Ortiz Y, Cypher AD, Osborn E, Valle ET, Gregg JL, Hershberger PK, Kurerov Y, King S, Goranov AI, Hatcher PG, Konefal A, Cox TE, Greer JB, Meador JP, Tarr MA, Tomco PL, Podgorski DC. Toxicity of crude oil-derived polar unresolved complex mixtures to Pacific herring embryos: Insights beyond polycyclic aromatic hydrocarbons. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 957:177447. [PMID: 39521076 DOI: 10.1016/j.scitotenv.2024.177447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 11/05/2024] [Accepted: 11/06/2024] [Indexed: 11/16/2024]
Abstract
Crude oil toxicity to early life stage fish is commonly attributed to polycyclic aromatic hydrocarbons (PAHs). However, it remains unclear how the polar unresolved complex mixture (UCM), which constitutes the bulk of the water-soluble fraction of crude oil, contributes to crude oil toxicity. Additionally, the role of photomodification-induced toxicity in relation to the polar UCM is not well understood. This study addresses these knowledge gaps by assessing the toxicity of two laboratory generated polar UCMs from Cook Inlet crude oil, representing the readily water-soluble fraction of crude oil and photoproduced hydrocarbon oxidation products (HOPs), to Pacific herring (Clupea pallasii) embryos. A small-scale semi-static exposure design was utilized with a range of polar UCM concentrations (0.5-14 mg/L) in nonvolatile dissolved organic carbon (NVDOC) units, quantifying the entire polar UCM. Compositional analyses revealed a photochemical-driven shift toward more complex aromatic compositions, naphthenic acids, and no detectable levels of PAHs (above 0.3 μg/L). Exposure to the dark polar UCM resulted in higher mortality than exposure to the light polar UCM. Both dark and light polar UCMs induced developmental abnormalities commonly attributed to the PAH fraction, including edema, reduced heart rate, body axis defects, and decreased body lengths, with these effects observed at the lowest dose group (0.5 mg/L NVDOC). These responses suggest photomodification-induced toxicity is driven by exposure to increased concentrations of dissolved HOPs rather than photochemical induced compositional changes. Gene expression analyses focusing on xenobiotic metabolism and cardiac morphogenesis yielded results consistent with previous studies examining the biological mechanisms of crude oil toxicity. In summary, these phenotypic and genotypic responses in Pacific herring embryos indicate that the polar UCM is a significant driver of crude oil toxicity. These findings emphasize the importance of considering the polar UCM in future studies, metric reporting, and risk assessments related to crude oil toxicity.
Collapse
Affiliation(s)
- Maxwell L Harsha
- Department of Chemistry, Chemical Analysis & Mass Spectrometry Facility, University of New Orleans, New Orleans, Louisiana 70148, USA
| | - Yanila Salas-Ortiz
- Department of Chemistry, Chemical Analysis & Mass Spectrometry Facility, University of New Orleans, New Orleans, Louisiana 70148, USA
| | | | - Ed Osborn
- Department of Chemistry, Chemical Analysis & Mass Spectrometry Facility, University of New Orleans, New Orleans, Louisiana 70148, USA
| | - Eduardo Turcios Valle
- Department of Chemistry, Chemical Analysis & Mass Spectrometry Facility, University of New Orleans, New Orleans, Louisiana 70148, USA
| | - Jacob L Gregg
- U.S. Geological Survey, Western Fisheries Research Center, Marrowstone Marine Field Station, Nordland, Washington 98358, USA
| | - Paul K Hershberger
- U.S. Geological Survey, Western Fisheries Research Center, Marrowstone Marine Field Station, Nordland, Washington 98358, USA
| | - Yuri Kurerov
- Department of Chemistry, Chemical Analysis & Mass Spectrometry Facility, University of New Orleans, New Orleans, Louisiana 70148, USA; Eurofins Central Analytical Laboratories, New Orleans, Louisiana 70122, USA
| | - Sarah King
- Eurofins Central Analytical Laboratories, New Orleans, Louisiana 70122, USA
| | - Aleksandar I Goranov
- Department of Chemistry and Biochemistry, Old Dominion University, Norfolk, Virginia 23529, USA
| | - Patrick G Hatcher
- Department of Chemistry and Biochemistry, Old Dominion University, Norfolk, Virginia 23529, USA
| | - Anastasia Konefal
- Department of Biological Sciences, University of New Orleans, New Orleans, Louisiana 70148, USA
| | - T Erin Cox
- Department of Biological Sciences, University of New Orleans, New Orleans, Louisiana 70148, USA
| | - Justin B Greer
- U.S. Geological Survey, Western Fisheries Research Center, Seattle, Washington 98115, USA
| | - James P Meador
- University of Washington, Dept. of Environmental and Occupational Health Sciences, School of Public Health, Seattle, Washington 98105, USA
| | - Matthew A Tarr
- Department of Chemistry, Chemical Analysis & Mass Spectrometry Facility, University of New Orleans, New Orleans, Louisiana 70148, USA
| | - Patrick L Tomco
- Department of Chemistry, Chemical Analysis & Mass Spectrometry Facility, University of New Orleans, New Orleans, Louisiana 70148, USA; Department of Chemistry, University of Alaska Anchorage, Anchorage, AK 99508, USA
| | - David C Podgorski
- Department of Chemistry, Chemical Analysis & Mass Spectrometry Facility, University of New Orleans, New Orleans, Louisiana 70148, USA; Pontchartrain Institute for Environmental Sciences, Shea Penland Coastal Education & Research Facility, University of New Orleans, New Orleans, Louisiana 70148, USA; Department of Chemistry, University of Alaska Anchorage, Anchorage, AK 99508, USA.
| |
Collapse
|
2
|
Vione D, Arey JS, Parkerton TF, Redman AD. Direct and indirect photodegradation in aquatic systems mitigates photosensitized toxicity in screening-level substance risk assessments of selected petrochemical structures. WATER RESEARCH 2024; 257:121677. [PMID: 38728777 DOI: 10.1016/j.watres.2024.121677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 04/22/2024] [Accepted: 04/23/2024] [Indexed: 05/12/2024]
Abstract
Photochemical processes are typically not incorporated in screening-level substance risk assessments due to the complexity of modeling sunlight co-exposures and resulting interactions on environmental fate and effects. However, for many substances, sunlight exerts a profound influence on environmental degradation rates and ecotoxicities. Recent modeling advances provide an improved technical basis for estimating the effect of sunlight in modulating both substance exposure and toxicity in the aquatic environment. Screening model simulations were performed for 25 petrochemical structures with varied uses and environmental fate properties. Model predictions were evaluated by comparing the ratios of predicted exposure concentrations with and without light to the corresponding ratios of toxicity thresholds under the same conditions. The relative ratios of exposure and hazard in light vs. dark were then used to evaluate how inclusion of light modulates substance risk analysis. Results indicated that inclusion of light reduced PECs by factors ranging from 1.1- to 63-fold as a result of photodegradation, while reducing PNECs by factors ranging from 1- to 49-fold due to photoenhanced toxicity caused by photosensitization. Consequently, the presence of light altered risk quotients by factors that ranged from 0.1- to 17-fold, since the predicted increase in substance hazard was mitigated by the reduction in exposure. For many structures, indirect photodegradation decreases environmental exposures independently of the direct photolysis pathway which is associated with enhanced phototoxicity. For most of the scenarios and chemicals in the present work, photosensitization appears to be mitigated by direct and indirect degradation from sunlight exposure.
Collapse
Affiliation(s)
- Davide Vione
- Department of Chemistry, University of Torino, Via Pietro Giuria 5, 10125 Torino, Italy.
| | | | | | - Aaron D Redman
- ExxonMobil Biomedical Sciences, Inc Annandale, NJ USA 08801.
| |
Collapse
|
3
|
Kang S, Oh YJ, Kim MR, Jung YN, Song E, Lee H, Hong J. Development of a Convenient and Quantitative Method for Evaluating Photosensitizing Activity Using Thiazolyl Blue Formazan Dye. Molecules 2024; 29:2471. [PMID: 38893346 PMCID: PMC11173384 DOI: 10.3390/molecules29112471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 05/17/2024] [Accepted: 05/21/2024] [Indexed: 06/21/2024] Open
Abstract
Photosensitizers cause oxidative damages in various biological systems under light. In this study, the method for analyzing photosensitizing activity of various dietary and medicinal sources was developed using 1-(4,5-dimethylthiazol-2-yl)-3,5-diphenylformazan (thiazolyl blue formazan; MTT-F) as a probe. Significant and quantitative decolorization of MTT-F was observed in the presence of photosensitizers used in this study under light but not under dark conditions. The decolorization of MTT-F occurred irradiation time-, light intensity-, and photosensitizer concentration-dependently. The decolorized MTT-F was reversibly reduced by living cells; the LC-MS/MS results indicated the formation of oxidized products with -1 m/z of base peak from MTT-F, suggesting that MTT-F decolorized by photosensitizers was its corresponding tetrazolium. The present results indicate that MTT-F is a reliable probe for the quantitative analysis of photosensitizing activities, and the MTT-F-based method can be an useful tool for screening and evaluating photosensitizing properties of various compounds used in many industrial purposes.
Collapse
Affiliation(s)
- Smee Kang
- Department of Food Science and Technology, College of Science and Convergence Technology, Seoul Women’s University, 621, Hwarangro, Nowon-gu, Seoul 01797, Republic of Korea; (S.K.); (M.-R.K.); (Y.N.J.); (E.S.); (H.L.)
| | - Yeong Ji Oh
- Major in Food Science & Biotechnology, Institute of Bio Engineering, College of Future Convergence, Eulji University, Seongnam 13135, Republic of Korea;
| | - Mi-Ri Kim
- Department of Food Science and Technology, College of Science and Convergence Technology, Seoul Women’s University, 621, Hwarangro, Nowon-gu, Seoul 01797, Republic of Korea; (S.K.); (M.-R.K.); (Y.N.J.); (E.S.); (H.L.)
| | - Yu Na Jung
- Department of Food Science and Technology, College of Science and Convergence Technology, Seoul Women’s University, 621, Hwarangro, Nowon-gu, Seoul 01797, Republic of Korea; (S.K.); (M.-R.K.); (Y.N.J.); (E.S.); (H.L.)
| | - Eiseul Song
- Department of Food Science and Technology, College of Science and Convergence Technology, Seoul Women’s University, 621, Hwarangro, Nowon-gu, Seoul 01797, Republic of Korea; (S.K.); (M.-R.K.); (Y.N.J.); (E.S.); (H.L.)
| | - Hyowon Lee
- Department of Food Science and Technology, College of Science and Convergence Technology, Seoul Women’s University, 621, Hwarangro, Nowon-gu, Seoul 01797, Republic of Korea; (S.K.); (M.-R.K.); (Y.N.J.); (E.S.); (H.L.)
| | - Jungil Hong
- Department of Food Science and Technology, College of Science and Convergence Technology, Seoul Women’s University, 621, Hwarangro, Nowon-gu, Seoul 01797, Republic of Korea; (S.K.); (M.-R.K.); (Y.N.J.); (E.S.); (H.L.)
| |
Collapse
|
4
|
French-McCay DP, Robinson HJ, Adams JE, Frediani MA, Murphy MJ, Morse C, Gloekler M, Parkerton TF. Parsing the toxicity paradox: Composition and duration of exposure alter predicted oil spill effects by orders of magnitude. MARINE POLLUTION BULLETIN 2024; 202:116285. [PMID: 38555802 DOI: 10.1016/j.marpolbul.2024.116285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 01/13/2024] [Accepted: 03/19/2024] [Indexed: 04/02/2024]
Abstract
Oil spilled into an aquatic environment produces oil droplet and dissolved component concentrations and compositions that are highly variable in space and time. Toxic effects on aquatic biota vary with sensitivity of the organism, concentration, composition, environmental conditions, and frequency and duration of exposure to the mixture of oil-derived dissolved compounds. For a range of spill (surface, subsea, blowout) and oil types under different environmental conditions, modeling of oil transport, fate, and organism behavior was used to quantify expected exposures over time for planktonic, motile, and stationary organisms. Different toxicity models were applied to these exposure time histories to characterize the influential roles of composition, concentration, and duration of exposure on aquatic toxicity. Misrepresenting these roles and exposures can affect results by orders of magnitude. Well-characterized laboratory studies for <24-hour exposures are needed to improve toxicity predictions of the typically short-term exposures that characterize spills.
Collapse
Affiliation(s)
| | | | - Julie E Adams
- School of Environmental Studies, Queen's University, Kingston, ON, Canada.
| | | | | | | | | | | |
Collapse
|
5
|
Nordborg FM, Brinkman DL, Fisher R, Parkerton TF, Oelgemöller M, Negri AP. Effects of aromatic hydrocarbons and evaluation of oil toxicity modelling for larvae of a tropical coral. MARINE POLLUTION BULLETIN 2023; 196:115610. [PMID: 37804672 DOI: 10.1016/j.marpolbul.2023.115610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 09/26/2023] [Accepted: 09/28/2023] [Indexed: 10/09/2023]
Abstract
Application of oil toxicity modelling for assessing the risk of spills to coral reefs remains uncertain due to a lack of data for key tropical species and environmental conditions. In this study, larvae of the coral Acropora millepora were exposed to six aromatic hydrocarbons individually to generate critical target lipid body burdens (CTLBBs). Larval metamorphosis was inhibited by all six aromatic hydrocarbons, while larval survival was only affected at concentrations >2000 μg L-1. The derived metamorphosis CTLBB of 9.7 μmol g-1 octanol indicates larvae are more sensitive than adult corals, and places A. millepora larvae among the most sensitive organisms in the target lipid model (TLM) databases. Larvae were also more sensitive to anthracene and pyrene when co-exposed to ecologically relevant levels of ultraviolet radiation. The results suggest that the application of the phototoxic TLM would be protective of A. millepora larvae, provided adequate chemical and light data are available.
Collapse
Affiliation(s)
- F Mikaela Nordborg
- AIMS@JCU, Division of Research & Innovation, James Cook University and Australian Institute of Marine Science, Townsville 4810, Queensland, Australia; College of Science & Engineering, Division of Tropical Environments and Societies, James Cook University, Townsville 4810, Queensland, Australia; Australian Institute of Marine Science, Townsville 4810, Queensland, Australia.
| | - Diane L Brinkman
- Australian Institute of Marine Science, Townsville 4810, Queensland, Australia
| | - Rebecca Fisher
- Australian Institute of Marine Science, Crawley 6009, Western Australia, Australia
| | | | - Michael Oelgemöller
- Faculty of Chemistry and Biology, Hochschule Fresenius gGmbH-University of Applied Sciences, D-65510 Idstein, Germany
| | - Andrew P Negri
- AIMS@JCU, Division of Research & Innovation, James Cook University and Australian Institute of Marine Science, Townsville 4810, Queensland, Australia; Australian Institute of Marine Science, Townsville 4810, Queensland, Australia
| |
Collapse
|
6
|
Parkerton T, Boufadel M, Nordtug T, Mitchelmore C, Colvin K, Wetzel D, Barron MG, Bragin GE, de Jourdan B, Loughery J. Recommendations for advancing media preparation methods used to assess aquatic hazards of oils and spill response agents. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 259:106518. [PMID: 37030101 PMCID: PMC10519191 DOI: 10.1016/j.aquatox.2023.106518] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 03/15/2023] [Accepted: 04/02/2023] [Indexed: 05/15/2023]
Abstract
Laboratory preparation of aqueous test media is a critical step in developing toxicity information needed for oil spill response decision-making. Multiple methods have been used to prepare physically and chemically dispersed oils which influence test outcome, interpretation, and utility for hazard assessment and modeling. This paper aims to review media preparation strategies, highlight advantages and limitations, provide recommendations for improvement, and promote the standardization of methods to better inform assessment and modeling. A benefit of media preparation methods for oil that rely on low to moderate mixing energy coupled with a variable dilution design is that the dissolved oil composition of the water accommodation fraction (WAF) stock is consistent across diluted treatments. Further, analyses that support exposure confirmation maybe reduced and reflect dissolved oil exposures that are bioavailable and amenable to toxicity modeling. Variable loading tests provide a range of dissolved oil compositions that require analytical verification at each oil loading. Regardless of test design, a preliminary study is recommended to optimize WAF mixing and settling times to achieve equilibrium between oil and test media. Variable dilution tests involving chemical dispersants (CEWAF) or high energy mixing (HEWAF) can increase dissolved oil exposures in treatment dilutions due to droplet dissolution when compared to WAFs. In contrast, HEWAF/CEWAFs generated using variable oil loadings are expected to provide dissolved oil exposures more comparable to WAFs. Preparation methods that provide droplet oil exposures should be environmentally relevant and informed by oil droplet concentrations, compositions, sizes, and exposure durations characteristic of field spill scenarios. Oil droplet generators and passive dosing techniques offer advantages for delivering controlled constant or dynamic dissolved exposures and larger volumes of test media for toxicity testing. Adoption of proposed guidance for improving media preparation methods will provide greater comparability and utility of toxicity testing in oil spill response and assessment.
Collapse
Affiliation(s)
- Thomas Parkerton
- EnviSci Consulting, LLC, 5900 Balcones Dr, Suite 100, Austin, TX 78731, United States.
| | - Michel Boufadel
- Center for Natural Resources, Dept. of Civil and Environmental Engineering, New Jersey Institute of Technology, 323 MLK Blvd., Newark, NJ, United States.
| | - Trond Nordtug
- SINTEF Ocean AS, P.O. box 4762, Torgarden, Trondheim NO-7465, Norway.
| | - Carys Mitchelmore
- University of Maryland Center for Environmental Science, Chesapeake Biological Laboratory, 146 Williams Street, Solomons, MD, United States.
| | - Kat Colvin
- College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom.
| | - Dana Wetzel
- Environmental Laboratory of Forensics, Mote Marine Laboratory, 1600 Ken Thompson Parkway, Sarasota, FL, United States.
| | - Mace G Barron
- Office of Research and Development, U.S. Environmental Protection Agency, Gulf Breeze, FL 32561, United States.
| | - Gail E Bragin
- ExxonMobil Biomedical Sciences, Inc., 1545 US Highway 22 East, Annandale, NJ 08801, United States.
| | - Benjamin de Jourdan
- Huntsman Marine Science Centre, 1 Lower Campus Rd, St. Andrews, St. Andrews, New Brunswick E5B 2L7, Canada.
| | - Jennifer Loughery
- Huntsman Marine Science Centre, 1 Lower Campus Rd, St. Andrews, St. Andrews, New Brunswick E5B 2L7, Canada.
| |
Collapse
|
7
|
Dettman HD, Wade TL, French-McCay DP, Bejarano AC, Hollebone BP, Faksness LG, Mirnaghi FS, Yang Z, Loughery J, Pretorius T, de Jourdan B. Recommendations for the advancement of oil-in-water media and source oil characterization in aquatic toxicity test studies. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 261:106582. [PMID: 37369158 DOI: 10.1016/j.aquatox.2023.106582] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 04/01/2023] [Accepted: 04/03/2023] [Indexed: 06/29/2023]
Abstract
During toxicity testing, chemical analyses of oil and exposure media samples are needed to allow comparison of results between different tests as well as to assist with identification of the drivers and mechanisms for the toxic effects observed. However, to maximize the ability to compare results between different laboratories and biota, it has long been recognized that guidelines for standard protocols were needed. In 2005, the Chemical Response to Oil Spills: Ecological Effects Research Forum (CROSERF) protocol was developed with existing common analytical methods that described a standard method for reproducible preparation of exposure media as well as recommended specific analytical methods and analyte lists for comparative toxicity testing. At the time, the primary purpose for the data collected was to inform oil spill response and contingency planning. Since then, with improvements in both analytical equipment and methods, the use of toxicity data has expanded to include their integration into fate and effect models that aim to extend the applicability of lab-based study results to make predictions for field system-level impacts. This paper focuses on providing a summary of current chemical analyses for characterization of oil and exposure media used during aquatic toxicity testing and makes recommendations for the minimum analyses needed to allow for interpretation and modeling purposes.
Collapse
Affiliation(s)
| | - Terry L Wade
- Geochemical and Environmental Research Group, Texas A&M University, College Station, Texas, USA
| | | | | | - Bruce P Hollebone
- Environment and Climate Change Canada, Emergency Sciences and Technology, Ottawa, Ontario, Canada
| | | | - Fatemeh S Mirnaghi
- Environment and Climate Change Canada, Emergency Sciences and Technology, Ottawa, Ontario, Canada
| | - Zeyu Yang
- Environment and Climate Change Canada, Emergency Sciences and Technology, Ottawa, Ontario, Canada
| | | | | | | |
Collapse
|
8
|
Stubblefield WA, Barron M, Bragin G, DeLorenzo ME, de Jourdan B, Echols B, French-McCay DP, Jackman P, Loughery JR, Parkerton TF, Renegar DA, Rodriguez-Gil JL. Improving the design and conduct of aquatic toxicity studies with oils based on 20 years of CROSERF experience. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 261:106579. [PMID: 37300923 DOI: 10.1016/j.aquatox.2023.106579] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 03/31/2023] [Accepted: 04/03/2023] [Indexed: 06/12/2023]
Abstract
Laboratory toxicity testing is a key tool used in oil spill science, spill effects assessment, and mitigation strategy decisions to minimize environmental impacts. A major consideration in oil toxicity testing is how to replicate real-world spill conditions, oil types, weathering states, receptor organisms, and modifying environmental factors under laboratory conditions. Oils and petroleum-derived products are comprised of thousands of compounds with different physicochemical and toxicological properties, and this leads to challenges in conducting and interpreting oil toxicity studies. Experimental methods used to mix oils with aqueous test media have been shown to influence the aqueous-phase hydrocarbon composition and concentrations, hydrocarbon phase distribution (i.e., dissolved phase versus in oil droplets), and the stability of oil:water solutions which, in turn, influence the bioavailability and toxicity of the oil containing media. Studies have shown that differences in experimental methods can lead to divergent test results. Therefore, it is imperative to standardize the methods used to prepare oil:water solutions in order to improve the realism and comparability of laboratory tests. The CROSERF methodology, originally published in 2005, was developed as a standardized method to prepare oil:water solutions for testing and evaluating dispersants and dispersed oil. However, it was found equally applicable for use in testing oil-derived petroleum substances. The goals of the current effort were to: (1) build upon two decades of experience to update existing CROSERF guidance for conducting aquatic toxicity tests and (2) to improve the design of laboratory toxicity studies for use in hazard evaluation and development of quantitative effects models that can then be applied in spill assessment. Key experimental design considerations discussed include species selection (standard vs field collected), test substance (single compound vs whole oil), exposure regime (static vs flow-through) and duration, exposure metrics, toxicity endpoints, and quality assurance and control.
Collapse
Affiliation(s)
| | - M Barron
- United States Environmental Protection Agency (retired), USA
| | - G Bragin
- ExxonMobil Biomedical Sciences, Inc., USA
| | - M E DeLorenzo
- National Oceanic and Atmospheric Administration (NOAA), USA
| | - B de Jourdan
- Huntsman Marine Science Centre, St. Andrews, New Brunswick, Canada
| | - B Echols
- Environmental Toxicology Associates LLC, USA
| | | | - P Jackman
- Environment and Climate Change Canada (retired), Canada
| | - J R Loughery
- Huntsman Marine Science Centre, St. Andrews, New Brunswick, Canada
| | | | | | - J L Rodriguez-Gil
- International Institute for Sustainable Development Experimental Lakes Area (IISD-ELA), Canada
| |
Collapse
|
9
|
Lee K, Coelho G, Loughery J, de Jourdan B. Advances to the CROSERF protocol to improve oil spill response decision making. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 260:106580. [PMID: 37244122 DOI: 10.1016/j.aquatox.2023.106580] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 04/04/2023] [Accepted: 04/06/2023] [Indexed: 05/29/2023]
Abstract
The Chemical Response to Oil Spills: Ecological Effects Research Forum (CROSERF) created a standardized protocol for comparing the toxicity of physically dispersed oil versus chemically dispersed oil to address environmental concerns related to the proposed use of dispersants in the early 2000s. Since then, many revisions have been made to the original protocol to diversify the intended use of the data generated, incorporate emerging technologies, and to examine a wider range of oil types including non-conventional oils and fuels. Under the Multi-Partner Research Initiative (MPRI) for oil spill research under Canada's Oceans Protection Plan (OPP), a network of 45 participants from seven countries representing government, industry, non-profit, private, and academic sectors was established to identify the current state of the science and formulate a series of recommendations to modernize the oil toxicity testing framework. The participants formed a series of working groups, targeting specific aspects of oil toxicity testing, including: experimental conduct; media preparation; phototoxicity; analytical chemistry; reporting and communicating results; interpreting toxicity data; and appropriate integration of toxicity data to improve oil spill effects models. The network participants reached a consensus that a modernized protocol to assess the aquatic toxicity of oil should be sufficiently flexible to address a broad range of research questions in a 'fit-for-purpose' manner, where methods and approaches are driven by the need to generate scientifically-defensible data to address specific study objectives. Considering the many needs and varied objectives of aquatic toxicity tests currently being conducted to support and inform oil spill response decision making, it was also concluded that the development of a one size fits all approach would not be feasible.
Collapse
Affiliation(s)
- Kenneth Lee
- Fisheries and Oceans Canada, Ottawa, ON, Canada.
| | - Gina Coelho
- Bureau of Safety and Environmental Enforcement, Department of Interior, Sterling VA, United States
| | | | | |
Collapse
|
10
|
Loughery JR, Coelho GM, Lee K, de Jourdan B. Setting the stage to advance oil toxicity testing: Overview of knowledge gaps, and recommendations. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 261:106581. [PMID: 37285785 DOI: 10.1016/j.aquatox.2023.106581] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 04/01/2023] [Accepted: 04/04/2023] [Indexed: 06/09/2023]
Abstract
The Chemical Response to Oil Spills: Ecological Effects Research Forum created a standardized protocol for comparing the in vivo toxicity of physically dispersed oil to chemically dispersed oil to support science-based decision making on the use of dispersants in the early 2000s. Since then, the protocol has been frequently modified to incorporate advances in technology; enable the study of unconventional and heavier oils; and provide data for use in a more diverse manner to cover the growing needs of the oil spill science community. Unfortunately, for many of these lab-based oil toxicity studies consideration was not given to the influence of modifications to the protocol on media chemistry, resulting toxicity and limitations for the use of resulting data in other contexts (e.g., risk assessments, models). To address these issues, a working group of international oil spill experts from academia, industry, government, and private organizations was convened under the Multi-Partner Research Initiative of Canada's Oceans Protection Plan to review publications using the CROSERF protocol since its inception to support their goal of coming to consensus on the key elements required within a "modernized CROSERF protocol".
Collapse
Affiliation(s)
- Jennifer R Loughery
- Department of Aquatic Science, Huntsman Marine Science Center, St. Andrews, NB, Canada.
| | - Gina M Coelho
- Oil Spill Preparedness Division, Response Research Branch, Bureau of Safety and Environmental Enforcement, Sterling, VA, United States
| | - Kenneth Lee
- Ecosystem Science, Fisheries and Oceans Canada, Ottawa, ON, Canada
| | - Benjamin de Jourdan
- Department of Aquatic Science, Huntsman Marine Science Center, St. Andrews, NB, Canada
| |
Collapse
|
11
|
Tahir I, Alkheraije KA. A review of important heavy metals toxicity with special emphasis on nephrotoxicity and its management in cattle. Front Vet Sci 2023; 10:1149720. [PMID: 37065256 PMCID: PMC10090567 DOI: 10.3389/fvets.2023.1149720] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Accepted: 02/21/2023] [Indexed: 03/30/2023] Open
Abstract
Toxicity with heavy metals has proven to be a significant hazard with several health problems linked to it. Heavy metals bioaccumulate in living organisms, pollute the food chain, and possibly threaten the health of animals. Many industries, fertilizers, traffic, automobile, paint, groundwater, and animal feed are sources of contamination of heavy metals. Few metals, such as aluminum (Al), may be eliminated by the elimination processes, but other metals like lead (Pb), arsenic (As), and cadmium (Ca) accumulate in the body and food chain, leading to chronic toxicity in animals. Even if these metals have no biological purpose, their toxic effects are still present in some form that is damaging to the animal body and its appropriate functioning. Cadmium (Cd) and Pb have negative impacts on a number of physiological and biochemical processes when exposed to sub-lethal doses. The nephrotoxic effects of Pb, As, and Cd are well known, and high amounts of naturally occurring environmental metals as well as occupational populations with high exposures have an adverse relationship between kidney damage and toxic metal exposure. Metal toxicity is determined by the absorbed dosage, the route of exposure, and the duration of exposure, whether acute or chronic. This can lead to numerous disorders and can also result in excessive damage due to oxidative stress generated by free radical production. Heavy metals concentration can be decreased through various procedures including bioremediation, pyrolysis, phytoremediation, rhizofiltration, biochar, and thermal process. This review discusses few heavy metals, their toxicity mechanisms, and their health impacts on cattle with special emphasis on the kidneys.
Collapse
Affiliation(s)
- Ifrah Tahir
- Department of Parasitology, University of Agriculture, Faisalabad, Pakistan
| | - Khalid Ali Alkheraije
- Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, Qassim University, Buraidah, Saudi Arabia
| |
Collapse
|
12
|
French-McCay DP, Parkerton TF, de Jourdan B. Bridging the lab to field divide: Advancing oil spill biological effects models requires revisiting aquatic toxicity testing. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 256:106389. [PMID: 36702035 DOI: 10.1016/j.aquatox.2022.106389] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 12/10/2022] [Accepted: 12/12/2022] [Indexed: 06/18/2023]
Abstract
Oil fate and exposure modeling addresses the complexities of oil composition, weathering, partitioning in the environment, and the distributions and behaviors of aquatic biota to estimate exposure histories, i.e., oil component concentrations and environmental conditions experienced over time. Several approaches with increasing levels of complexity (i.e., aquatic toxicity model tiers, corresponding to varying purposes and applications) have been and continue to be developed to predict adverse effects resulting from these exposures. At Tiers 1 and 2, toxicity-based screening thresholds for assumed representative oil component compositions are used to inform spill response and risk evaluations, requiring limited toxicity data, analytical oil characterizations, and computer resources. Concentration-response relationships are employed in Tier 3 to quantify effects of assumed oil component mixture compositions. Oil spill modeling capabilities presently allow predictions of spatial and temporal compositional changes during exposure, which support mixture-based modeling frameworks. Such approaches rely on summed effects of components using toxic units to enable more realistic analyses (Tier 4). This review provides guidance for toxicological studies to inform the development of, provide input to, and validate Tier 4 aquatic toxicity models for assessing oil spill effects on aquatic biota. Evaluation of organisms' exposure histories using a toxic unit model reflects the current state-of the-science and provides an improved approach for quantifying effects of oil constituents on aquatic organisms. Since the mixture compositions in toxicity tests are not representative of field exposures, modelers rely on studies using single compounds to build toxicity models accounting for the additive effects of dynamic mixture exposures that occur after spills. Single compound toxicity data are needed to quantify the influence of exposure duration and modifying environmental factors (e.g., temperature, light) on observed effects for advancing use of this framework. Well-characterized whole oil bioassay data should be used to validate and refine these models.
Collapse
Affiliation(s)
- Deborah P French-McCay
- RPS Ocean Science, 55 Village Square Drive, South Kingstown, Rhode Island 02879, United States.
| | - Thomas F Parkerton
- EnviSci Consulting, LLC, 5900 Balcones Dr, Suite 100, Austin, Texas 77433, United States
| | - Benjamin de Jourdan
- Huntsman Marine Science Centre, 1 Lower Campus Rd, St. Andrews, New Brunswick E5B 2L7, Canada
| |
Collapse
|
13
|
Parkerton TF, French-McCay D, de Jourdan B, Lee K, Coelho G. Adopting a toxic unit model paradigm in design, analysis and interpretation of oil toxicity testing. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 255:106392. [PMID: 36638632 DOI: 10.1016/j.aquatox.2022.106392] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 12/18/2022] [Accepted: 12/21/2022] [Indexed: 06/17/2023]
Abstract
The lack of a conceptual understanding and unifying quantitative framework to guide conduct and interpretation of laboratory oil toxicity tests, has led investigators to divergent conclusions that can confuse stakeholders and impede sound decision-making. While a plethora of oil toxicity studies are available and continue to be published, due to differences in experimental design, results between studies often cannot be compared. Furthermore, much resulting data fails to advance quantitative effect models that are critically needed for oil spill risk and impact assessments. This paper discusses the challenges posed when evaluating oil toxicity test data based on traditional, total concentration-based exposure metrics and offers solutions for improving the state of practice by adopting a unifying toxic unit (TU) model framework. Key advantages of a TU framework is that differences in test oil composition, sensitivity of the test organism/endpoint, and toxicity test design (i.e., type of test) can be taken into quantitative account in predicting aquatic toxicity. This paradigm shift is intended to bridge the utility of laboratory oil toxicity tests with improved assessment of effects in the field. To illustrate these advantages, results from literature studies are reassessed and contrasted with conclusions obtained based on past practice. Using instructive examples, model results are presented to explain how dissolved oil composition and concentrations and resulting TUs vary in WAFs prepared using variable loading or dilution test designs and the important role that unmeasured oil components contribute to predicted oil toxicity. Model results are used to highlight how the TU framework can serve as a valuable aid in designing and interpreting empirical toxicity tests and provide the data required to validate/refine predictive toxicity models. To further promote consistent exposure and hazard assessment of physically and chemically dispersed oil toxicity tests recommendations for advancing the TU framework are presented.
Collapse
Affiliation(s)
- Thomas F Parkerton
- EnviSci Consulting, LLC, 5900 Balcones Dr, Suite 100, Austin, TX 78731, United States.
| | - Deborah French-McCay
- RPS Ocean Science, 55 Village Square Drive, South Kingstown, RI 02879, United States
| | - Benjamin de Jourdan
- Huntsman Marine Science Centre, 1 Lower Campus Rd, St. Andrews, St. Andrews, New Brunswick E5B 2L7, Canada
| | - Kenneth Lee
- Department of Fisheries and Oceans, Bedford Institute of Oceanography, Dartmouth B3B 1Y9, Canada
| | - Gina Coelho
- Department of Interior, Bureau of Safety and Environmental Enforcement, Oil Spill Preparedness Division, Response Research Branch,45600 Woodland Road, Sterling, VA 20166, United States
| |
Collapse
|