1
|
Yang Y, Leung CT, Yang J, Wang Q, Shao Y, Kang B, Wong AST, Wu RSS, Lai KP. Epigenetic Responses Induced by Transgenerational and Multigenerational Exposure Alter the Plasticity of Fish to Neurotoxic Effects of Triclosan. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025. [PMID: 40492829 DOI: 10.1021/acs.est.4c14537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2025]
Abstract
Triclosan (TCS), a common antimicrobial agent, is widely detected in the global environments nowadays globally. Using marine medaka as a model, this study investigated and compared the transgenerational and multigenerational neurotoxic effects on fish. The environmentally realistic concentration of TCS can induce hyperlocomotor activities and increase heart rate, while higher concentrations (>500 μg/L) can inhibit hatching and cause cardiovascular malformations and neurotransmitter imbalances. Parental (F0) exposure to TCS resulted in transgenerational effects on locomotor activities manifested in F2, alongside with alterations in phototransduction and cell adhesion pathways. Global DNA methylation analyses indicated that the observed transgenerational effects are mediated through relevant epigenetic changes. Multigenerational exposure to TCS increased locomotor activities from F1 to F3, which is associated with changes in the expression of genes related to eye structure, phototransduction, and lipid and retinol metabolisms, thereby affecting energy metabolism and visual function. Results of this study highlight the difference between transgenerational and multigenerational effects of TCS exposure, and potential biases incurred in current risk assessment based exclusively on data derived from F0, which presents challenges for environmental management and regulatory standards.
Collapse
Affiliation(s)
- Yi Yang
- State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong SAR, PR China
| | - Chi Tim Leung
- Department of Chemistry, City University of Hong Kong, Hong Kong SAR, PR China
| | - Jing Yang
- State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong SAR, PR China
| | - Qi Wang
- State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong SAR, PR China
| | - Yetong Shao
- State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong SAR, PR China
| | - Bin Kang
- Fisheries College, Ocean University of China, Qingdao 266003, China
| | - Alice Sze-Tsai Wong
- School of Biological Sciences, The University of Hong Kong, Hong Kong SAR, PR China
| | - Rudolf Shiu Sun Wu
- State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong SAR, PR China
- Department of Science and Environmental Studies, The Education University of Hong Kong, Hong Kong SAR, PR China
| | - Keng Po Lai
- State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong SAR, PR China
- Department of Applied Science, School of Science and Technology, Hong Kong Metropolitan University, Hong Kong SAR, PR China
| |
Collapse
|
2
|
Cantua R, Mulligan K. Developmental neurotoxicity of bisphenol F and bisphenol S in animal model systems: A literature review. Neurotoxicology 2025; 108:263-280. [PMID: 40280242 DOI: 10.1016/j.neuro.2025.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2025] [Revised: 04/15/2025] [Accepted: 04/21/2025] [Indexed: 04/29/2025]
Abstract
Neurodevelopmental disorders have complex etiologies, stemming both from genetic and environmental risk factors, including gestational exposure to bisphenol A (BPA). BPA is an endocrine-disrupting chemical widely used in the synthesis of plastics and epoxy-resins. In 2012, the Food and Drug Administration issued a ban on the use of BPA in certain baby and childhood products, which contributed to the proliferation of BPA-free products. To make products without BPA, plastic and epoxy manufacturers often use chemical analogs, including bisphenol F (BPF) and bisphenol S (BPS). However, the structural and biochemical similarities BPF and BPS share with BPA suggest they may have similar molecular and cellular impacts on the developing nervous system, despite consumers generally regarding BPA-free products as safer alternatives. In this review, we synthesized all available peer-reviewed primary literature to date reporting on the neurodevelopmental impacts of BPF and/or BPS in animal models. In total, 61 papers were identified as relevant to the topic, including evaluation of BPF- and BPS-associated neurodevelopmental phenotypes such as changes in neurodevelopmental gene expression, the proliferation and differentiation of neural stem cells, synaptogenesis, central nervous system morphology, neuronal cell death, and behavior. Though less extensively studied than BPA, the collective works described here indicate that BPF and BPS can act as developmental neurotoxicants in animal models, urging further mechanistic and epidemiological analyses of these bisphenol analogs, as well as a reconsideration by regulatory agencies of policies surrounding their usage.
Collapse
Affiliation(s)
- Ricardo Cantua
- Department of Biological Sciences, California State University, Sacramento, 6000 J Street, Sacramento, CA 95819, USA.
| | - Kimberly Mulligan
- Department of Biological Sciences, California State University, Sacramento, 6000 J Street, Sacramento, CA 95819, USA.
| |
Collapse
|
3
|
Xu J, Zhao S, Wang Y, Han J. Predictive Effect of FT3 Within the Euthyroid Range on HDL-C in Patients With Type 2 Diabetes: A Cross-Sectional Analysis of Inpatients in China. J Clin Lab Anal 2025; 39:e70029. [PMID: 40152361 PMCID: PMC12019697 DOI: 10.1002/jcla.70029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Revised: 03/05/2025] [Accepted: 03/23/2025] [Indexed: 03/29/2025] Open
Abstract
BACKGROUND Evidence for assessing the relationship between free triiodothyronine (FT3) and high-density lipoprotein cholesterol (HDL-C) remains limited. Therefore, the purpose of our study is to evaluate the relationship between FT3 and HDL-C in patients with type 2 diabetes. METHODS From June 2022 to October 2023, 3011 patients with normal thyroid function and diagnosed with type 2 diabetes mellitus (T2DM) were collected continuously and non-selectively in a Chinese hospital. Then, we used a logistic regression model to explore the relationship between FT3 and HDL-C. Smooth curve fitting is used to identify the nonlinear relationship between FT3 and HDL-C. RESULTS After adjusting for the influence of relevant factors, FT3 and HDL-C were negatively correlated -0.02 (-0.04, -0.00; p = 0.0162). There is also a nonlinear relationship between FT3 and HDL-C, with an inflection point of 3.48 pmol/L for FT3 (P for log- likelihood ratio test = 0.044). CONCLUSION This study shows that there is a negative correlation and nonlinear relationship between FT3 and HDL-C in the Chinese population with diabetes. When FT3 is between 2.76-3.48 pmol/L, HDL-C tends to a stable state; When FT3 is between 3.48-6.45 pmol/L, HDL-C decreases with the increase of FT3 concentration (According to the reference range used by our hospital, the normal value of serum FT3 is 2.76-6.45 pmol/L). These findings suggest that maintaining FT3 within the range of 2.76 to 3.48 pmol/L may be most beneficial for mitigating the progression of cardiovascular disease in patients with T2DM.
Collapse
Affiliation(s)
- Jinmei Xu
- Department of Endocrinology and MetabolismThe Fourth Affiliated Hospital, Harbin Medical UniversityHarbinChina
| | - Shangshuang Zhao
- Department of Endocrinology and MetabolismThe Fourth Affiliated Hospital, Harbin Medical UniversityHarbinChina
| | - Yan Wang
- Department of Endocrinology and MetabolismThe Fourth Affiliated Hospital, Harbin Medical UniversityHarbinChina
| | - Jun Han
- Department of Endocrinology and MetabolismThe Fourth Affiliated Hospital, Harbin Medical UniversityHarbinChina
| |
Collapse
|
4
|
Liang C, Chen Y, Ling Y, Li P, Liu J, Li X, Xu Y, Liu Z. Mechanisms of action and adaptive responses to diclofenac and meloxicam during the early life stages of Oryzias melastigma. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 969:178927. [PMID: 39999705 DOI: 10.1016/j.scitotenv.2025.178927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 01/21/2025] [Accepted: 02/18/2025] [Indexed: 02/27/2025]
Abstract
Non-steroidal anti-inflammatory drugs (NSAIDs), though designed to target specific molecular pathways, pose significant environmental risks to non-target organisms, particularly marine fish. This study investigated the toxicity mechanisms and adaptive responses to diclofenac (DCF) and meloxicam (MEX) during the early life stages (ELS) of Oryzias melastigma at environmentally relevant concentrations over a 31-day period. Mechanistic investigations of sub-lethal effects were conducted using Enzyme-Linked Immunosorbent Assay (ELISA), RNA sequencing (RNA-Seq) and quantitative PCR (qPCR). The results revealed that cyclooxygenase (COX) inhibition disrupted the renin-angiotensin system, leading to an accumulation of angiotensin II and cardiovascular developmental defects. Additionally, downregulation of the pla2 gene reduced substrates essential for COX enzyme activity, exacerbating the effects. Although NSAIDs are known to affect the digestive system, no significant effects on developmental factors were observed. RNA-Seq and qPCR analyses revealed an adaptive upregulation of key genes, including ace2 and cyp7a1, involved in cardiovascular and metabolic regulation. Furthermore, 16S rRNA sequencing identified shifts in the microbial community, particularly in g_Rubritalea and g_Sphingomonas genera. Both the upregulated genes and the altered microbial taxa likely played a role in mitigating toxic effects and promoting homeostasis. Moreover, molecular docking suggested that MEX exhibited stronger sub-lethal effects than DCF, likely due to its higher binding affinity to COX. These findings provide valuable insights into NSAID toxicity mechanisms in marine fish, highlighting the importance of adaptive responses in countering environmental stress and underscoring the long-term ecological risks of chronic NSAID exposure.
Collapse
Affiliation(s)
- Chuan Liang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Yang Chen
- School of Environmental Science and Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Yunzhe Ling
- School of Environmental Science and Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Peirun Li
- School of Environmental Science and Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Jiahao Liu
- School of Environmental Science and Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Xuantian Li
- NJTECH Environment Technology Co., Ltd, Nanjing 210000, China
| | - Yanhua Xu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China; School of Environmental Science and Engineering, Nanjing Tech University, Nanjing 211816, China; NJTECH Environment Technology Co., Ltd, Nanjing 210000, China.
| | - Zhiying Liu
- School of Environmental Science and Engineering, Nanjing Tech University, Nanjing 211816, China; NJTECH Environment Technology Co., Ltd, Nanjing 210000, China.
| |
Collapse
|
5
|
Wang Y, Zhang C, Zhao S, Xu J, Han J. Predictive Effect of FT3 Within the Euthyroid Range on LDL-C in Patients With Type 2 Diabetes: A Cross-Sectional Analysis of Inpatients in China. Clin Exp Pharmacol Physiol 2025; 52:e70021. [PMID: 39787620 DOI: 10.1111/1440-1681.70021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 12/06/2024] [Accepted: 12/16/2024] [Indexed: 01/12/2025]
Abstract
Evidence regarding the relationship between free triiodothyronine (FT3) and low-density lipoprotein cholesterol (LDL-C) remains limited. This study aimed to evaluate the association between FT3 and LDL-C levels in patients with type 2 diabetes mellitus (T2DM) who exhibit normal thyroid function. Between June 2022 and October 2023, a total of 3011 inpatients with T2DM and euthyroid status were continuously and non-selectively recruited from a Chinese hospital. The average age of the included individuals was 56.92 ± 12.56 years, with 1430 (47.49%) males. The mean FT3 concentration was 4.35 ± 0.56 pmol/L. A logistic regression model was applied to analyse the relationship between the FT3 and LDL-C levels, while smooth curve fitting was employed to investigate potential nonlinear associations between these variables. This study demonstrated a positive correlation (0.05 [95% CI: 0.02-0.07; p = 0.0018]) and nonlinear relationship (p = 0.0014) between FT3 and LDL-C levels in Chinese patients with diabetes. Specifically, when FT3 was below 4.28 pmol/L, LDL-C levels increased alongside rising FT3 concentration. However, when FT3 reached or exceeded 4.28 pmol/L, LDL-C levels plateaued and tended to stabilise. These findings suggest that maintaining FT3 within the range of 2.76 to 4.28 pmol/L may be most beneficial for mitigating the progression of cardiovascular disease in patients with T2DM. Our research is important for identifying the optimal FT3 range to delay the progression of cardiovascular disease in patients with T2DM. These findings provide valuable insights to guide clinicians in preventing and managing cardiovascular disease in this population.
Collapse
Affiliation(s)
- Yujue Wang
- Department of Research, The Fourth Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Chi Zhang
- Department of Medical Insurance, The Fourth Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Shangshuang Zhao
- Department of Endocrinology and Metabolism, The Fourth Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Jinmei Xu
- Department of Endocrinology and Metabolism, The Fourth Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Jun Han
- Department of Endocrinology and Metabolism, The Fourth Affiliated Hospital, Harbin Medical University, Harbin, China
| |
Collapse
|
6
|
Jiao Z, Taniyasu S, Yu N, Wang X, Yamashita N, Wei S. Two-layer homolog network approach for PFAS nontarget screening and retrospective data mining. Nat Commun 2025; 16:688. [PMID: 39814738 PMCID: PMC11735632 DOI: 10.1038/s41467-025-56035-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 01/05/2025] [Indexed: 01/18/2025] Open
Abstract
The rapid increase of novel per- and polyfluoroalkyl substances (PFAS) raises concerns, while their identification remains challenging. Here, we develop a two-layer homolog network approach for PFAS nontarget screening using mass spectrometry. The first layer constructs networks between homologs, with evaluation showing that it filters 94% of false candidates. The second layer builds a network between classes to expedite the identification of PFAS. We detected 94 PFAS in twelve waterproof products and two related industrial sludges, including 36 novel PFAS not previously reported in any sample. A local dataset is constructed for retrospective analysis by re-analyzing our previous samples, revealing fifteen novel PFAS in samples collected in 2005. The retrieval of the public database MassIVE uncovers novel PFAS in samples from seven countries. Here, we reveal the historic and global presence of novel PFAS, providing guidance for the management and policy-making concerning persistent chemicals.
Collapse
Affiliation(s)
- Zhaoyu Jiao
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, People's Republic of China
| | - Sachi Taniyasu
- National Institute of Advanced Industrial Science and Technology (AIST), 16-1 Onogawa, Tsukuba, Ibaraki, Japan
| | - Nanyang Yu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, People's Republic of China
| | - Xuebing Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, People's Republic of China
| | - Nobuyoshi Yamashita
- National Institute of Advanced Industrial Science and Technology (AIST), 16-1 Onogawa, Tsukuba, Ibaraki, Japan
| | - Si Wei
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, People's Republic of China.
| |
Collapse
|
7
|
Feng Y, Zhang Q, Li X, Zeng Y, Wang Y, Zhang L, Tian M, Chi B, Guo H. Elucidation on the Interaction Between Transferrin and Tetrachlorobisphenol A Based on Multispectroscopic Analysis, Molecular Docking Technique, and Conformational Studies. LUMINESCENCE 2025; 40:e70103. [PMID: 39840704 DOI: 10.1002/bio.70103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 12/28/2024] [Accepted: 01/09/2025] [Indexed: 01/23/2025]
Abstract
Tetrachlorobisphenol A (TCBPA) is a kind of fire retardant extensively used in our life, but it can accumulate in organisms and potentially have toxic effects. Transferrin (TF) is a glycoprotein predominantly present in the blood plasma, serving as an essential mediator for the transportation of iron and other small molecules. In our study, various techniques including multi-spectroscopic and molecular docking were employed to examine the interaction between TCBPA and TF. The TF-TCBPA complex was formed with the binding constant (Ka) in 2.181 ± 0.035 × 104 M-1 at 298 K. ΔH and ΔS were all negative, which means dominant driving forces were van der Waals forces and H-bonds. The secondary structure of TF was changed by TCBPA, resulting in a decline in the α-helix structure, and a corresponding increase in the β-sheet structure. The molecular docking revealed that TCBPA was positioned within a pocket of TF, and it engaged in interactions with some amino acid residues through different forces. Importantly, the interaction between Tyr426/Asp392/His585 and TCBPA implies that TCBPA potentially interferes with the transportation of iron ions in vivo. All of above results indicated the adverse effects of TCBPA on the TF structure and activity should be more attention.
Collapse
Affiliation(s)
- Yuchuan Feng
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, Jiangxi, China
| | - Qiumei Zhang
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, Jiangxi, China
| | - Xiting Li
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, Jiangxi, China
| | - Yujing Zeng
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, Jiangxi, China
| | - Yiming Wang
- The First Clinical Medical College of Nanchang University, Nanchang University, Nanchang, Jiangxi Province, China
| | - Lanfang Zhang
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, Jiangxi, China
| | - Miaomiao Tian
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, Jiangxi, China
| | - Baozhu Chi
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, Jiangxi, China
| | - Hui Guo
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
8
|
Zhou S, Wang X, Huang Y, Liu Y, Zheng Y, Chu P, Zhu L, Xu X. Bisphenol A induces lipid metabolism disorder and impairs hepatopancreas of Sesarmops sinensis. MARINE POLLUTION BULLETIN 2024; 208:117058. [PMID: 39357365 DOI: 10.1016/j.marpolbul.2024.117058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/20/2024] [Accepted: 09/25/2024] [Indexed: 10/04/2024]
Abstract
Bisphenol A (BPA) is a chemical that disrupts the endocrine system and may have negative implications on the lipid metabolism of organisms. To ascertain BPA implications on lipid metabolism in the hepatopancreas of Sesarmops sinensis, we exposed S. sinensis to different concentrations of BPA for 14 days. The outcomes manifested that BPA may stimulate hepatopancreas injury and lipid deposition in the hepatopancreas of S. sinensis and lead to the increase of hepatosomatic index (HSI). Transcriptome analysis showed that lipid metabolism-related pathways were significantly enriched in KEGG pathways. BPA exposure also caused disorders in lipid metabolism by altering fatty acid composition and lipid metabolites. The up-regulation of lipid synthesis genes and the alteration of lipid transport genes may be important reasons for the disorder of lipid metabolism. Furthermore, these outcomes provide a fresh point of reference for comprehending the ecotoxicological impacts of BPA on aquatic organisms.
Collapse
Affiliation(s)
- Shangjie Zhou
- School of Marine Science and Fisheries, Jiangsu Ocean University, Lianyungang, Jiangsu 222005, China
| | - Xiaotian Wang
- School of Marine Science and Fisheries, Jiangsu Ocean University, Lianyungang, Jiangsu 222005, China
| | - Yutong Huang
- School of Marine Science and Fisheries, Jiangsu Ocean University, Lianyungang, Jiangsu 222005, China
| | - Yan Liu
- School of Ocean, Yantai University, Yantai, Shandong 264000, China
| | - Yao Zheng
- Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, Jiangsu 214081, China
| | - Pengfei Chu
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225000, China
| | - Long Zhu
- School of Marine Science and Fisheries, Jiangsu Ocean University, Lianyungang, Jiangsu 222005, China; Marine Resources Development Institute of Jiangsu, Jiangsu Ocean University, Lianyungang, Jiangsu 222005, China.
| | - Xinghong Xu
- School of Marine Science and Fisheries, Jiangsu Ocean University, Lianyungang, Jiangsu 222005, China; Marine Resources Development Institute of Jiangsu, Jiangsu Ocean University, Lianyungang, Jiangsu 222005, China.
| |
Collapse
|
9
|
Pu C, Liu Y, Wang L, Ma J, Lv H, Song J, Wang B, Wang A, Zhu A, Shao P, Zhang C. Exploring the mechanism of intestinal injury induced by Bisphenol S in freshwater crayfish (Procambarus clarkii): Molecular and biochemical approaches. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 274:107035. [PMID: 39106612 DOI: 10.1016/j.aquatox.2024.107035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 07/31/2024] [Accepted: 08/01/2024] [Indexed: 08/09/2024]
Abstract
Bisphenol S (BPS) is extensively utilized in various industries such as plastic manufacturing, food packaging, and electronics. The release of BPS into aquatic environments has been observed to have negative impacts on aquatic ecosystems. Research has shown that exposure to BPS can have adverse effects on the health of aquatic animals. This study aimed to explore the mechanism of oxidative stress and endoplasmic reticulum stress induced in freshwater crayfish (Procambarus clarkii) by exposure to BPS (0 µg/L, 1 µg/L, 10 µg/L, and 100 µg/L) for 14 days. The results showed that BPS exposure resulted in elevated levels of reactive oxygen species (ROS) and malondialdehyde (MDA) and severe intestinal histological damage. In addition, oxidative stress can occur in the body by inhibiting the activity of antioxidant enzymes and the expression of related genes. BPS exposure induced a significant increase in the relative mRNA expression levels of inflammatory cytokines (NF-κB and TNF-α) and key unfolded protein response (UPR) related genes (Bip, Ire1, and Xbp1). At the same time, BPS exposure also induced up-regulation of apoptosis genes (Cytc and Casp3), suggesting that UPR and Nrf2-Keap1 signaling pathways may play a protective role in the process of apoptosis and oxidative stress. In conclusion, Our findings present the initial evidence that exposure to environmentally relevant levels of BPS can lead to intestinal injury through various pathways, highlighting concerns about the potential harm at a population level from BPS and other bisphenol analogs.
Collapse
Affiliation(s)
- Changchang Pu
- Henan University of Science and Technology, Luoyang, Henan, PR China
| | - Yuanyi Liu
- Henan University of Science and Technology, Luoyang, Henan, PR China
| | - Lu Wang
- Henan University of Science and Technology, Luoyang, Henan, PR China
| | - Jianshuang Ma
- Henan University of Science and Technology, Luoyang, Henan, PR China
| | - Haolei Lv
- Henan University of Science and Technology, Luoyang, Henan, PR China
| | - Jianyong Song
- Henan University of Science and Technology, Luoyang, Henan, PR China
| | - Bingke Wang
- Henan Academy of Fishery Sciences, Zhengzhou, Henan, PR China
| | - Aimin Wang
- Yancheng Institute of Technology, Yancheng, Jiangsu, PR China
| | - Aimin Zhu
- Yancheng Fisheries Research Institute, Yancheng, Jiangsu, PR China
| | - Peng Shao
- Yancheng Shangshui Environmental Biotechnology Engineering Co., Ltd 224005, PR China
| | - Chunnuan Zhang
- Henan University of Science and Technology, Luoyang, Henan, PR China.
| |
Collapse
|
10
|
Chen Z, Li X, Gao J, Liu Y, Zhang N, Guo Y, Wang Z, Dong Z. Effects of salinity on behavior and reproductive toxicity of BPA in adult marine medaka. CHEMOSPHERE 2024; 357:142103. [PMID: 38653400 DOI: 10.1016/j.chemosphere.2024.142103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/18/2024] [Accepted: 04/20/2024] [Indexed: 04/25/2024]
Abstract
Salinity is an important environmental factor influencing the toxicity of chemicals. Bisphenol A (BPA) is an environmental endocrine disruptor with adverse effects on aquatic organisms, such as fish. However, the influence of salinity on the biotoxicity of BPA and the underlying mechanism are unclear. In this study, we exposed marine medaka (Oryzias melastigma) to BPA at different salinities (0 psμ, 15 psμ, and 30 psμ) for 70days to investigate the toxic effects. At 0 psμ salinity, BPA had an inhibitory effect on the swimming behavior of female medaka. At 15 psμ salinity, exposure to BPA resulted in necrotic cells in the ovaries but not on the spermatozoa. In addition, BPA exposure changed the transcript levels of genes related to the nervous system (gap43, elavl3, gfap, mbpa, and α-tubulin) and the hypothalamic-pituitary-gonadal (HPG) axis (fshr, lhr, star, arα, cyp11a, cyp17a1, cyp19a, and erα); the expression changes differed among salinity levels. These results suggest that salinity influences the adverse effects of BPA on the nervous system and reproductive system of medaka. These results emphasize the importance of considering the impact of environmental factors when carrying out ecological risk assessment of pollutants.
Collapse
Affiliation(s)
- Zuchun Chen
- Key Laboratory of Aquaculture in South China Sea for Aquatic Economic Animal of Guangdong Higher Education Institutes, College of Fishery, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Xueyou Li
- Key Laboratory of Aquaculture in South China Sea for Aquatic Economic Animal of Guangdong Higher Education Institutes, College of Fishery, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Jiahao Gao
- Key Laboratory of Aquaculture in South China Sea for Aquatic Economic Animal of Guangdong Higher Education Institutes, College of Fishery, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Yue Liu
- Key Laboratory of Aquaculture in South China Sea for Aquatic Economic Animal of Guangdong Higher Education Institutes, College of Fishery, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Ning Zhang
- Key Laboratory of Aquaculture in South China Sea for Aquatic Economic Animal of Guangdong Higher Education Institutes, College of Fishery, Guangdong Ocean University, Zhanjiang, 524088, China; Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, College of Fishery, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Yusong Guo
- Key Laboratory of Aquaculture in South China Sea for Aquatic Economic Animal of Guangdong Higher Education Institutes, College of Fishery, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Zhongduo Wang
- Key Laboratory of Aquaculture in South China Sea for Aquatic Economic Animal of Guangdong Higher Education Institutes, College of Fishery, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Zhongdian Dong
- Key Laboratory of Aquaculture in South China Sea for Aquatic Economic Animal of Guangdong Higher Education Institutes, College of Fishery, Guangdong Ocean University, Zhanjiang, 524088, China; Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, College of Fishery, Guangdong Ocean University, Zhanjiang, 524088, China.
| |
Collapse
|
11
|
Yoon Y, Cho M. Detrimental impacts and QSAR baseline toxicity assessment of Japanese medaka embryos exposed to methylparaben and its halogenated byproducts. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 927:171448. [PMID: 38453088 DOI: 10.1016/j.scitotenv.2024.171448] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/29/2024] [Accepted: 03/01/2024] [Indexed: 03/09/2024]
Abstract
Despite the theoretical risk of forming halogenated methylparabens (halo-MePs) during water chlorination in the absence or presence of bromide ions, there remains a lack of in vivo toxicological assessments on vertebrate organisms for halo-MePs. This research addresses these gaps by investigating the lethal (assessed by embryo coagulation) or sub-lethal (assessed by hatching success/heartbeat rate) toxicity and teratogenicity (assessed by deformity rate) of MeP and its mono- and di-halogen derivatives (Cl- or Br-) using Japanese medaka embryos. In assessing selected apical endpoints to discern patterns in physiological or biochemical alterations, heightened toxic impacts were observed for halo-MePs compared to MeP. These include a higher incidence of embryo coagulation (4-36 fold), heartbeat rate decrement (11-36 fold), deformity rate increment (32-223 fold), hatching success decrement (11-59 fold), and an increase in Reactive Oxygen Species (ROS) level (1.2-7.4 fold)/Catalase (CAT) activity (1.7-2.8 fold). Experimentally determined LC50 values are correlated and predicted using a Quantitative Structure Activity Relationship (QSAR) based on the speciation-corrected liposome-water distribution ratio (Dlipw, pH 7.5). The QSAR baseline toxicity aligns well with (sub)lethal toxicity and teratogenicity, as evidenced by toxic ratio (TR) analysis showing TR < 10 for MeP exposure in all cases, while significant specific or reactive toxicity was found for halo-MeP exposure, with TR > 10 observed (excepting three values). Our extensive findings contribute novel insights into the intricate interplay of embryonic toxicity during the early-life-stage of Japanese medaka, with a specific focus on highlighting the potential hazards associated with halo-MePs compared to the parent compound MeP.
Collapse
Affiliation(s)
- Younggun Yoon
- Gyeongnam Department of Environmental Toxicology and Chemistry, Korea Institute of Toxicology (KIT), Gyeongsangnam-do, 52834, South Korea; Division of Biotechnology, SELS Center, College of Environmental and Bioresource Sciences, Jeonbuk National University, Iksan, Jeonbuk 54596, South Korea.
| | - Min Cho
- Division of Biotechnology, SELS Center, College of Environmental and Bioresource Sciences, Jeonbuk National University, Iksan, Jeonbuk 54596, South Korea.
| |
Collapse
|
12
|
Lemini C, Silveyra P, Segovia-Mendoza M. Cardiovascular disrupting effects of bisphenols, phthalates, and parabens related to endothelial dysfunction: Review of toxicological and pharmacological mechanisms. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2024; 107:104407. [PMID: 38428705 DOI: 10.1016/j.etap.2024.104407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 02/25/2024] [Indexed: 03/03/2024]
Abstract
Cardiovascular diseases (CVDs) are the leading cause of death worldwide. CVDs are promoted by the accumulation of lipids and immune cells in the endothelial space resulting in endothelial dysfunction. Endothelial cells are important components of the vascular endothelium, that regulate the vascular flow. The imbalance in the production of vasoactive substances results in the loss of vascular homeostasis, leading the endothelial dysfunction. Thus, endothelial dysfunction plays an essential role in the development of atherosclerosis and can be triggered by different cardiovascular risk factors. On the other hand, the 17β-estradiol (E2) hormone has been related to the regulation of vascular tone through different mechanisms. Several compounds can elicit estrogenic actions similar to those of E2. For these reasons, they have been called endocrine-disrupting compounds (EDCs). This review aims to provide up-to-date information about how different EDCs affect endothelial function and their mechanistic roles in the context of CVDs.
Collapse
Affiliation(s)
- Cristina Lemini
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Patricia Silveyra
- Department of Environmental and Occupational Health, Indiana University Bloomington, School of Public Health, Bloomington, IN, USA
| | - Mariana Segovia-Mendoza
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, Mexico.
| |
Collapse
|