1
|
Siva S, Meenatchi V, Bodkhe GA, Kim M. Unravelling the interaction of ethyl cinnamate in 2-hydroxypropyl and methyl-β-cyclodextrin by spectroscopic and theoretical evaluation for enhanced antibacterial activities. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 329:125521. [PMID: 39647264 DOI: 10.1016/j.saa.2024.125521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 11/25/2024] [Accepted: 11/28/2024] [Indexed: 12/10/2024]
Abstract
Essential oil components are the most common agents used to inhibit pathogens. Ethyl cinnamate (ECIN) is a hydrophobic essential oil component with well-known antibacterial properties but is poorly soluble in water, which limits its applications. In this study, inclusion complexes (ICs) were prepared by encapsulating ECIN in β-cyclodextrin (βCD), 2-hydroxypropyl-βCD, or methyl-βCD using an ultrasonication method to enhance water solubility and thermal and antibacterial properties. UV-Vis absorption and fluorescence spectral results indicated strong non-covalent interactions between ECIN and βCD derivatives in aqueous solution, and double reciprocal profiles revealed a guest:host stoichiometry of 1:1. Fourier-transform infrared and proton nuclear magnetic resonance spectroscopy investigations revealed that the phenyl ring of ECIN is located deeply in the CD nanocavities. X-ray diffraction, ultraviolet-visible diffuse reflectance spectroscopy, photoluminescence, and field emission scanning electron microscopy were performed to obtain crystalline, optical, and morphological information on solid ECIN-CDs. Thermogravimetric/differential thermal studies confirmed the improved stability of ECIN in solid CD-ICs by detecting an increase in the degradation temperature of ECIN from 50-140 °C to 310-410 °C. Further, the geometrical and frontier molecular orbital structures of the ECIN-CDs were theoretically evaluated using parametric method-3. Finally, antibacterial assays conducted against the foodborne pathogens Staphylococcus aureus and Escherichia coli and revealed that encapsulated ECIN had a greater inhibitory effect, which suggested the devised nanocarriers promote the solubilization of essential oil components in aqueous solutions.
Collapse
Affiliation(s)
- Subramanian Siva
- Department of Food Science and Technology, Yeungnam University, Gyeongsan-si, Gyeongsangbuk-do 38541, Republic of Korea
| | - Venkatasamy Meenatchi
- School of Chemical Engineering, Yeungnam University, Gyeongsan-si, Gyeongsangbuk-do 38541, Republic of Korea; Department of Physiology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Science (SIMATS), Saveetha University, Chennai 600077, India
| | - Gajanan A Bodkhe
- Department of Food Science and Technology, Yeungnam University, Gyeongsan-si, Gyeongsangbuk-do 38541, Republic of Korea
| | - Myunghee Kim
- Department of Food Science and Technology, Yeungnam University, Gyeongsan-si, Gyeongsangbuk-do 38541, Republic of Korea; Institute of Cell Culture, Yeungnam University, Gyeongsan-si, Gyeongsangbuk-do 38541, Republic of Korea.
| |
Collapse
|
2
|
Acero N, Manrique J, Muñoz-Mingarro D, Martínez Solís I, Bosch F. Vitis vinifera L. Leaves as a Source of Phenolic Compounds with Anti-Inflammatory and Antioxidant Potential. Antioxidants (Basel) 2025; 14:279. [PMID: 40227263 PMCID: PMC11939682 DOI: 10.3390/antiox14030279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Revised: 02/21/2025] [Accepted: 02/25/2025] [Indexed: 04/15/2025] Open
Abstract
Vitis vinifera is a plant known since ancient times mainly for the interest of its fruits. However, its leaves have traditionally been consumed as food in some regions of the Mediterranean basin and as a medicinal remedy. In this work, the phytochemical profile of this part of the plant, which is considered a bio-residue of viticultural processes, was analyzed (UHPLC-ESI(±)-QTOF-MS). Hydroxybenzoic acids, flavonols, and stilbenes are the main phenolic compounds identified. Its antioxidant and anti-inflammatory capacity were studied both in vitro and in cell culture. Grapevine leaves have a high capacity to scavenge free radicals, as well as to reduce oxidative stress induced by H2O2 in the HepG2 cell line. On the other hand, the methanolic extract of these leaves is capable of inhibiting lipoxygenase, an enzyme involved in inflammatory responses, with an IC50 of 1.63 μg/mL. In addition, the extract showed potent inhibition of NO production in LPS-stimulated RAW 264.7 cells. These results pointed out V. vinifera leaves as a powerful functional food with a high content of biologically active compounds. The enhancement of these by-products can be highly beneficial to food systems and contribute to the development of sustainable agriculture.
Collapse
Affiliation(s)
- Nuria Acero
- Departamento de CC Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28660 Boadilla del Monte, Spain;
| | - Jorge Manrique
- Departamento de CC Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28660 Boadilla del Monte, Spain;
| | - Dolores Muñoz-Mingarro
- Departamento de Química y Bioquímica, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28660 Boadilla del Monte, Spain;
| | - Isabel Martínez Solís
- Biomedical Sciences Institute, Universidad Cardenal Herrera-CEU, CEU Universities, Alfara del Patriarca, 46115 Valencia, Spain; (I.M.S.); (F.B.)
- Departamento de Farmacia, Facultad de Ciencias de la Salud, Universidad Cardenal Herrera-CEU, CEU Universities, Alfara del Patriarca, 46115 Valencia, Spain
- ICBiBE-Botanical Garden, University of Valencia, 46008 Valencia, Spain
| | - Francisco Bosch
- Biomedical Sciences Institute, Universidad Cardenal Herrera-CEU, CEU Universities, Alfara del Patriarca, 46115 Valencia, Spain; (I.M.S.); (F.B.)
- Departamento de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Cardenal Herrera-CEU, CEU Universities, Alfara del Patriarca, 46115 Valencia, Spain
| |
Collapse
|
3
|
Kim JY, Lee J, Lee SH, Jung EM, Lee KH. Modulatory effects of cinnamomi cortex and its components epicatechin and linalool on skin circadian rhythms. Sci Rep 2025; 15:4480. [PMID: 39915616 PMCID: PMC11803083 DOI: 10.1038/s41598-025-88325-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Accepted: 01/28/2025] [Indexed: 02/09/2025] Open
Abstract
Circadian rhythms, intrinsic 24-h cycles regulating physiological processes, are crucial for skin homeostasis. Disruptions in these rhythms are linked to various skin disorders and impaired barrier function. Circadian rhythms can be modulated by botanical compounds, which hold therapeutic potential. However, the effect of cinnamomi cortex (CC), an anti-inflammatory, antioxidant, and antimicrobial agent, on the circadian rhythm of keratinocytes remains unclear. This study aimed to examine the effects of CC extract and its 18 individual components on the circadian rhythm of HaCaT, an immortalized human keratinocyte line. CC extract and its bioactive components epicatechin (EC) and linalool (LO) significantly enhanced the circadian amplitude without altering the period. Gene expression analysis revealed that CC extract, EC, and LO altered the mRNA and protein levels of clock genes in a time-dependent manner. During molecular docking simulations, both EC and LO exhibited strong binding affinities for RORA, a key nuclear receptor involved in circadian regulation. Enhanced BMAL1 promoter activity following EC and LO treatments corroborated these findings. Furthermore, EC and LO demonstrated significant antioxidant activities, as evidenced by reduced reactive oxygen species levels and increased expression of antioxidant enzymes. EC and LO also upregulated skin barrier-related and ceramide synthesis genes and modulated the expression of cellular longevity-promoting genes. In conclusion, CC extract, particularly the components EC and LO, modulated circadian rhythms, reduced oxidative stress, and enhanced skin barrier function in keratinocytes. These findings highlight the potential of CC extract and its components as novel dermatological treatments to improve skin health and combat aging.
Collapse
Affiliation(s)
- Ji-Young Kim
- Department of Molecular Biology, Pusan National University, Busan, 46241, Republic of Korea
| | - Juyeon Lee
- Department of Molecular Biology, Pusan National University, Busan, 46241, Republic of Korea
| | - Soo-Hyeon Lee
- Department of Molecular Biology, Pusan National University, Busan, 46241, Republic of Korea
| | - Eui-Man Jung
- Department of Molecular Biology, Pusan National University, Busan, 46241, Republic of Korea
| | - Kyung-Ha Lee
- Department of Molecular Biology, Pusan National University, Busan, 46241, Republic of Korea.
- Institute of Systems Biology, Pusan National University, Busan, 46241, Republic of Korea.
| |
Collapse
|
4
|
Yu J. Chemical Composition of Essential Oils and Their Potential Applications in Postharvest Storage of Cereal Grains. Molecules 2025; 30:683. [PMID: 39942787 PMCID: PMC11820458 DOI: 10.3390/molecules30030683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 01/26/2025] [Accepted: 01/31/2025] [Indexed: 02/16/2025] Open
Abstract
Insect infestation and microbial, particularly mold contamination, are the major causes of stored grain deterioration during postharvest storage, which results in a significant loss in grain quality and quantity, and the formation of toxic chemicals such as mycotoxins. Pesticides, together with physical protection strategies, have been widely used to control insects and molds in stored grains, but their uses present significant environmental and health problems. This has led to the exploration of safer pesticide alternatives. Essential oils (EOs) are highly concentrated materials extracted from leaves, stems, flowers, seeds, roots, fruit rinds, resins, or barks. They are multifunctional due to their complex chemical composition. Thus, EOs are frequently used for their therapeutic, antimicrobial, odoriferous, and flavor properties in a wide range of products like medicine, cosmetics, and foods. This review provides comprehensive information on the chemical compositions of EOs commonly used in the food industry, factors influencing EO composition, and recent studies on the potential of EOs as alternatives to synthetic pesticides and fungicides for stored grain protection. The relationship between chemical compositions of EOs and their anti-insects and antimicrobial potentials, as well as current approaches/technologies of using EOs for food preservation, are also covered. However, this review also highlights the need for research on the development of feasible and affordable methodologies to apply effective EOs or encapsulated EOs in grain storage settings, particularly for organic grain protection.
Collapse
Affiliation(s)
- Jianmei Yu
- Department of Family and Consumer Science, North Carolina Agricultural and Technical State University, Greensboro, NC 27411, USA
| |
Collapse
|
5
|
Tiwari U, Akhtar S, Mir SS, Khan MKA. Evaluation of selected indigenous spices- and herbs-derived small molecules as potential inhibitors of SREBP and its implications for breast cancer using MD simulations and MMPBSA calculations. Mol Divers 2025:10.1007/s11030-025-11122-9. [PMID: 39899124 DOI: 10.1007/s11030-025-11122-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Accepted: 01/23/2025] [Indexed: 02/04/2025]
Abstract
In this study, we conducted an extensive analysis of 252 bioactive compounds derived from native spices and herbs for their potential anti-breast cancer activity against sterol regulatory element-binding protein (SREBP), using in silico techniques. To evaluate the oral bioavailability, overall pharmacokinetics, and safety profiles of these compounds, we employed Lipinski's rule of five and ADME descriptors, which depicted 66 lead molecules. These molecules were then docked with the SREBP using molecular docking tools, which revealed that diosgenin and smilagenin were the most promising hits compared to the reference inhibitor betulin, with average binding affinities of - 7.42 and - 7.37 kcal/mol and - 6.27 kcal/mol, respectively. To further assess the stability of these complexes along with betulin, we conducted molecular dynamics simulations over a 100 ns simulation period. We employed various parameters, including the root-mean-square deviation, root-mean-square fluctuation, solvent-accessible surface area, free energy of solvation, and radius of gyration, followed by principal component analysis. Furthermore, we evaluated the toxicity of the selected compounds against various anticancer cell lines, as well as their metabolic activity related to CYP450 metabolism and biological activity spectrum. Based on these results, both molecules exhibited promising drug candidate potential and could be utilized for further experimental analysis to elucidate their anticancer potential.
Collapse
Affiliation(s)
- Urvashi Tiwari
- Department of Biosciences, Integral University, Lucknow, Uttar Pradesh, 226026, India
| | - Salman Akhtar
- Department of Bioengineering, Integral University, Lucknow, Uttar Pradesh, 226026, India
| | - Snober S Mir
- Department of Biosciences, Integral University, Lucknow, Uttar Pradesh, 226026, India
| | | |
Collapse
|
6
|
Cheng Y, Fu Y, Gu D, Huang Y, Lu Y, Liu Y, Li X, Yao X, Zhang X, Jian W, Liu P, Wu H, Li Y. Seasonal Variation in Chemical Composition and Antioxidant and Antibacterial Activity of Essential Oil from Cinnamomum cassia Leaves. PLANTS (BASEL, SWITZERLAND) 2024; 14:81. [PMID: 39795342 PMCID: PMC11723029 DOI: 10.3390/plants14010081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 12/23/2024] [Accepted: 12/27/2024] [Indexed: 01/13/2025]
Abstract
Cinnamomum cassia has been extensively utilized in traditional medicine systems worldwide. The essential oil (EO) content and composition are influenced by various external and internal factors, such as climate and harvest season, making it vital to determine the optimal harvest period for high-quality EO production. This study is the first to evaluate the chemical profiles, as well as the antioxidant and antibacterial activities, of C. cassia leaf oil across the four seasons. GC-MS and FTIR analyses revealed significant seasonal variations in the components. Spring and autumn leaf oils contained the highest EO (2.20% and 1.95%, respectively) and trans-cinnamaldehyde (92.59% and 91.10%, respectively). Temperature and humidity primarily affected EO and trans-cinnamaldehyde accumulation. C. cassia leaf oil demonstrated the strongest antibacterial activity, with a minimum inhibitory concentration (MIC) of 0.25 mg/mL against S. aureus and L. monocytogenes for the spring oil. The MICs for the other three seasonal samples were 0.5 mg/mL for S. aureus, M. luteus, and L. monocytogenes, and 1.0 mg/mL for P. putida. The minimum bactericidal concentration (MBC) of the EOs across all seasons against S. aureus ranged from 0.5 to 1 mg/mL. Winter leaf oil exhibited high antioxidant activity, primarily due to the presence of cis-cinnamaldehyde, caryophyllene, humulene, alloaromadendrene, γ-muurolene, cis-bisabolene, o-methoxycinnamaldehyde, and phenolics. This study provides essential data and valuable references for optimizing resource utilization and determining the ideal harvest time for C. cassia leaves.
Collapse
Affiliation(s)
- Yanrong Cheng
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, South China Agricultural University, Guangzhou 510642, China; (Y.C.); (Y.F.); (D.G.); (Y.H.); (Y.L.); (Y.L.); (X.L.); (X.Y.); (X.Z.); (W.J.)
| | - Ying Fu
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, South China Agricultural University, Guangzhou 510642, China; (Y.C.); (Y.F.); (D.G.); (Y.H.); (Y.L.); (Y.L.); (X.L.); (X.Y.); (X.Z.); (W.J.)
| | - Dingze Gu
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, South China Agricultural University, Guangzhou 510642, China; (Y.C.); (Y.F.); (D.G.); (Y.H.); (Y.L.); (Y.L.); (X.L.); (X.Y.); (X.Z.); (W.J.)
| | - Yan Huang
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, South China Agricultural University, Guangzhou 510642, China; (Y.C.); (Y.F.); (D.G.); (Y.H.); (Y.L.); (Y.L.); (X.L.); (X.Y.); (X.Z.); (W.J.)
| | - Yongqi Lu
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, South China Agricultural University, Guangzhou 510642, China; (Y.C.); (Y.F.); (D.G.); (Y.H.); (Y.L.); (Y.L.); (X.L.); (X.Y.); (X.Z.); (W.J.)
| | - Yujie Liu
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, South China Agricultural University, Guangzhou 510642, China; (Y.C.); (Y.F.); (D.G.); (Y.H.); (Y.L.); (Y.L.); (X.L.); (X.Y.); (X.Z.); (W.J.)
| | - Xiulan Li
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, South China Agricultural University, Guangzhou 510642, China; (Y.C.); (Y.F.); (D.G.); (Y.H.); (Y.L.); (Y.L.); (X.L.); (X.Y.); (X.Z.); (W.J.)
| | - Xinyue Yao
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, South China Agricultural University, Guangzhou 510642, China; (Y.C.); (Y.F.); (D.G.); (Y.H.); (Y.L.); (Y.L.); (X.L.); (X.Y.); (X.Z.); (W.J.)
| | - Xinxuan Zhang
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, South China Agricultural University, Guangzhou 510642, China; (Y.C.); (Y.F.); (D.G.); (Y.H.); (Y.L.); (Y.L.); (X.L.); (X.Y.); (X.Z.); (W.J.)
| | - Wanying Jian
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, South China Agricultural University, Guangzhou 510642, China; (Y.C.); (Y.F.); (D.G.); (Y.H.); (Y.L.); (Y.L.); (X.L.); (X.Y.); (X.Z.); (W.J.)
| | - Peiwei Liu
- Hainan Branch of the Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Haikou 570311, China;
| | - Hong Wu
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, South China Agricultural University, Guangzhou 510642, China; (Y.C.); (Y.F.); (D.G.); (Y.H.); (Y.L.); (Y.L.); (X.L.); (X.Y.); (X.Z.); (W.J.)
- Medicinal Plants Research Center, South China Agricultural University, Guangzhou 510642, China
| | - Yanqun Li
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, South China Agricultural University, Guangzhou 510642, China; (Y.C.); (Y.F.); (D.G.); (Y.H.); (Y.L.); (Y.L.); (X.L.); (X.Y.); (X.Z.); (W.J.)
- Medicinal Plants Research Center, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
7
|
Hosseinipour SL, Ghanbarzadeh B, Mofid V, Soltani M, Hosseini H. Low-calorie functional dairy dessert enriched by prebiotic fibers and high antioxidant herbal extracts: A study of optimization and rheological properties. Food Sci Nutr 2024; 12:7829-7841. [PMID: 39479709 PMCID: PMC11521735 DOI: 10.1002/fsn3.4189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 03/16/2024] [Accepted: 04/12/2024] [Indexed: 11/02/2024] Open
Abstract
The formulations of functional low-calorie dairy dessert, enriched with inulin/polydextrose (as a starch substitute), and ginger/cinnamon extract (as a flavor component and natural antioxidants), were developed and optimized by the D-optimal mixed design method. In the first stage, using the hedonic sensory evaluation and syneresis data, the optimal concentrations of inulin and polydextrose were obtained as 2.49% inulin and 1.51% polydextrose, respectively. The steady shear rheological test showed that the replacement of starch with inulin and polydextrose caused a decrease in apparent viscosity in all dessert samples. This decrease was higher in the samples containing polydextrose than those containing inulin. The replacement of starch with inulin and polydextrose also reduced the hysteresis loop area and thixotropic behavior. In the second stage, 0-0.4% of ginger and cinnamon extracts were added to the optimum sample and then the antioxidant and color properties of dessert samples were evaluated. The lightness (L*) Hunter parameter decreased by adding extracts and the samples containing cinnamon extract showed a higher a* parameter than the control and ginger-incorporated samples. The result of the 2,2-diphenyl 1-picrylhydrazyl (DPPH) antioxidant assay showed that the antioxidant capacity of ginger extract was significantly higher than that of cinnamon extract. The half-maximal inhibitory concentration (IC50) value of dessert samples decreased by adding 0.4% cinnamon and ginger extracts from 88.30 mg/mL to 77.04 and 31.94 mg/mL, respectively.
Collapse
Affiliation(s)
- Seyyedeh Leila Hosseinipour
- Department of Food Sciences and Technology, Faculty of Pharmacy, Tehran Medical SciencesIslamic Azad UniversityTehranIran
| | - Babak Ghanbarzadeh
- Department of Food Science and Technology, Faculty of AgricultureUniversity of TabrizTabrizIran
| | - Vahid Mofid
- Department of Food Science and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Science and Food TechnologyShahid Beheshti University of Medical SciencesTehranIran
| | - Mostafa Soltani
- Department of Food Sciences and Technology, Faculty of Pharmacy, Tehran Medical SciencesIslamic Azad UniversityTehranIran
| | - Hedayat Hosseini
- Department of Food Science and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Science and Food TechnologyShahid Beheshti University of Medical SciencesTehranIran
| |
Collapse
|
8
|
Chelu M. Hydrogels with Essential Oils: Recent Advances in Designs and Applications. Gels 2024; 10:636. [PMID: 39451288 PMCID: PMC11508064 DOI: 10.3390/gels10100636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 09/27/2024] [Accepted: 09/29/2024] [Indexed: 10/26/2024] Open
Abstract
The innovative fusion of essential oils with hydrogel engineering offers an optimistic perspective for the design and development of next-generation materials incorporating natural bioactive compounds. This review provides a comprehensive overview of the latest advances in the use of hydrogels containing essential oils for biomedical, dental, cosmetic, food, food packaging, and restoration of cultural heritage applications. Polymeric sources, methods of obtaining, cross-linking techniques, and functional properties of hydrogels are discussed. The unique characteristics of polymer hydrogels containing bioactive agents are highlighted. These include biocompatibility, nontoxicity, effective antibacterial activity, control of the sustained and prolonged release of active substances, optimal porosity, and outstanding cytocompatibility. Additionally, the specific characteristics and distinctive properties of essential oils are explored, along with their extraction and encapsulation methods. The advantages and disadvantages of these methods are also discussed. We have considered limitations due to volatility, solubility, environmental factors, and stability. The importance of loading essential oils in hydrogels, their stability, and biological activity is analyzed. This review highlights through an in-depth analysis, the recent innovations, challenges, and future prospects of hydrogels encapsulated with essential oils and their potential for multiple applications including biomedicine, dentistry, cosmetics, food, food packaging, and cultural heritage conservation.
Collapse
Affiliation(s)
- Mariana Chelu
- "Ilie Murgulescu" Institute of Physical Chemistry, 202 Spl. Independentei, 060021 Bucharest, Romania
| |
Collapse
|
9
|
Li B, Yang Z, Mao F, Wang Q, Fang H, Gu X, Zheng K, Zheng Y, Zhao Y, Jiang J. Phytochemical profile and biological activities of the essential oils in the aerial part and root of Saposhnikovia divaricata. Sci Rep 2023; 13:8672. [PMID: 37248268 DOI: 10.1038/s41598-023-35656-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 05/22/2023] [Indexed: 05/31/2023] Open
Abstract
The dried root of Saposhnikovia divaricata (Turcz.) Schischk. is popular as a good medicinal material, however the abundant aerial part is often discarded, which caused the waste of resources. In order to exploit resources, the essential oils of the plant aerial part and root were extracted, separately called as VOA and VOR, their chemicals were identified. The tumor necrosis factor-α, interleukin-6, nitric oxide and interleukin-1β were detected to evaluate the oils anti-inflammatory activities. Then, the oils free radical scavenging rates were measured with DPPH, ABTS and hydroxyl free radical. The oils antitumor activities were evaluated with HeLa and HCT-8 cancer cell lines. The results showed the concentrations of VOA and VOR were separately 0.261% and 0.475%. Seventeen components of VOA were identified, accounting for 80.48% of VOA, including phytol, spathulenol, phytone, 4(15),5,10(14)-Germacratrien-1-ol, neophytadiene, etc. Seven components of VOR were determined, representing 90.73% of VOR, consisted of panaxynol, β-bisabolene, etc. VOA and VOR significantly inhibited the secretion of nitric oxide, interleukin-1β, interleukin-6 and tumor necrosis factor-α, effectively scavenged the DPPH, ABTS and hydroxyl free radicals, and showed significant antiproliferative activity against HeLa and HCT-8. The two oils presented important biological activity, which provided a hopeful utilized basis, and helped to reduce the waste of the aerial non-medicinal resources of S. divaricata.
Collapse
Affiliation(s)
- Bing Li
- College of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, 050200, China
- Traditional Chinese Medicine Processing Technology Innovation Center of Hebei Province, Shijiazhuang, 050200, China
- International Joint Research Center on Resource Utilization and Quality Evaluation of Traditional Chinese Medicine of Hebei Province, Shijiazhuang, 050200, China
| | - Zhenmin Yang
- College of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, 050200, China
- Traditional Chinese Medicine Processing Technology Innovation Center of Hebei Province, Shijiazhuang, 050200, China
| | - Fuying Mao
- Experimental Center, Hebei University of Chinese Medicine, Shijiazhuang, 050200, China
| | - Qian Wang
- College of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, 050200, China
| | - Huiyong Fang
- College of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, 050200, China
| | - Xian Gu
- College of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, 050200, China
| | - Kaiyan Zheng
- College of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, 050200, China
| | - Yuguang Zheng
- Traditional Chinese Medicine Processing Technology Innovation Center of Hebei Province, Shijiazhuang, 050200, China
- Hebei Chemical and Pharmaceutical College, Shijiazhuang, 050026, China
| | - Yunsheng Zhao
- College of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, 050200, China.
- Traditional Chinese Medicine Processing Technology Innovation Center of Hebei Province, Shijiazhuang, 050200, China.
- International Joint Research Center on Resource Utilization and Quality Evaluation of Traditional Chinese Medicine of Hebei Province, Shijiazhuang, 050200, China.
| | - Jianming Jiang
- College of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, 050200, China.
- Traditional Chinese Medicine Processing Technology Innovation Center of Hebei Province, Shijiazhuang, 050200, China.
- International Joint Research Center on Resource Utilization and Quality Evaluation of Traditional Chinese Medicine of Hebei Province, Shijiazhuang, 050200, China.
| |
Collapse
|
10
|
Rossato Viana A, Rapachi Fortes C, Rodrigues P, Ribeiro S, Maria Heinzmann B, Alves da Cunha M, Cristina Zeppenfeld C, da Silva Fernandes L, Wagner R, Baldisserotto B, Figueiredo HX, Gonçalves NN, de Moraes Chitolina AB, Justen CE, Dellaméa Baldissera M. Impact of dietary supplementation with Cinnamomum cassia essential oil on silver catfish ( Rhamdia quelen): Toxicological effects and muscle antioxidant and fatty acid profiles. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2023; 86:313-325. [PMID: 37010980 DOI: 10.1080/15287394.2023.2198564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
The aim of this study was to determine the biological effects of dietary supplementation with 0.05% and 0.1% cinnamon essential oil extracted from Cinnamomum cassia on silver catfish (Rhamdia quelen). The final body weight, weight gain, and specific growth rate were significantly higher in fish supplemented with 0.05% cinnamon essential oil than in the control(untreated) group. Muscle reactive oxygen species and lipid peroxidation levels were significantly lower in fish supplemented with 0.05% cinnamon essential oil but higher at the 0.1% concentration. Muscle antioxidant capacity against peroxyl radicals (ACAP) and superoxide dismutase activity were significantly higher in fish supplemented with 0.05% cinnamon essential oil, while ACAP levels were lower in fish supplemented with 0.1%. The total saturated fatty acid content was significantly higher in the muscle of supplemented fish than in controls, while the total monounsaturated fatty acid content was significantly higher only in fish fed 0.1% cinnamon essential oil. Finally, the total content of polyunsaturated fatty acids was significantly lower in fish fed 0.1% essential oil. Thus, data demonstrated that 0.05% C. cassia essential oil improves fish health by improving performance and muscle oxidant/antioxidant status. Higher doses of cinnamon essential oil produced oxidative stress in muscle, suggesting toxicity at the 0.1% level. Although this cinnamon essential oil diet exerted positive health effects, this diet impaired the muscle fatty acid profile, suggesting adverse impacts on human health.
Collapse
Affiliation(s)
| | | | - Patrícia Rodrigues
- Department of Industrial Pharmacy, Universidade Federal de Santa Maria (UFSM), Santa Maria, RS, Brazil
| | - Stephanie Ribeiro
- Department of Food Science and Technology, Universidade Federal de Santa Maria (UFSM), Santa Maria, RS, Brazil
| | - Berta Maria Heinzmann
- Department of Industrial Pharmacy, Universidade Federal de Santa Maria (UFSM), Santa Maria, RS, Brazil
| | - Mauro Alves da Cunha
- Department of Physiology and Pharmacology, Universidade Federal de Santa Maria (UFSM), Santa Maria, RS, Brazil
| | - Carla Cristina Zeppenfeld
- Department of Physiology and Pharmacology, Universidade Federal de Santa Maria (UFSM), Santa Maria, RS, Brazil
| | | | - Roger Wagner
- Department of Food Science and Technology, Universidade Federal de Santa Maria (UFSM), Santa Maria, RS, Brazil
| | - Bernardo Baldisserotto
- Department of Physiology and Pharmacology, Universidade Federal de Santa Maria (UFSM), Santa Maria, RS, Brazil
| | | | | | | | | | | |
Collapse
|
11
|
Singh B, Nathawat S, Avtar Sharma R. Antimicrobial potential of Indian Cinnamomum species. Saudi J Biol Sci 2023; 30:103549. [PMID: 36619679 PMCID: PMC9813755 DOI: 10.1016/j.sjbs.2022.103549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 11/23/2022] [Accepted: 12/20/2022] [Indexed: 12/27/2022] Open
Abstract
Cinnamomum is the largest genus of Lauraceae family and has been used as spices, food, and food additives by the people. Total 15 Cinnamomum species are distributed in different parts of Indian sub-continent. Different parts (leaves, stem bark, stem wood, roots, flowers, and fruits) of these species were shade-dried and used for the determination of essential oils. A total of 19 essential oils were identified and quantified from the different parts of (leaf, stem bark, stem wood, root, flower, and fruit) of 15 Cinnamomum species. The stem bark of C. altissimum was rich in the presence of essential oils (52.2 %) whereas minimum levels of essential oils were recorded in roots (17.9 %). The γ-terpinene (11.1 %) was reported as the major component essential oil in C. subavenium flowers. Methanol extract of C. camphora stem wood showed stronger lowest minimum inhibitory concentration against S. aureus (25 ± 0.01 μg/ml), H. pylori (29 ± 0.05 μg/ml), B. subtilis (31 ± 0.03 μg/ml), E. faecalis (33 ± 0.01 μg/ml), C. albicans (38 ± 0.03 μg/ml) when compared to amoxycillin (S. aureus 56 ± 0.05 μg/ml; B. subtilis 27 ± 0.04 μg/ml, E. faecalis 22 ± 0.01 μg/ml), streptomycin (H. pylori 38 ± 0.02 μg/ml) and fluconazole (C. albicans 56 ± 0.01 μg/ml). Methanolic extract of C. camphora stem wood demonstrated maximum antimicrobial activity against S. aureus, H. pylori, B. subtilis, E. faecalis and C. albicans. The essential oil of C. altissimum stem bark displayed significant lowest MIC against S. aureus (21 ± 0.03 μg/ml), E. coli (22 ± 0.03 μg/ml), E. cloacae (37 ± 0.06 μg/ml), L. monocytogenes (47 ± 0.08 μg/ml), and P. chrysogenum (101 ± 0.07 μg/ml) when compared to amoxycillin (E. coli 18 ± 0.01 μg/ml, E. cloacae 21 ± 0.05 μg/ml, L. monocytogenes 31 ± 0.03 μg/ml), and fluconazole (P. chrysogenum 101 ± 0.07 μg/ml). The essential oil of C. altissimum stem bark displayed maximum antimicrobial activity against S. aureus, E. coli, E. cloacae, L. monocytogenes, and P. chrysogenum. Cinnamomum essential oils may be used as an alternative source of antibacterial and antifungal compounds in the treatment of various types of infections.
Collapse
Affiliation(s)
- Bharat Singh
- Amity of Biotechnology, Amity University Rajasthan, Jaipur 303 002, India,Corresponding author at: Amity of Biotechnology, Amity University Rajasthan, Jaipur 303 002, India.
| | - Sheenu Nathawat
- Amity of Biotechnology, Amity University Rajasthan, Jaipur 303 002, India
| | - Ram Avtar Sharma
- Department of Botany, University of Rajasthan, Jaipur 302 004, India
| |
Collapse
|
12
|
Studies in instant water disinfection using natural oils. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2022.108631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
13
|
Ceylon cinnamon and clove essential oils as promising free radical scavengers for skin care products. ACTA CHIMICA SLOVACA 2022. [DOI: 10.2478/acs-2022-0001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Abstract
Due to adverse effects of free radicals on human skin and increasing consumer demand for natural ingredients, essential oils from basil, Ceylon cinnamon bark, clove, juniper, lavender, oregano, rosemary, tea tree, thyme, and ylang-ylang were assessed for their antiradical activity. The oils were evaluated in the concentration range of 5—0.1 mg·mL−1, in which the three reference synthetic antioxidants are most often added to mass-produced cosmetics. Among all examined samples, C. cinnamon oil at a concentration of 5 mg·mL−1 showed the strongest DPPH radical scavenging activity (0.41 mg·mL−1 IC50), followed by clove oil, BHA, α-tocopherol, and BHT (0.82, 0.84, 0.88 and 0.93 mg·mL−1 IC50), respectively. At the same concentration, the reduction power of C. cinnamon oil was higher (1.64 mg·mL−1 Trolox Eq.) than that of α-tocopherol and BHT (1.42 and 0.80 mmol·L−1 Trolox Eq., respectively) but lower than that of BHA (1.81 mmol·L–1 Trolox Eq.). Antiradical activity of the other eight essential oils was low or negligible. C. cinnamon oil and clove oil are promising antiradical agents for skin care but according to our GC-MS analysis, these oils contain 0.29 % of cinnamaldehyde, 0.03 % of linalool, 0.02 % of D-limonene, and 0.02 % of eugenol or 0.41 % of eugenol and 0.002 % of linalool, respectively, which are monitored contact allergens in cosmetics. Such a product is not be suitable for consumers allergic to these substances but for the vast majority of consumers it does not pose a risk in terms of allergic manifestations.
Collapse
|
14
|
Gupta P, Poluri KM. Elucidating the Eradication Mechanism of Perillyl Alcohol against Candida glabrata Biofilms: Insights into the Synergistic Effect with Azole Drugs. ACS BIO & MED CHEM AU 2022; 2:60-72. [PMID: 37102177 PMCID: PMC10114769 DOI: 10.1021/acsbiomedchemau.1c00034] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Increased incidences of fungal infections and associated mortality have accelerated the need for effective and alternative therapeutics. Perillyl alcohol (PA) is a terpene produced by the hydroxylation of limonene via the mevalonate pathway. In pursuit of an alternative antifungal agent, we studied the effect of PA on the biofilm community of Candida glabrata and on different cellular pathways to decipher its mode of action. PA efficiently inhibited growth and eradicated biofilms by reducing carbohydrate and eDNA content in the extracellular matrix. PA reduced the activity of hydrolytic enzymes in the ECM of C. glabrata biofilm. The chemical profiling study has given insights into the overall mode of action of PA in C. glabrata and the marked involvement of the cell wall and membrane, ergosterol biosynthesis, oxidative stress, and DNA replication. The spectroscopic and RT-PCR studies suggested a strong interaction of PA with chitin, β-glucan, ergosterol, and efflux pump, thus indicating increased membrane fluidity in C. glabrata. Furthermore, the microscopic and flow cytometry analysis emphasized that PA facilitated the change in mitochondrial activity, increased Ca2+ influx via overexpression of voltage-gated Ca2+ channels, and enhanced cytochrome C release from mitochondria. In addition, PA interferes with DNA replication and thus hinders the cell cycle progression at the S-phase. All these studies together established that PA mitigates the C. glabrata biofilms by targeting multiple cellular pathways. Interestingly, PA also potentiated the efficacy of azole drugs, particularly miconazole, against C. glabrata and its clinical isolates. Conclusively, the study demonstrated the use of PA as an effective antifungal agent alone or in combination with FDA-approved conventional drugs for fungal biofilm eradication.
Collapse
Affiliation(s)
- Payal Gupta
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India
| | - Krishna Mohan Poluri
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India
- Centre for Nanotechnology, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India
| |
Collapse
|
15
|
Novel strategies of essential oils, chitosan, and nano- chitosan for inhibition of multi-drug resistant: E. coli O157:H7 and Listeria monocytogenes. Saudi J Biol Sci 2021; 29:2582-2590. [PMID: 35531141 PMCID: PMC9073063 DOI: 10.1016/j.sjbs.2021.12.036] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 11/25/2021] [Accepted: 12/14/2021] [Indexed: 11/21/2022] Open
Abstract
Despite the wide range of available antibiotics, food borne bacteria demonstrate a huge spectrum of resistance. The current study aims to use natural components such as essential oils (EOs), chitosan, and nano-chitosan that have very influential antibacterial properties with novel technologies like chitosan solution/film loaded with EOs against multi-drug resistant bacteria. Two strains of Escherichia coli O157:H7 and three strains of Listeria monocytogenes were used to estimate antibiotics resistance. Ten EOs and their mixture, chitosan, nano-chitosan, chitosan plus EO solutions, and biodegradable chitosan film enriched with EOs were tested as antibacterial agents against pathogenic bacterial strains. Results showed that E. coli O157:H7 51,659 and L. monocytogenes 19,116 relatively exhibited considerable resistance to more than one single antibiotic. Turmeric, cumin, pepper black, and marjoram did not show any inhibition zone against L. monocytogenes; Whereas, clove, thyme, cinnamon, and garlic EOs exhibited high antibacterial activity against L. monocytogenes with minimum inhibitory concentration (MIC) of 250–400 μl 100−1 ml and against E. coli O157:H7 with an MIC of 350–500 μl 100−1 ml, respectively. Among combinations, clove, and thyme EOs showed the highest antibacterial activity against E. coli O157:H7 with MIC of 170 μl 100−1 ml, and the combination of cinnamon and clove EOs showed the strongest antibacterial activity against L. monocytogenes with an MIC of 120 μl 100−1 ml. Both chitosan and nano-chitosan showed a promising potential as an antibacterial agent against pathogenic bacteria as their MICs were relatively lower against L. monocytogenes than for E. coli O157:H7. Chitosan combined with each of cinnamon, clove, and thyme oil have a more effective antibacterial activity against L. monocytogenes and E. coli O157:H7 than the mixture of oils alone. Furthermore, the use of either chitosan solution or biodegradable chitosan film loaded with a combination of clove and thyme EOs had the strongest antibacterial activity against L. monocytogenes and E. coli O157:H7. However, chitosan film without EOs did not exhibit an inhibition zone against the tested bacterial strains.
Collapse
|
16
|
De-Montijo-Prieto S, Razola-Díaz MDC, Gómez-Caravaca AM, Guerra-Hernandez EJ, Jiménez-Valera M, Garcia-Villanova B, Ruiz-Bravo A, Verardo V. Essential Oils from Fruit and Vegetables, Aromatic Herbs, and Spices: Composition, Antioxidant, and Antimicrobial Activities. BIOLOGY 2021; 10:1091. [PMID: 34827085 PMCID: PMC8615279 DOI: 10.3390/biology10111091] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 10/19/2021] [Accepted: 10/20/2021] [Indexed: 12/03/2022]
Abstract
In the field of food preservation, encapsulated Essential Oils (EOs) could be the best non-toxic and eco-friendly tool for food preservative applications substituting the chemicals ones that have several disadvantages for the environment and health. Thirteen commercial EOs from plants, fruits, and vegetables were characterized by GC-MS. The antioxidant activity was measured by DPPH and ABTS techniques. Antimicrobial activity was assessed by agar well-diffusion method and the Minimum Inhibitory Concentration (MIC) by agar dilution method against six bacteria, Candida albicans, and Botrytis cinerea. All the EOs tested have demonstrated antioxidant activity in the range of IC50 0.01-105.32 mg/mL. Between them, cinnamon EOs were the best, followed by oregano and thyme EOs. Fennel EO showed the lowest radical scavenging. MIC values ranged from 0.14 to 9 mg/mL. C. cassia, thyme, and oregano EOs were the most effective against the bacterial species tested, and the yeast C. albicans. On the contrary, citric fruit EOs showed low or no inhibition against most bacterial strains. The percentages of inhibition of mycelia growth of B. cinerea ranged from 3.4 to 98.5%. Thyme, oregano, mint, and fennel EOs showed the highest inhibition.
Collapse
Affiliation(s)
- Soumi De-Montijo-Prieto
- Department of Microbiology, Campus of Cartuja, University of Granada, 18071 Granada, Spain; (S.D.-M.-P.); (M.J.-V.); (A.R.-B.)
| | - María del Carmen Razola-Díaz
- Department of Nutrition and Food Science, Campus of Cartuja, University of Granada, 18071 Granada, Spain; (M.d.C.R.-D.); (E.J.G.-H.); (B.G.-V.); (V.V.)
- Institute of Nutrition and Food Technology ‘José Mataix’, Biomedical Research Center, University of Granada, Avda del Conocimiento sn., Armilla, 18100 Granada, Spain
| | - Ana María Gómez-Caravaca
- Department of Analytical Chemistry, Faculty of Sciences, University of Granada, Avd. Fuentenueva s/n., 18071 Granada, Spain
| | - Eduardo Jesús Guerra-Hernandez
- Department of Nutrition and Food Science, Campus of Cartuja, University of Granada, 18071 Granada, Spain; (M.d.C.R.-D.); (E.J.G.-H.); (B.G.-V.); (V.V.)
| | - María Jiménez-Valera
- Department of Microbiology, Campus of Cartuja, University of Granada, 18071 Granada, Spain; (S.D.-M.-P.); (M.J.-V.); (A.R.-B.)
| | - Belén Garcia-Villanova
- Department of Nutrition and Food Science, Campus of Cartuja, University of Granada, 18071 Granada, Spain; (M.d.C.R.-D.); (E.J.G.-H.); (B.G.-V.); (V.V.)
| | - Alfonso Ruiz-Bravo
- Department of Microbiology, Campus of Cartuja, University of Granada, 18071 Granada, Spain; (S.D.-M.-P.); (M.J.-V.); (A.R.-B.)
| | - Vito Verardo
- Department of Nutrition and Food Science, Campus of Cartuja, University of Granada, 18071 Granada, Spain; (M.d.C.R.-D.); (E.J.G.-H.); (B.G.-V.); (V.V.)
- Institute of Nutrition and Food Technology ‘José Mataix’, Biomedical Research Center, University of Granada, Avda del Conocimiento sn., Armilla, 18100 Granada, Spain
| |
Collapse
|
17
|
Li Y, Tan B, Cen Z, Fu Y, Zhu X, He H, Kong D, Wu H. The variation in essential oils composition, phenolic acids and flavonoids is correlated with changes in antioxidant activity during Cinnamomum loureirii bark growth. ARAB J CHEM 2021. [DOI: 10.1016/j.arabjc.2021.103249] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
|
18
|
Abstract
Cinnamon is an unusual tropical plant belonging to the Lauraceae family. It has been used for hundreds of years as a flavor additive, but it has also been used in natural Eastern medicine. Cinnamon extracts are vital oils that contain biologically active compounds, such as cinnamon aldehyde, cinnamic alcohol, cinnamic acid, and cinnamate. It has antioxidant, anti-inflammatory, and antibacterial properties and is used to treat diseases such as diabetes and cardiovascular disease. In folk medicine, cinnamon species have been used as medicine for respiratory and digestive disorders. Their potential for prophylactic and therapeutic use in Parkinson’s and Alzheimer’s disease has also been discovered. This review summarizes the available isolation methods and analytical techniques used to identify biologically active compounds present in cinnamon bark and leaves and the influence of these compounds in the treatment of disorders.
Collapse
|
19
|
Parihar AKS, K. Kulshrestha M, Sahu U, Karbhal KS, Inchulkar SR, Shah K, Chauhan NS. Quality control of Dalchini (Cinnamomum zeylanicum): a review. ADVANCES IN TRADITIONAL MEDICINE 2021. [DOI: 10.1007/s13596-021-00547-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
20
|
Anis A, Pal K, Al-Zahrani SM. Essential Oil-Containing Polysaccharide-Based Edible Films and Coatings for Food Security Applications. Polymers (Basel) 2021; 13:575. [PMID: 33672974 PMCID: PMC7917627 DOI: 10.3390/polym13040575] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 01/14/2021] [Accepted: 01/21/2021] [Indexed: 12/17/2022] Open
Abstract
The wastage of food products is a major challenge for the food industry. In this regard, the use of edible films and coatings have gained much attention due to their ability to prevent the spoilage of the food products during handling, transport, and storage. This has effectively helped in extending the shelf-life of the food products. Among the various polymers, polysaccharides have been explored to develop edible films and coatings in the last decade. Such polymeric systems have shown great promise in microbial food safety applications. The inclusion of essential oils (EOs) within the polysaccharide matrices has further improved the functional properties of the edible films and coatings. The current review will discuss the different types of polysaccharides, EOs, methods of preparing edible films and coatings, and the characterization methods for the EO-loaded polysaccharide films. The mechanism of the antimicrobial activity of the EOs has also been discussed in brief.
Collapse
Affiliation(s)
- Arfat Anis
- SABIC Polymer Research Center, Department of Chemical Engineering, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Kunal Pal
- Department of Biotechnology and Medical Engineering, National Institute of Technology, Rourkela 769008, India;
| | - Saeed M. Al-Zahrani
- SABIC Polymer Research Center, Department of Chemical Engineering, King Saud University, Riyadh 11451, Saudi Arabia;
| |
Collapse
|
21
|
Essential oils as antimicrobial agents in biopolymer-based food packaging - A comprehensive review. FOOD BIOSCI 2020. [DOI: 10.1016/j.fbio.2020.100785] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
22
|
Žitek T, Leitgeb M, Golle A, Dariš B, Knez Ž, Knez Hrnčič M. The Influence of Hemp Extract in Combination with Ginger on the Metabolic Activity of Metastatic Cells and Microorganisms. Molecules 2020; 25:E4992. [PMID: 33126621 PMCID: PMC7662229 DOI: 10.3390/molecules25214992] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 10/23/2020] [Accepted: 10/26/2020] [Indexed: 02/04/2023] Open
Abstract
This study presents an investigation of the anticancer and antimicrobial ability of a combination of ginger and cannabis extracts in different ratios (1:1, 7:3 and 3:7). Extracts were obtained using various methods (Soxhlet extractions, cold macerations, ultrasonic extractions and supercritical fluid extractions). The antioxidant activity and the presence of total phenols were measured in the extracts, and the effect of the application extracts in various concentrations (c = 50, 20, 10, 5, 1, 0.1, 0.01 mg/mL) on cells was investigated. Higher values of antioxidants were measured at the ratio where ginger was predominant, which is reflected in a higher concentration of total phenols. Depending on the polyphenol content, the extracts were most effective when prepared supercritically and ultrasonically. However, with respect to cell response, the ratio was shown to have no effect on inhibiting cancer cell division. The minimum concentration required to inhibit cancer cell growth was found to be 1 mg/mL. High-performance liquid chromatography (HPLC) analysis also confirmed the effectiveness of ultrasonic and supercritical fluid extraction, as their extracts reached higher cannabinoid contents. In both extractions, the cannabidiol (CBD) content was above 30% and the cannabidiolic acid (CBDA) content was above 45%. In the case of ultrasonic extraction, a higher quantity of cannabigerol (CBG) (5.75 ± 0.18) was detected, and in the case of supercritical fluid extraction, higher cannabichromene (CBC) (5.48 ± 0.13) content was detected, when compared to other extraction methods. The antimicrobial potential of extracts prepared with ultrasonic and supercritical extractions on three microorganisms (Staphylococcus aureus, Escherichia coli and Candida albicans) was checked. Ginger and cannabis extract show better growth inhibition of microorganisms in cannabis-dominated ratios for gram-positive bacterium S. aureus, MIC = 9.38 mg/mL, for gram-negative bacterium E. coli, MIC > 37.5 mg/mL and for the C. albicans fungus MIC = 4.69 mg/mL. This suggests guidelines for further work: a 1: 1 ratio of ginger and hemp will be chosen in a combination with supercritical and ultrasonic extraction.
Collapse
Affiliation(s)
- Taja Žitek
- Laboratory for Separation Processes and Product Design, Faculty of Chemistry and Chemical Engineering, University of Maribor, SI-2000 Maribor, Slovenia; (T.Ž.); (M.L.); (Ž.K.)
| | - Maja Leitgeb
- Laboratory for Separation Processes and Product Design, Faculty of Chemistry and Chemical Engineering, University of Maribor, SI-2000 Maribor, Slovenia; (T.Ž.); (M.L.); (Ž.K.)
- Faculty of Medicine, University of Maribor, Taborska 8, SI-2000 Maribor, Slovenia;
| | - Andrej Golle
- National Laboratory for Health, Environment and Food, Prvomajska ulica 1, SI-2000 Maribor, Slovenia;
| | - Barbara Dariš
- Faculty of Medicine, University of Maribor, Taborska 8, SI-2000 Maribor, Slovenia;
| | - Željko Knez
- Laboratory for Separation Processes and Product Design, Faculty of Chemistry and Chemical Engineering, University of Maribor, SI-2000 Maribor, Slovenia; (T.Ž.); (M.L.); (Ž.K.)
- Faculty of Medicine, University of Maribor, Taborska 8, SI-2000 Maribor, Slovenia;
| | - Maša Knez Hrnčič
- Laboratory for Separation Processes and Product Design, Faculty of Chemistry and Chemical Engineering, University of Maribor, SI-2000 Maribor, Slovenia; (T.Ž.); (M.L.); (Ž.K.)
| |
Collapse
|
23
|
Yanakiev S. Effects of Cinnamon ( Cinnamomum spp.) in Dentistry: A Review. Molecules 2020; 25:E4184. [PMID: 32932678 PMCID: PMC7571082 DOI: 10.3390/molecules25184184] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 09/09/2020] [Accepted: 09/11/2020] [Indexed: 02/07/2023] Open
Abstract
Dental medicine is one of the fields of medicine where the most common pathologies are of bacterial and fungal origins. This review is mainly focused on the antimicrobial effects of cinnamon essential oil (EO), cinnamon extracts, and pure compounds against different oral pathogens and the oral biofilm and the possible effects on soft mouth tissue. Basic information is provided about cinnamon, as is a review of its antimicrobial properties against the most common microorganisms causing dental caries, endodontic and periodontal lesions, and candidiasis. Cinnamon EO, cinnamon extracts, and pure compounds show significant antimicrobial activities against oral pathogens and could be beneficial in caries and periodontal disease prevention, endodontics, and candidiasis treatment.
Collapse
Affiliation(s)
- Spartak Yanakiev
- Medical College Y. Filaretova, Medical University-Sofia, Yordanka Filaretova Street 3, 1000 Sofia, Bulgaria
| |
Collapse
|
24
|
Huang L, Ho CT, Wang Y. Biosynthetic pathways and metabolic engineering of spice flavors. Crit Rev Food Sci Nutr 2020; 61:2047-2060. [PMID: 32462891 DOI: 10.1080/10408398.2020.1769547] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Historically, spices have played an important economic role, due to their large applications and unique flavor. The supply and cost of spice materials and their corresponding natural products are often affected by environmental, geopolitical and climatic conditions. Secondary metabolite composition, including certain flavor compounds in spice plants, is recognized and considered closely related to plant classification. Both genes and enzymes involved in the biosynthesis of spice flavors are constantly identified, which provides insight into metabolic engineering of flavor compounds (i.e. aroma and pungent compounds) from spice plants. In this review, a systematic meta-analysis was carried out based on a comprehensive literature survey of the flavor profiles of 36 spice plants from nine families. We also reviewed typical biosynthetic pathways and metabolic engineering of most representative aroma and pungent compounds that may assist in the future study of spice plants as biosynthetic factories facing a new challenge in creating spice products.
Collapse
Affiliation(s)
- Linhua Huang
- Citrus Research Institute, Southwest University, Xiema, Beibei, Chongqing, China.,Citrus Research and Education Center, University of Florida, Florida, USA
| | - Chi-Tang Ho
- Department of Food Science, Rutgers University, New Brunswick, NJ, USA
| | - Yu Wang
- Citrus Research and Education Center, University of Florida, Florida, USA
| |
Collapse
|
25
|
Cinnamon ( Cinnamomum zeylanicum) Oil as a Potential Alternative to Antibiotics in Poultry. Antibiotics (Basel) 2020; 9:antibiotics9050210. [PMID: 32357577 PMCID: PMC7277619 DOI: 10.3390/antibiotics9050210] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 04/09/2020] [Accepted: 04/15/2020] [Indexed: 02/07/2023] Open
Abstract
The removal of antibiotic growth promoters (AGPs) as feed additives in poultry nutrition from the market in many countries has compelled researchers to find unconventional and safe alternatives to AGPs. Probiotics, prebiotics, enzymes, organic acids, herbs, immune-stimulants and essential oils (EO) have been investigated as feed additives in poultry production. Cinnamon (Cinnamomum zeylanicum), one of the oldest medicinal plants and widely used around the world, can be used in poultry rations in the form of powder or essential oil. Essential oils produced from aromatic plants have become more interesting owing to their potential effects as hypocholesterolaemic agents, antioxidants, antimicrobials, antifungals and stimulants of digestive enzymes. The potential insecticidal and antimicrobial activities of EO against pathogens that cause spoilage in agriculture crops and human diseases might be attributed mainly to the high content of volatile components (mainly cinnamaldehyde, eugenol and carvacrol) in cinnamon oil. The present review focuses on the effects of cinnamon oil as a feed additive on poultry performance, carcass traits, meat quality, hypocholesterolaemic impact, antioxidant activity, immunity and microbiological aspects.
Collapse
|
26
|
Banasiuk R, Krychowiak M, Swigon D, Tomaszewicz W, Michalak A, Chylewska A, Ziabka M, Lapinski M, Koscielska B, Narajczyk M, Krolicka A. Carnivorous plants used for green synthesis of silver nanoparticles with broad-spectrum antimicrobial activity. ARAB J CHEM 2020. [DOI: 10.1016/j.arabjc.2017.11.013] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
27
|
Zhao C, Yang X, Tian H, Yang L. An improved method to obtain essential oil, flavonols and proanthocyanidins from fresh Cinnamomum japonicum Sieb. leaves using solvent-free microwave-assisted distillation followed by homogenate extraction. ARAB J CHEM 2020. [DOI: 10.1016/j.arabjc.2018.03.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
|
28
|
Optimization of Cinnamon ( Cinnamomum zeylanicum Blume) Essential Oil Extraction: Evaluation of Antioxidant and Antiproliferative Effects. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 2019:6498347. [PMID: 31929818 PMCID: PMC6942840 DOI: 10.1155/2019/6498347] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 11/29/2019] [Accepted: 12/07/2019] [Indexed: 01/15/2023]
Abstract
Having high cytotoxicity cell line effect, Cinnamomum zeylanicum Blume essential oil offers a novel approach to the chemotherapy treatment. In order to enhance its quantity/purity, the experimental conditions to produce essential oil should be more exploited. Steam distillation was used to isolate essential oil, and its conditions' optimization was carried out with the surface-response methodology. The maximum amount (2.6 g/100 g d.b.) was obtained under minimum condensation water flow (0.8 mL/min), a sample size of 6.5 cm, a saline solution concentration of 262.5 g/L, and five washings. The produced essential oil contains >77% of polyphenols. In vitro cytotoxicity was examined using an MTT assay against HeLa and Raji cell lines. The essential oil's capability to inhibit the proliferation of HeLa and Raji cell lines was studied under some conditions presenting IC50 values of 0.13 and 0.57 μg/mL, respectively. The essential oil was evaluated for its potential as an antioxidant by using in vitro models, such as phosphomolybdenum, DPPH, and H2O2 methods, in comparison with the synthetic antioxidant BHT (butylated hydroxytoluene) and ascorbic acid (vitamin C) as positive controls. The ammonium phosphomolybdate potency in the present study is of the order of 108.75 ± 32.63 mg of essential oil/equivalent to 1 mg of vitamin C in terms of antioxidant power, and the antioxidant activity of DPPH-H2O2 was 21.3% and 55.2%, respectively. The Cinnamomum zeylanicum Blume essential oil (CEO) covers important antioxidant and antiproliferative effects. This can be attributed to the presence of few minor and major phenolic compounds.
Collapse
|
29
|
Optimization by experimental design of headspace sorptive extraction and solid-phase microextraction for the determination of terpenes in spices. FOOD ANAL METHOD 2019. [DOI: 10.1007/s12161-019-01622-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
30
|
Multivariate approach in voltammetric identification and simultaneous determination of eugenol, carvacrol, and thymol on boron-doped diamond electrode. MONATSHEFTE FUR CHEMIE 2019. [DOI: 10.1007/s00706-019-02394-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
31
|
Chemical composition and biological activities of essential oil isolated by HS-SPME and UAHD from fruits of bergamot. Lebensm Wiss Technol 2019. [DOI: 10.1016/j.lwt.2019.01.020] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
32
|
Amat S, Baines D, Timsit E, Hallewell J, Alexander TW. Essential oils inhibit the bovine respiratory pathogens Mannheimia haemolytica, Pasteurella multocida and Histophilus somni and have limited effects on commensal bacteria and turbinate cells in vitro. J Appl Microbiol 2019; 126:1668-1682. [PMID: 30817050 DOI: 10.1111/jam.14238] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 02/12/2019] [Accepted: 02/25/2019] [Indexed: 11/28/2022]
Abstract
AIMS The objective of this study was to determine antimicrobial activities of essential oils (EOs) against bovine respiratory disease (BRD) pathogens and nasopharyngeal commensal bacteria, as well as cytotoxicity in bovine turbinate (BT) cells in vitro. METHODS AND RESULTS The chemical composition of 16 EOs was determined using gas chromatography-mass spectrometry. All EOs were first evaluated for growth inhibition of a single BRD pathogen Mannheimia haemolytica serotype 1 strain (L024A). The most inhibitory EOs (n = 6) were then tested for antimicrobial activity against multidrug-resistant strains of M. haemolytica (serotypes 1, 2 and 6); the BRD pathogens Pasteurella multocida and Histophilus somni, as well as commensal bacteria that were isolated from the nasopharynx of feedlot cattle. The cytotoxicity of 10 EOs was also evaluated using a BT cell line. The EOs ajowan, thyme and fennel most effectively inhibited all BRD pathogens tested including multidrug-resistant strains with minimum inhibitory concentrations (MIC) of ≤0·025% (volume/volume, v/v). For these EOs, the MIC was 2-32 fold greater against commensal bacteria, compared to BRD-associated pathogens. No cytotoxic effects of EOs against BT cells were observed within the tested range of concentrations (0·0125-0·4%, v/v). CONCLUSIONS The EOs ajowan, thyme and fennel inhibited M. haemolytica, P. multocida and H. somni at a concentration of 0·025% and had minimal antimicrobial activity against nasopharyngeal commensal bacteria and cytotoxicity against BT cells. SIGNIFICANCE AND IMPACT OF THE STUDY This study demonstrated that EOs may have potential for intra-nasal administration to mitigate bovine respiratory pathogens in feedlot cattle.
Collapse
Affiliation(s)
- S Amat
- Agriculture and Agri-Food Canada, Lethbridge, AB, Canada.,Department of Production Animal Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - D Baines
- Agriculture and Agri-Food Canada, Lethbridge, AB, Canada
| | - E Timsit
- Department of Production Animal Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada.,Simpson Ranch Chair in Beef Cattle Health and Wellness, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - J Hallewell
- Agriculture and Agri-Food Canada, Lethbridge, AB, Canada
| | - T W Alexander
- Agriculture and Agri-Food Canada, Lethbridge, AB, Canada
| |
Collapse
|
33
|
de Oliveira MS, da Cruz JN, Gomes Silva S, da Costa WA, de Sousa SHB, Bezerra FWF, Teixeira E, da Silva NJN, de Aguiar Andrade EH, de Jesus Chaves Neto AM, de Carvalho RN. Phytochemical profile, antioxidant activity, inhibition of acetylcholinesterase and interaction mechanism of the major components of the Piper divaricatum essential oil obtained by supercritical CO2. J Supercrit Fluids 2019. [DOI: 10.1016/j.supflu.2018.12.003] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
34
|
Vanti GL, Nargund VB, N BK, Vanarchi R, Kurjogi M, Mulla SI, Tubaki S, Patil RR. Synthesis ofGossypium hirsutum-derived silver nanoparticles and their antibacterial efficacy against plant pathogens. Appl Organomet Chem 2018. [DOI: 10.1002/aoc.4630] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Gulamnabi L. Vanti
- Department of Nanotechnology; University of Agricultural Sciences; Dharwad 580007 India
- Migal Galilee Research Institute; Kiryat Shmona 11016 Israel
| | - Vijendra B. Nargund
- Department of Nanotechnology; University of Agricultural Sciences; Dharwad 580007 India
| | - Basavesha K. N
- Department of Nanotechnology; University of Agricultural Sciences; Dharwad 580007 India
| | - Rajinikanth Vanarchi
- Department of Nanotechnology; University of Agricultural Sciences; Dharwad 580007 India
| | - Mahantesh Kurjogi
- Department of Nanotechnology; University of Agricultural Sciences; Dharwad 580007 India
| | - Sikandar I. Mulla
- Key Laboratory of Urban Pollutant Conversion; Institute of Urban Environment, Chinese Academy of Sciences; Xiamen China
- Division of Biotechnology; Chonbuk National University; Iksan 54596 Republic of Korea
| | - Suresh Tubaki
- Department of Nanotechnology; University of Agricultural Sciences; Dharwad 580007 India
| | - Rajashekar R. Patil
- Department of Nanotechnology; University of Agricultural Sciences; Dharwad 580007 India
| |
Collapse
|
35
|
Screening of Chemical Composition, in vitro Antioxidant, α-Amylase and α-Glucosidase Inhibitory Activities of the Leaf Essential Oils of Cinnamomum wightii from Different Populations. Nat Prod Commun 2018. [DOI: 10.1177/1934578x1801301132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Cnnamomum wightii is an endemic species of the Western Ghats, India and is used in Ayurveda and Siddha systems of medicine. Its bark and leaves are adulterated with commercial cinnamon in southern India. Despite its medicinal and commercial importance, the species remains underexplored. The objective of the present work was to screen the chemical composition, in vitro antioxidant, α-amylase and α-glucosidase inhibitory activities of the leaf essential oil of C. wightii collected from different populations. GC-FID and GC-MS analyses of the leaf essential oils from seven accessions enabled the identification of a total of 70 constituents, of which only 16 compounds were present in all samples. Eleven major constituents (> 5%) were identified, of which only linalool and spathulenol were present in all accessions as major constituents. Among seven accessions, essential oil from Parson's valley, Nilgiris exhibited better antioxidant activity with IC50 values of 2.552 ± 0.13 and 3.485 ± 0.09 mg/mL for ABTS and DPPH respectively. The essential oil from Korakundah, Nilgiris showed better hypoglycemic activity with IC50 values of 1.617 ± 0.02 and 1.146 ± 0.02 mg/mL for α-amylase and α-glucosidase inhibitory activities respectively. The leaf essential oils of C. wightii may be used in nutraceutical products focusing diabetes mellitus as the moderate inhibition of the metabolic enzymes has the advantage of slow release of glucose.
Collapse
|
36
|
Gupta P, Gupta S, Sharma M, Kumar N, Pruthi V, Poluri KM. Effectiveness of Phytoactive Molecules on Transcriptional Expression, Biofilm Matrix, and Cell Wall Components of Candida glabrata and Its Clinical Isolates. ACS OMEGA 2018; 3:12201-12214. [PMID: 31459295 PMCID: PMC6645245 DOI: 10.1021/acsomega.8b01856] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 09/14/2018] [Indexed: 05/20/2023]
Abstract
Toxicity challenges by antifungal arsenals and emergence of multidrug resistance scenario has posed a serious threat to global community. To cope up with this alarming situation, phytoactive molecules are richest, safest, and most effective source of broad spectrum antimicrobial compounds. In the present investigation, six phytoactive molecules [cinnamaldehyde (CIN), epigallocatechin, vanillin, eugenol (EUG), furanone, and epigallocatechin gallate] were studied against Candida glabrata and its clinical isolates. Among these, CIN and EUG which are active components of cinnamon and clove essential oils, respectively, exhibited maximum inhibition against planktonic growth of C. glabrata at a concentration of 64 and 128 μg mL-1, respectively. These two molecules effectively inhibited and eradicated approximately 80% biofilm of C. glabrata and its clinical isolates from biomaterials. CIN and EUG increased reactive oxygen species generation, cell lysis, and ergosterol content in plasma membrane and reduced virulence attributes (phospholipase and proteinase) as well as catalase activity of C. glabrata cells. Reduction of mitochondrial membrane potential with increased release of cytochrome c from mitochondria to cytosol indicated initiation of early apoptosis in CIN- and EUG-treated C. glabrata cells. Transcriptional analysis showed that multidrug transporter (CDR1) and ergosterol biosynthesis genes were downregulated in the presence of CIN, while getting upregulated in EUG-treated cells. Interestingly, genes such as 1,3-β-glucan synthase (FKS1), GPI-anchored protein (KRE1), and sterol importer (AUS1) were downregulated upon treatment of CIN/EUG. These results provided molecular-level insights about the antifungal mechanism of CIN and EUG against C. glabrata including its resistant clinical isolate. The current data established that CIN and EUG can be potentially formulated in new antifungal strategies.
Collapse
Affiliation(s)
- Payal Gupta
- Department
of Biotechnology, Indian Institute of Technology
Roorkee, Roorkee 247667, Uttarakhand, India
| | - Sonam Gupta
- Department
of Biotechnology, Indian Institute of Technology
Roorkee, Roorkee 247667, Uttarakhand, India
| | - Meenakshi Sharma
- Department
of Biotechnology, Indian Institute of Technology
Roorkee, Roorkee 247667, Uttarakhand, India
| | - Navin Kumar
- Department
of Biotechnology, Graphic Era Deemed to
be University, Dehradun 248002, Uttarakhand, India
| | - Vikas Pruthi
- Department
of Biotechnology, Indian Institute of Technology
Roorkee, Roorkee 247667, Uttarakhand, India
| | - Krishna Mohan Poluri
- Department
of Biotechnology, Indian Institute of Technology
Roorkee, Roorkee 247667, Uttarakhand, India
| |
Collapse
|
37
|
Volatile Oils of Nepeta tenuifolia (Jing Jie) as an Alternative Medicine against Multidrug-Resistant Pathogenic Microbes. CANADIAN JOURNAL OF INFECTIOUS DISEASES & MEDICAL MICROBIOLOGY 2018; 2018:8347403. [PMID: 29849838 PMCID: PMC5925154 DOI: 10.1155/2018/8347403] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 01/03/2018] [Accepted: 03/06/2018] [Indexed: 11/18/2022]
Abstract
Essential oils from the dried spikes of Nepeta tenuifolia (Benth) are obtained by steam distillation. Pulegone was identified as the main component in the spikes of N. tenuifolia through analysis, with greater than 85% purity obtained in this study. The essential oils are extremely active against all Gram-positive and some Gram-negative reference bacteria, particularly Salmonella enterica, Citrobacter freundii, and Escherichia coli. The minimum inhibitory concentration was found to be between 0.08 and 0.78% (against S. enterica), 0.39 and 0.78% (against C. freundii), and 0.097 and 0.39% (against E. coli), whereas the minimum bactericidal concentration varied in range from 0.097% to 1.04%. In general, the essential oils show a strong inhibitory action against all tested reference strains and clinical isolates. However, the antibacterial activity of EOs against both Pseudomonas aeruginosa reference strains and clinical isolates was relatively lower than other Gram-negative pathogens. The essential oils of N. tenuifolia also displayed bactericidal activities (MBC/MIC < 4) in this study. These findings reflect the bactericidal activity of the essential oils against a wide range of multidrug-resistant clinical pathogens in an in vitro study. In addition, we propose the fragmentation pathways of pulegone and its derivatives by LC-ESI-MS/MS in this study.
Collapse
|
38
|
Abdelwahab SI, Alsanosy R, Mohamed Elhassan Taha M, Mohan S. Khat Induced Toxicity: Role on Its Modulating Effects on Inflammation and Oxidative Stability. BIOMED RESEARCH INTERNATIONAL 2018; 2018:5896041. [PMID: 30003103 PMCID: PMC5998153 DOI: 10.1155/2018/5896041] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 04/03/2018] [Indexed: 11/30/2022]
Abstract
Long-term khat (Catha edulis Forsk.) chewing has negative effects on human body. Khat constituents appear to be capable of disturbing the delicate equilibrium between damaging and protective mechanisms of a cell that is essential for optimal activity, thereby producing oxidative damage. Therefore, the current study was designed to understand the role of khat on cell toxicity, oxidative stability, and inflammation. Khat was extracted using 60% methanol and assessed calorimetrically for its phenolic and flavonoid contents. 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging, oxygen radical absorbance capacity (ORAC), and ferric reducing/antioxidant power (FRAP) assays were used to assess the antioxidant properties. Lipopolysaccharide and interferon gamma induced murine monocytic macrophages cell line (RAW 264.7) were used to assess khat effects on cellular inflammation, oxidative stability, and viability. Khat possesses high content of polyphenols and flavonoids. The results showed a strong potency of antioxidants in DPPH, ORAC, and FRAP assays. Khat decreases the production of the proinflammatory nitric oxide and induces cytotoxicity and reactive oxygen species inhibition. Heavy khat consumption induced-toxicity and symptoms are probably due the harmful effects of its polyphenolic contents.
Collapse
Affiliation(s)
| | - Rashad Alsanosy
- Substance Abuse Research Centre, Jazan University, Jazan, Saudi Arabia
| | - Manal Mohamed Elhassan Taha
- Substance Abuse Research Centre, Jazan University, Jazan, Saudi Arabia
- Medical Research Centre, Jazan University, Jazan, Saudi Arabia
| | - Syam Mohan
- Substance Abuse Research Centre, Jazan University, Jazan, Saudi Arabia
- Medical Research Centre, Jazan University, Jazan, Saudi Arabia
| |
Collapse
|
39
|
Ananthakrishnan R, SanthoshKumar ES, Rameshkumar KB. Comparative Chemical Profiles of Essential Oil Constituents of Eight Wild Cinnamomum Species from the Western Ghats of India. Nat Prod Commun 2018. [DOI: 10.1177/1934578x1801300525] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The volatile chemical profiles of 8 wild Cinnamomum species ( C. dubium Nees, C. litseifolium Thwaites, C. mohanense Gangapr. et al., C. palghatensis Gangop., C. riparium Gamble, C. travancoricum Gamble, C. walaiwarense Kosterm. and C. wightii Meissn.) and two chemotypes ( C. agasthyamalayanum Robi et al. and C. keralaense Kosterm.) from the Western Ghats, south India were reported for the first time. A total of 112 constituents belonging to monoterpenoid, sesquiterpenoid and phenyl propanoid classes were identified from the leaf essential oils by GC-FID and GC-MS analytical methods. Monoterpenoids and sesquiterpenoids were the major class of volatile compounds distributed in most of the Cinnamomum species studied. The study lead to the identification of natural sources of aroma compounds such as 1,8-cineole ( C. mohanense), 1,4-cineole ( C. wightii), safrole ( C. walaiwarense) and benzyl benzoate ( C. keralaense). Two new chemotypes of Cinnamomum species viz; C. agasthyamalayanum phellandrene-eugenol type and C. keralaense benzyl benzoate type were also discovered from the Western Ghats. The interrelationships between the studied species were discussed based on the volatile chemical profiles.
Collapse
Affiliation(s)
- Ramamoorthy Ananthakrishnan
- Phytochemistry and Phytopharmacology Division, Palode, Thiruvananthapuram- 695562, Kerala, India
- University of Kerala, Thiruvananthapuram-695034, Kerala, India
| | - Ettickal. S. SanthoshKumar
- Plant Genetic Resources Division Jawaharlal Nehru Tropical Botanic Garden and Research Institute, Palode, Thiruvananthapuram- 695562, Kerala, India
| | | |
Collapse
|
40
|
Muhammad DRA, Dewettinck K. Cinnamon and its derivatives as potential ingredient in functional food—A review. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2017. [DOI: 10.1080/10942912.2017.1369102] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Dimas Rahadian Aji Muhammad
- Laboratory of Food Technology and Engineering, Faculty of Bioscience-Engineering, Ghent University, Gent, Belgium
- Department of Food Science and Technology, Sebelas Maret University, Surakarta, Indonesia
| | - Koen Dewettinck
- Laboratory of Food Technology and Engineering, Faculty of Bioscience-Engineering, Ghent University, Gent, Belgium
| |
Collapse
|
41
|
Qusti S, El Rabey HA, Balashram SA. The Hypoglycemic and Antioxidant Activity of Cress Seed and Cinnamon on Streptozotocin Induced Diabetes in Male Rats. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2016; 2016:5614564. [PMID: 27525022 PMCID: PMC4972928 DOI: 10.1155/2016/5614564] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 06/23/2016] [Indexed: 12/28/2022]
Abstract
The present study aimed to estimate the stimulation of pancreas of rats with streptozotocin induced diabetes using 20% (w/w) garden cress seed (Lepidium sativum) and cinnamon methanol extracts. The positive control diabetic group showed a significant increase in fasting blood sugar, lipid peroxide, interleukin-6, carboxymethyl lysine, serum uric acid, urea, creatinine, immunoglobulins, and urine albumin and a significant decrease in antioxidant enzymes, sodium ions, potassium ions, and urine creatinine. Severe histopathological changes in the kidney and pancreas tissues in hyperglycemic rats were also shown in the positive control diabetic group. Meanwhile, the groups that were treated with 20% garden cress seed and cinnamon methanol extracts showed a significant decrease in fasting blood sugar and all elevated abovementioned biochemical parameters and an increase in the lowered ones restoring them nearly to the normal levels of G1. Kidney and pancreas tissues were also ameliorated and restored nearly to the normal status. Both garden cress seed and cinnamon methanol extracts succeeded in controlling hyperglycemia in rats with streptozotocin induced diabetes and ameliorated the biochemical and histopathological changes because of their antioxidant activity acquired by their possession of phenolic phytochemicals.
Collapse
Affiliation(s)
- Safaa Qusti
- Biochemistry Department, Faculty of Science, King Abdulaziz University, Jeddah 21789, Saudi Arabia
| | - Haddad A. El Rabey
- Bioinformatics Department, Genetic Engineering and Biotechnology Institute, Sadat City University, Sadat City, Monufia 32897, Egypt
| | - Sarah A. Balashram
- Biochemistry Department, Faculty of Science, King Abdulaziz University, Jeddah 21789, Saudi Arabia
| |
Collapse
|
42
|
Salleh WMNH, Ahmad F, Yen KH, Zulkifli RM. Essential Oil Compositions of Malaysian Lauraceae: A Mini Review. PHARMACEUTICAL SCIENCES 2016. [DOI: 10.15171/ps.2016.11] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
|